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Abstract
Since its cloning more than 30 years ago, the thyrotropin receptor (TSHR) has emerged as a pivotal player in thyroid
physiology and pathophysiology. In particular, hyperthyroidism due to autoimmune disease or thyroid autonomy is linked
with TSHR activation via autoantibodies or mutations respectively. This review summarises clinical aspects of constitutive
TSH receptor activation by naturally occurring somatic or germline TSHR mutations resulting in TSH-independent thyroid
function and cell proliferation.
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Constitutive TSH receptor activation as a
new principle in endocrine tumours and a
driver of thyroid autonomy

The group of Dumont and Vassart were among the first to
suggest that any molecular lesion leading to constitutive
activation of the cAMP cascade could be responsible for the
growth and functional properties of autonomous thyroid
nodules [1]. In support of this, it was shown that transgenic
mice with thyroid expression of the adenosine A2 receptor
mimic the phenotype of thyroid autonomy in humans [2]. In
the first and pivotal study by the Brussels lab in 1993, 9 out
of 11 toxic thyroid nodules harboured an activating TSHR
mutation [3]. Subsequent studies comprising larger sample
series showed that TSHR mutations are not only present in
up to 82% of solitary toxic nodules [4–11] but also
in autonomous nodules within toxic multinodular goitres
[12–14]. The majority of these mutations were localised in

the TSHR transmembrane domain and only rarely in the
extracellular domain [15]. All TSHR mutations were con-
fined to clonal autonomous tissue (=somatic mutations) and
were heterozygous in line with a gain-of-function mutation
exerting a dominant effect [16]. Furthermore, using archival
tissues of euthyroid goitres from an iodine deficient area,
somatic TSHR mutations were identified in microscopic
areas with high 125-I labelling indicating autonomous tis-
sues on autoradiography [17]. This finding illustrates that
gain-of-function TSHR mutations are implicated in the
early steps of thyroid autonomy. In parallel, Gs-alpha
mutations (gsp) which likewise confer constitutive cAMP
activation were detected in 5–30% of toxic thyroid nodules,
that did not harbour a TSHR mutation, sustaining the initial
hypothesis that alterations of several proteins may indeed
contribute to constitutive activation of the cAMP pathway
as a hallmark of thyroid autonomy.

Lessons from in vitro characterisation of TSH
receptor mutations

Functional characterisation of the identified TSHR muta-
tions has mostly been performed in COS-7 cells and has
demonstrated constitutive adenylylcylase activation, in
addition to activation of phospholipase C-protein kinase C
signalling by some mutations [3, 4, 18]. Already early on,
different magnitudes of functional activity became apparent
for the distinct gain-of-function TSHR mutations.
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Moreover, in vitro studies showed that cell surface
expression of the TSHR mutants was reduced compared
with the wild-type receptor either due to decreased pro-
cessing of the mutant TSHR protein or alternatively
increased mutant turn-over by internalisation. Importantly,
this is not an artificial in vitro phenomenon, since reduced
TSHR expression was also demonstrated ex vivo by
immunhistochemical analysis of thyroid tissue from patients
with gain-of-function TSHR mutations compared with
normal and Graves’ disease thyroid tissue [19]. Detailed
functional analysis of naturally occurring TSHR mutants
and subsequent extensive modelling studies by several
groups over the past 20 years has provided important
insights into the mechanism of TSHR activation, embedded
in general concepts of G protein coupled receptor (GPCR)
function [20]. One new concept that emerged from these
mechanistic studies was the idea that small molecules could
be developed that act as inverse agonists or antagonists
against, e.g. antibody driven TSH receptor activation in
Graves’ disease and ophthalmopathy [21, 22]. As another
example, it was recently demonstrated that the TSHR can
also form complexes with other non-GPCR membrane
proteins such as the mono-carboxylate transporter 8, which
expressed on the basolateral membrane of thyrocytes is
involved in thyroid hormone release [23]. This hints at truly
complex regulation of thyroid hormone production at the
level of the thyroid gland and takes the thinking from an
individual receptor to the broader and hitherto understudied
consideration of interacting protein networks in the thyr-
ocyte membrane, which may be relevant for a better
understanding of thyroid disease.

Understanding the biological consequences
of TSHR mutations for thyroid tumorigenesis

Distinct biological properties of various TSHR mutations
and gsp were subsequently demonstrated in rat thyroid
follicular cells and human thyrocytes [24, 25]. The major
finding of these studies conducted in Marian Ludgate’s lab
was that the behaviour of TSHR mutations in the thyroid
context was not identical to in vitro analysis of the same
mutations in non-thyroidal COS-7 cells. While induction of
TSH-independent thyroid function was confirmed for all
investigated TSHR mutants, TSH-independent thyroid cell
proliferation was only observed in some mutations [24].
This clearly demonstrated the importance of the cellular
context for a true understanding of the pathogenic con-
tribution of TSHR activation to thyroid autonomy. Sub-
sequent analyses, including proteomic studies in my lab
underlined that even though signalling properties of gain-of-
function TSHR are similar (with respect to the cAMP cas-
cade), they are not identical and include involvement of

other non-PKA pathways, at least in rat FRTL-5 cells [26].
These finding might also explain differences in cell pro-
liferation capacity observed for the distinct activating TSHR
mutations in thyroid cells. Furthermore, using mutant
TSHR stably expressing FRTL-5 cells as an in vitro model
of thyroid autonomy, we demonstrated that exposure to
iodine in early phases of thyroid autonomy downregulated
transcription of genes involved in cell proliferation [27, 28].
This finding is in line with epidemiological observations
from the Pescopagano study [29], suggesting that improved
iodine supply may actually hamper progression of early
stage thyroid autonomy.

However, the precise mechanism that drive the evolution
from thyrocytes harbouring a gain-of-function TSHR
mutation to a clinically apparent toxic thyroid nodule are
still far from being understood, adding to the ongoing dis-
cussion that additional alterations may be required. In this
context, a second hit mutation was identified in enhancer of
zeste homologue 1 (EZH1) in toxic thyroid nodules by
whole-exome sequencing [30]. This mutation occurred in
the catalytic subunit of the polycomb repressive complex 2
of EZH1, which is involved in embryonic stem cell plur-
ipotency and plasticity and has been linked to cancer
aggressiveness. Functional characterisation in rat thyroid
cells showed that this EZH1 mutation confers increased
histone H3 trimethylation and promotes cell proliferation.
Interestingly, EZH1 mutations were found in 27% of 123
toxic nodules, and only in tumours, which also harboured a
somatic gain-of-function TSHR mutation. This novel find-
ing notwithstanding, not all toxic adenomas display an
EZH1 mutation and from screening of other benign and
malignant thyroid tumours it appears that EZH1 mutations
at least in codon 571 are not principally involved in reg-
ulation of proliferation in these tumours [30]. In the future
further mechanistic insights into the development of mac-
roscopic thyroid autonomy may be derived from the first
gain-of-function TSHR mutant mouse model that has only
very recently been established [31].

Clinical impact of constitutive TSHR
activation in the rare condition of hereditary
non-autoimmune hyperthyroidism

Constitutively activating TSHR mutations may also occur
as germline mutations and in the situation cause hereditary
non-autoimmune hyperthyroidism that is transmitted in an
autosomal dominant manner [5, 32]. The clinical impact of
germline TSH receptor activation is exemplified by the
Welsh kindred described by the Ludgate lab in 2000 [33]. In
this family, hyperthyroidism and goitre were prevalent with
high frequency over three generations with putative invol-
vement of at least three further generations now deceased.
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The laboratory finding of borderline thyroid autoantibodies
(thyroglobulin, thyroperoxidase antibodies) in some of the
affected family members led to the diagnosis of familial
occurrence of Graves’ disease though absence of thyroid
eye disease and relapse of hyperthyroidism after thyroid
surgery were noted. Still the initial presentation of hyper-
thyroidism in conjunction with thyrotoxicosis in the—at
that time 4-year-old offspring—was not regarded as highly
unusual, since Graves’ disease accounts for most cases of
thyrotoxicosis in childhood. However, when TSHR anti-
bodies were determined in the child and were found to be
absent, further investigation of the family was pursued. This
led to the identification of a novel TSHR mutation localised
in codon 463 of the second membrane-spanning region. The
mutation was present in all family members with non-
autoimmune hyperthyroidism and was absent in members
with no clinical evidence for thyroid disease. Functional
analysis of the mutation confirmed its gain-of-function
nature and showed functional characteristics in agreement
with previously studied TSHR mutations. The identification
of this gain-of-function germline mutation determined the
necessity for thyroid ablation in all affected members to
prevent relapses of thyrotoxicosis. Moreover, molecular
analysis offered the possibility for screening, allowing for
early diagnosis in three young cousins of the index patient
that were living in Asia. Finally, once hereditary disease is
suspected, determination of the disease aetiology is man-
datory because of the medical and legal requirement for
genetic counselling of the patients, their relatives and off-
spring (Fig. 1).

Conclusion

In sum, constitutive activation of the cAMP cascade, pre-
dominantly via TSHR mutations, is the molecular hallmark
of thyroid autonomy in its various presentation as solitary
toxic adenoma, toxic multinodular goitre or even hereditary
non-autoimmune hyperthyroidism [34]. The identification
of gain-of-function TSHR mutations in these conditions
has largely substantiated the clinical management of thyr-
oid autonomy by thyroid ablation (surgery or radioiodine)
since spontaneous remission will neither occur in clonal
lesions harbouring a TSHR mutation nor in individuals
with gain-of-function TSHR germline mutations. Many
open questions on TSHR function and thyroid disease
remain to be resolved and this journey will be ongoing with
development of small molecules as a first example and
further discoveries facilitated by novel methodologies and
advances in animal models and stem cell research including
the first generation of mouse and human thyroid organoids
[35, 36].
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