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Abstract
Purpose 3β-hydroxysteroid dehydrogenase type 2 deficiency (3βHSD2D) is a very rare variant of congenital adrenal
hyperplasia (CAH) causing less than 0.5% of all CAH. The aim was to review the literature.
Methods PubMed was searched for relevant articles.
Results 3βHSD2D is caused by HSD3B2 gene mutations and characterized by impaired steroid synthesis in the gonads and
the adrenal glands and subsequent increased dehydroepiandrosterone (DHEA) concentrations. The main hormonal changes
observed in patients with 3βHSD2D are elevated ratios of the Δ5-steroids over Δ4-steroids but molecular genetic testing is
recommended to confirm the diagnosis. Several deleterious mutations in the HSD3B2 gene have been associated with salt-
wasting (SW) crisis in the neonatal period, while missense mutations have been associated with a non-SW phenotype. Boys
may have ambiguous genitalia, whereas girls present with mild or no virilization at birth. The existence of non-classic
3βHSD2D is controversial. In an acute SW crisis, the treatment includes prompt rehydration, correction of hypoglycemia,
and parenteral hydrocortisone. Similar to other forms of CAH, glucocorticoid and mineralocorticoid replacement is needed
for long-term management. In addition, sex hormone replacement therapy may be required if normal progress through
puberty is failing. Little is known regarding possible negative long-term consequences of 3βHSD2D and its treatments, e.g.,
fertility, final height, osteoporosis and fractures, adrenal and testicular tumor risk, and mortality.
Conclusion Knowledge is mainly based on case reports but many long-term outcomes could be presumed to be similar to
other types of CAH, mainly 21-hydroxylase deficiency, although in 3βHSD2D it seems to be more difficult to suppress the
androgens.
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Introduction

Congenital adrenal hyperplasia (CAH) is a group of dis-
orders caused by deficiency of one of five enzymes that are
responsible for making cortisol from cholesterol in the
adrenal glands [1–3]. 21-hydroxylase deficiency (21OHD) is

the most common disorder causing CAH (95-99%) followed
by 11-beta-hydroxylase deficiency (11OHD) [2, 4–7].

3β-hydroxysteroid dehydrogenase type 2 deficiency
(3βHSD2D) [8, 9], is a very rare type of CAH affecting <0.5%
of all CAH [4, 5], and with <1/1,000,000 estimated prevalence
at birth [10]. This disorder is caused by HSD3B2 gene
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mutations and characterized by impairment of steroid synthesis
in the gonads and the adrenal glands [11]. This leads to
decreased cortisol, aldosterone, and androstenedione con-
centrations, however, renin, ACTH, and dehydroepian-
drosterone (DHEA) concentrations are increased with DHEA
being converted to testosterone by extra-adrenal 3βHSD1 [2].
The first cases of 3βHSD2D were reported by Bongiovanni in
USA 1962 [12]. The clinical presentation varies according to
the type (severity) of the genetic mutation and may include
salt-wasting (SW) in both sexes, incomplete masculinization in
males, and virilization in females. Elevated Δ5-17-hydro-
xypregnenolone is the best single biological marker or indi-
cator of 3βHSD2D [13], but molecular genetic testing is
recommended to confirm the diagnosis [14]. Glucorticoid and
mineralocorticoid replacement therapy constitutes the main
treatment [15]. In addition, sex hormones may be required for
some patients who fail to progress through puberty [16].

The aim of this review is to provide a summary of cur-
rently available knowledge of CAH due to 3βHSD2D.

Physiology

The adrenal glands are vital organs where steroidogenesis
(in adrenal cortex) and catecholamine production (adrenal
medulla) take place. The adrenal cortex has three compart-
ments: zona glomerulosa, zona fasciculata, and zona reti-
cularis [17] (Fig. 1). In the first step of the steroidogenesis
StAR transports the cholesterol across the membrane, and
then cholesterol is converted pregnenolone by the P450 side
chain cleavage enzyme [18]. Within the zona glomerulosa,
HSD3B2 converts pregnenolone to progesterone, which
eventually is converted into aldosterone by a series of
enzymatic processes involving CYP21A2 and aldosterone
synthase [17]. In the zona fasciculata, CYP17A1 hydro-
xylates pregnenolone to form 17-hydroxyprogesterone
(17OHP) which is then converted via several enzymes,
including CYP11B1 and HSD3B2, to form cortisol. In the
zona reticularis, 17-hydroxypregnenolone is converted to
DHEA by CYP17A1. Then, HSD3B2 converts DHEA to
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Fig. 1 a Normal steroidogenesis
in the adrenal cortex. The
pathways of aldosterone,
cortisol, and androgen synthesis
and the enzymatic steps from the
precursor cholesterol are shown.
b Adrenal hormonal synthesis
and enzyme expression pattern.
ZG zona glomerulosa, ZF zona
fasciculata, ZR zona reticularis,
CYP11B2 aldosterone synthase,
CYP17A1 17α-hydroxylase/
17,20-lyase, CYP11B1 11β-
hydroxylase, CYB5A,
cytochrome b5, SULTA1 steroid
sulfotransferase type 2A1
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androstenedione, which is a precursor of sex hormones [18].
The conversion of the Δ5-3β-hydroxysteroids (pregneno-
lone, 17-hydroxypregnenolone, and DHEA) to a Δ4-3-
ketosteroids (progesterone, 17OHP, and androstenedione)
by HSD3B2 involves dehydrogenation followed by an iso-
merization reaction [19]. Similarly, within the Leydig cells
in the testis, cholesterol is converted to pregnenolone, 17-
hydroxypregnenolone, DHEA and androstenedione.
HSD17B3/AKR1C3 converts androstenedione or androste-
nediol to testosterone [20]. DHEA is converted by
SULT2A1 to the more stable sulfated form (DHEAS).
DHEAS has longer half-life (<10 h) and only 20% diurnal
variation (DHEA ~30 min and 300%, respectively) [21] and
is therefore measured more often than DHEA, for practical
reasons. DHEAS can then be reconverted to DHEA by
steroid sulfatase (STS) (~70%) but also to a certain degree
by SULT2A1 located in the liver and kidney [22, 23].

Pathophysiology

21OHD and 11OHD impair steroidogenesis in the adrenal
glands only [1–3, 6, 17]. In contrast, severe form of
3βHSD2D causes defects of steroidogenesis in both adrenal
glands and gonads [2, 3, 15]. Figure 2 illustrates the
pathophysiology of 3βHSD2D.

HSD3B2 catalyzes reactions responsible for synthesis of
a 3-keto-Δ4 A-ring, which is an essential part of endo-
genous mineralocorticoids, glucocorticoids, progestins, and
androgens [3, 12, 24]. As a result, 3βHSD2D impairs the
synthesis of progesterone, the precursor hormone of
aldosterone, 17OHP, the precursor for cortisol, androste-
nedione, testosterone, and estrogen in the adrenal glands
and gonads [13, 24]. Reduced levels of cortisol decrease the
negative feedback on the pituitary gland causing excess
ACTH production. Subsequently, ACTH drives the accu-
mulation of β-hydroxy-Δ5-steroids pregnenolone, 17-

hydroxypregnenolone, and DHEA, and their sulfates [25].
These precursor steroids cannot compensate for the cortisol
and aldosterone deficiencies resulting in electrolyte dis-
turbances and SW in most patients [12]. In the peripheral
tissues, the intact isoenzyme HSD3B1 enzyme converts
circulating DHEA to testosterone [16].

Elevated level of androstenedione leads to relatively high
level of testosterone in females, however, it fails to achieve
full compensation for absence of testosterone synthesis in
males. In 46,XY neonates testosterone deficiency causes
genital ambiguity. On the other hand, in 46,XX neonates,
the relatively high level of testosterone may cause clitor-
omegaly and partial labioscrotal fusion. In addition,
undiagnosed females may present with precocious pub-
arche, acne, hirsutism, and menstrual disturbances [26].

The human type I isoenzyme 3βHSD is the isoenzyme,
encoded by HSD3B1 gene and is expressed in peripheral
tissue including skin, mammary glands, and placenta [9, 11,
14]. It has 372 amino acids and shares more than 90%
homology with the type II isoenzyme [27, 28]. The human
type I isoenzyme 3βHSD catalyzes transformation of DHEA
into sex steroids including testosterone and estradiol [9].

Clinical presentation

The phenotype of 3βHSD2D varies according to the genetic
defect from severe SW form in neonates to mild menstrual
disorders in older females [13, 15, 20].

Incomplete masculinization in males

In normal 46,XY fetuses, androgens are required for penile
development including the urethra and fusion of the labial-
scrotal folds that normally takes place before 12 weeks of
gestation [29]. Severe form of 3βHSD2D is associated with
varying manifestations of incomplete masculinization

Fig. 2 Pathophysiology in 3β-hydroxysteroid dehydrogenase type 2 deficiency
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including severe hypospadia, micropenis, bifid scrotum, and
undescended testis [16, 20, 29].

Female virilization

Depending on the genetic mutations, 46,XX infants can
show enlarged clitoris, incomplete labial fusion and genital
hyperpigmentation [30]. In contrast, some girls can have
normal external genitalia which may delay diagnosis and
they can subsequently present with adrenal crisis [31].
Older girls and women with genetically confirmed non-SW
3βHSD2D can present with androgen symptoms of hirsut-
ism, premature pubarche or menstrual disorders including
oligomenorrhea and primary amenorrhea [16, 32].

Salt-wasting

Several deleterious mutations in the HSD3B2 gene have
been described that can cause SW during the first few weeks
of life and may be fatal if not treated adequately [31, 32].
Biochemical findings include hyponatremia, hyperkalemia,
metabolic acidosis and hypoglycemia [15, 33]. On the other
hand, missense mutations in the coding region of HSD3B2
gene is associated with non-SW form due to the presence of
some residual enzymatic activity, about 10%, is sufficient to
prevent aldosterone deficiency [16, 24, 32, 34, 35].

Hypoglycemia

Recurrent episodes of hypoglycemia were reported to be a
presenting feature in a suspected case of 3βHSD2D but the
genotype was not performed to confirm the diagnosis [36].
Another patient presented during second day of life with
hypoglycemia, later on, the molecular genetics confirmed
3βHSD2D [31].

Diagnosis

In case of SW phenotype, 3βHSD2D is usually diagnosed
within the first few weeks of life. In case of non-SW phe-
notype, patients may be diagnosed at any time before
puberty [37]. However, the diagnosis has rarely been further
delayed and patients can present with gender role related
concerns during adulthood [38]. Overall, the patients tend to
be diagnosed at a younger age in 46,XY children due to a
higher rate of genital ambiguity compared to females [34,
39]. Also, there seems to be an underrepresentation of 46,
XX patients, which might be explained by lack of diagnosis
in milder form of 3βHSD2D in females. Also, females with
severe form may die undiagnosed in a neonatal adrenal
crisis more often than males [15].

When adrenal insufficiency is suspected in the setting of
an adrenal crisis (i.e., an acute hemodynamic disturbance

with hyponatremia, hyperkalemia and often hypoglycemia),
blood should be drawn for steroid hormone measurements
[15], but without delaying the lifesaving acute treatment
with intravenous (or intramuscular) hydrocortisone [40, 41].
Low cortisol with high ACTH is consistent with primary
adrenal insufficiency [42].

As 3βHSD2D catalyzes the conversion of Δ5-steroids
(pregnenolone, 17-hydroxypregnenolone, DHEA, andros-
tenediol) to Δ4-steroids (progesteron, 17OHP, androstene-
dione, testosterone), the main hormonal changes observed
in patients with 3βHSD2D are high ratios of the Δ5- over
Δ4-steroids [24, 43]. This includes raised 17-
hydroxypregnenolone to 17OHP and DHEA(S) to andros-
tenedione ratios in serum, and pregnanetriol to pregnanediol
ratio in urine [15, 44, 45].

ACTH stimulation test and hormonal profiles

Morning administration of 250 μg of synthetic ACTH fol-
lowed by measurements of plasma Δ5-17-hydroxypregn-
enolone (5–17P), cortisol, Δ4-17-hydroxyprogesterone
(17OHP), DHEA(S), and androstenedione can be used to
improve the diagnostic process of 3βHSD2D [3, 13]. Hor-
monal criteria for the diagnosis of 3βHSD2D have been
developed from a previous study [13], where hormonal
profiles of patients with homozygous/compound hetero-
geneous HSD3B2 mutations and people with normal
HSD3B2 genes were compared. ACTH stimulation test
shows, apart from diminished cortisol, an exaggerated
response and high level of Δ5-17-hydroxypregnenolone in
patients with homozygous/compound heterozygous
HSD3B2 mutations and varies according to patient age
(Table 1) [13, 46].

In general, Δ5-17-hydroxypregnenolone above 100
nmol/L, either basal or after ACTH stimulation, is the best
single biological criterion of 3βHSD2D [16, 31, 37]. The
hormonal profile cannot distinguish heterozygous carriers
from normal people [3, 47].

Other biochemical findings are elevated renin, relatively
high level of testosterone in girls, elevated 17OHP (via
peripheral conversion, see below), elevated DHEA(S), ele-
vated urinary Δ5-OHP, and DHA metabolites [16].

Table 1 Post ACTH stimulation test of Δ5-17-hydroxypregnenolone
in patients with 3βHSD2D confirmed by HSD3B2 mutation analysis
[13]

Neonates with ambiguous genitalia ≥378 nmol/L

Tanner stage I children with ambiguous genitalia ≥165 nmol/L

Children with premature pubarche ≥294 nmol/L

Adults ≥289 nmol/L

410 Endocrine (2019) 63:407–421



Molecular analysis and genetic studies

There are two isoenzymes of human 3βHSD which are
encoded by different genes located on the p13.1 region of
chromosome 1 [14, 15]. Both genes are included within a
DNA fragment of around 7.8 kB and consist of four exons
and three introns [19, 24, 34]. The HSD3B2 gene encodes
the human type II 3βHSD isoenzyme and is expressed in the
adrenal cortex and in the gonads. The isoenzyme is essential
for the adrenal synthesis of glucocorticoids, miner-
alocorticoids, and sex steroids [9, 10, 34, 36]. More than 40
mutations have been found in the HSD3B2 gene causing
3βHSD2D and a few of them have been identified in iso-
lated populations (Table 2) [10, 15, 16, 20, 24, 29–31, 35,
37, 48–64].

In general, frameshift mutations, in-frame deletions, and
nonsense mutations introducing a premature termination
codon are associated with severe form of 3βHSD2D
resulting in SW phenotype [14, 34, 65]. The locations of
these mutations suggest that at least the first 318 amino
acids out of 371 are required for HSD3B2 activity [14]. In
contrast, missense mutations are associated with some
residual enzymatic activity and non-SW phenotype [14].
There have been no reported mutations of the HSD3B1 gene
in human so far [32, 44].

Neonatal screening

Newborns with atypical external genitalia should undergo
hormonal profile analysis prior to hospital discharge to
avoid presentation with SW crisis [66, 67]. Neonatal
screening for 21OHD by detecting elevated level of 17OHP
has been implemented in most developed countries [68].
3βHSD2D can result in an increase in the level of circu-
lating 17OHP due to peripheral conversion of high levels of
accumulated Δ5-steroids by the isoenzyme 3βHSD type 1.
There have been previous case reports of false positive, for
21OHD, neonatal screen for infants with 3βHSD2D [31,
65]. Accordingly, neonates with elevated 17OHP should
undergo molecular genetic confirmation to confirm the type
of enzymatic deficiency [14, 31, 68].

Non-classic form of 3βHSD2D

Prior to the implementation of molecular genetic studies,
it was thought that many children with premature pub-
arche, and females with hirsutism and menstrual irregu-
larities might have a mild, late-onset (non-classic) form
of 3βHSD2D [35, 37, 45]. This was supported by con-
troversial hormonal criteria based on exaggerated Δ5-
steroid production after ACTH stimulation test and ele-
vated 17OHP to cortisol ratios [32]. However, genetic

studies failed to detect any mutations in the HSD3B2
gene in this group of patients [24, 29, 35, 37], and
treatment with glucocorticoids and mineralocorticoids
did not improve signs of androgen excess [29, 32]. A
previous report has shown normalization of the hormonal
profile after treatment with GnRH agonist for two patients
diagnosed with polycystic ovarian syndrome (PCOS)
associated with 3βHSD2D [69]. The exact mechanism of
exaggerated Δ5-steroid production after ACTH stimula-
tion is not clear and it might be related to a form of PCOS
or other unidentified mechanism causing alteration in
intra-adrenal 3βHSD activity [32]. A not uncommon
presentation among adult women with mild hyperan-
drogenism is that they are found to have elevated serum
DHEAS and/or reported to have “partial 3βHSD2D”,
based on urine steroid profiling but with no HSD3B2
gene mutations identified. The diagnosis usually ends up
being PCOS. Thus, non-classic 3βHSD2D, if it exists,
is extremely rare [2], in contrast to non-classic 21OHD
[70, 71].

Pubertal status

Few patients have been evaluated after puberty [15, 20, 33,
72–75]. With good compliance with glucocortiocid and
mineralocorticoid replacement therapy [15], most 46,XX
patients have shown progressive feminization at appropriate
age with menstruations [15, 33, 74]. In contrast, one female
with severe HSD3B2 mutations had minimal breast devel-
opment at age 14.7 years, required gonadotropin injections
and estrogen treatment to develop full feminization. How-
ever, with cessation of estrogen and progesterone replace-
ment treatment, her menstrual cycle ceased and she
developed ovarian cysts [16, 76].

The pubertal development has been reported in some
males with HSD3B2 mutations. Most of these patients
entered puberty spontaneously without need for testosterone
supplementation [15, 20, 33, 72, 74, 75, 77]. This could be
explained by peripheral conversion of DHEAS to testos-
terone by HSD17B5 activity [10, 20].

Gynecomastia

In adult males with 3βHSD2D, HSD3B1 converts the high
amount of androgen precursors (DHEA and androstenediol)
in peripheral tissues to androstenedione or testosterone [20].
Then HSD17B1, HSD17B5, and CYP19A1 enzymes cata-
lyze the conversion of androstenedione and testosterone to
estrogens [20]. High level of estrogens is associated with
gynecomastia in males [10, 20, 72]. Testosterone replacement
therapy was found to reduce gynecomastia by suppressing
gonadotrophin synthesis via negative feedback [20].
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Table 2 HSD3B2 gene mutations causing 3β–hydroxysteroid dehydrogenase type 2 deficiency

Mutation/genotype Sex Clinical presentation Comments First author
[reference]

Homozygous mutation
c.73G >T(p.E25X)

Female SW
Mild virilization

Huang [61]

(L205P, p.Leu205Pro) Male SW
Hyperpigmentation
Severe hypospadias
Bifid scrotum

No detectable
3βHSD activity

Moisan [16]

Compound heterogeneous
mutation 186/insC/187 and
(Y253N, p.Tyr253Asn)

Male SW
Severe undervirilization
Hypospadia

Frames shift,
missense
No detectable
3βHSD activity

Simard [24, 29]

Compound heterogeneous
mutation: W171X/(E142K, p.
Glu142Lys)

Male SW
Severe undervirilization
Hypospadia

Nonsense,
missense
No detectable
3βHSD activity

Simard [24, 29]

(A82P, p.Ala82Pro) Male SW
Perineal hypospadias

Rabbani [60]

Homozygous mutation
687del27

Male Neonatal SW
Micropenis with a
perineal hypospadias

Achieved normal
puberty
Adult spermatic
characteristics were
normal

Donadille [10]

687del27 homozygous
mutation

Male Perineal hypospadias
Miropenis
SW

No detectable
3βHSD activity

Moisan [16]

Homozygous c.687del27 Male Severe undervirilization
Low steroid production
Arrested
spermatogenesis
Gynecomastia

Burckhardt
[20]

Compound heterogeneous
mutation 318 [ACA (Thr)] —
>AA 273 [AAA(Lys) —>A]

Female SW
Sexual ambiguity

Zhang [30]

(T259M, p.Thr259Met) Male Perineal hypospadia
Bifid scrotum
SW

No detectable
3βHSD activity

Moisan [16]

Female Mild clitromegaly
Premature pubarche

Marui [35]

(T259R, p.Thr259Arg) Male Pigmentation
Hypospadias
Bifid scrotum
SW

No detectable
3βHSD activity

Moisan [16]

Female Normal genitalia with
severe pigmentation
SW

Compound heterozygote A82D,
W230X

Female Hypoglycemia
SW

Nordenstrom
[31]

(P222Q, p.Pro222Gln) Male Perineal hypospadias
Micropenis
SW

No detectable
3βHSD activity

Moisan [16]

(P155L, p.Pro155Leu) Male Perineal hypospadias
SW

No detectable
3βHSD activity

Moisan [16]

Homozygous p.W355R (c.763
T>C)

Male Hypospadias
cryptorchidism
Bifid scrotum
SW

TART Guven [63]
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Table 2 (continued)

Mutation/genotype Sex Clinical presentation Comments First author
[reference]

(A10E, p.Ala10Glu) Male Sexual ambiguity
SW
Azoospermia

Missense Alos [15]

Female Normal genitalia
SW/normal puberty

Homozygous p.Q334X
(c.1000C>T)

Male SW
Hypospadias, small
phallus, bifid scrotae,
palpable gonads

TART Alswailem [28]

Female SW
Normal genitalia

p.R335X (c.1003C>T) Male SW
Hypospadias
Bifid scrota
Palpable gonads
Advanced bone
maturation

Bilateral TARTs

Female SW
Normal genitalia

W171X :Trp171 Stop Female SW
Normal external
genitilia
Failure of breast
development

Nonsense Rheaume [11]

Compound heterogenous
mutation W171X: Trp171 Stop
and 186/insC/187

Male SW
Hypospadias

Nonsense
Adequate
spermatogenesis

Rheaume [11]

273ΔAA Male SW
Ambiguous genitalia

Frameshift
mutation
No residual
enzymatic activity

Simard [48]

Compound heterogenous
mutation (L108W, p.
Leu108Trp) (P186L, p.
Pro186Leu)

Male SW
Hypospadias

Missense
Less than 0.5%
enzymatic activity

Sanchez [53]

(G15D, p.Gly15Asp) Male SW
Hypospadias

Missense Rheaume [49]

Compound heterozygous for
T181I1 and 1105delA

Female SW
Premature pubarche,
slight growth
acceleration, and
advanced bone age

Frameshift Johannsen [37]

(P222T, p.Pro222Thr) Female SW Missense Pang [58]

(P341L, p.Pro341Leu) Male SW
Micropenis

Welzel [59]

Heterozygosity.244G>A (p.
Ala82Thr), 931C>T(p.
Gln311*)

Female Ambiguous genitalia Teasdale [64]

(S213G, p.Ser213Gly) Female Premature pubarche at 4
y
Growth acceleration

Detectable activity Moisan [16]

(A245P, p.Ala245Pro) Male Sexual ambiguity Detectable activity Simard [24, 29]

(A10V, p.Ala10Val) Male Perinoscrotal
hypospadia

Detectable activity
(30%)

Moisan [16]

Endocrine (2019) 63:407–421 413



Final height

Final height has been reported in a few patients and the
adult height seemed to be within the target range when
control of the hyperandrogenism during the growth period
had been good [15], but otherwise the final height was
reduced [75].

Fertility

3βHSD is required for biosynthesis of not only miner-
alocorticoids and glucocorticoids, but also sex hormones.
Accordingly, males with 3βHSD2D may suffer from
decreased spermatogenesis and infertility. Also, females
may have menstrual irregularity and infertility [20]. How-
ever, there is very limited information about fertility, semen
analysis and testicular histology in patients with 3βHSD2D
[15, 20, 73, 75]. In case reports of 46,XY patients, semen
analyses have shown azoospermia [15, 75]. Moreover,
testicular histology in adult males with 3βHSD2D showed

spermatogenic arrest at the level of spermatogonia [20, 78].
In contrast, a patient with severe HSD3B2 mutations, with
annual follow-ups from birth until the age of 23 years old,
demonstrated normal sperm production probably attributed
to his good compliance with treatment [10]. This might
suggest that fertility is possible even with severe mutations.
One case of an adult male fathering two children has been
reported, however, there was no genetic testing to confirm
his paternity [10]. In 21OHD, fertility has been shown to be
impaired in both females and males [4, 79–86], however,
the fertility may be normal if the male has been diagnosed
and treated early on since the neonatal period. If this is also
true in 3βHSD2D is unknown.

Testicular adrenal rest tumors

During abdominal surgery, the presence of ectopic adre-
nocortical tissue is a common incidental finding in other-
wise healthy individuals without clinical significance [87].
In patients with CAH and during period of suboptimal

Table 2 (continued)

Mutation/genotype Sex Clinical presentation Comments First author
[reference]

(L236S, p.Leu236Ser) Male Perinoscrota
hypospadias
Micropenis

Missense Moisan [16]

Female Premature pubarche Missense Nayak [57]

(A245):Ala245Pro Male Hypospadias
Bifid scrotum

Missense
Detectable
enzymatic activity

Simard [24]

(G129R, p.Gly129Arg) Male Perineal hypospadias Missense/splice
Detectable
enzymatic activity

Rheaume [51]

Female Normal genitalia
Premature pubarche

(N100S, p.Asn100Ser) Male Perineal hypospadias Missense Mebarki [55]

(Y254D, p.Tyr254Asp) Female Severe acne
Primary amenorrhea
Clitoromegaly
Moderate hirsutism

Missense Sanchez [54]

(L173R, p.Leu173Arg) Male Perineal hypospadias Missense
Raised as female

Russel [52]

(A82T, p.Ala82Thr) Female Some with no signs of
CAH
One patient with
premature pubarche

Missense Mendonca [50]

Male Perineal hypospadias

p.G250V Female Precocious pubarche
Postnatal clitoromegaly

Baquedano
[62]

(A167V, p.Ala167Val) Female Premature pubarche Missense Moisan [16]

(K216E, p.Lys216Glu) Female Premature pubarche Missense Moisan [16]

(P22H, p.Pro221His) Female Premature pubarche Moisan [16]

(G294V, p.Gly294Val) Male Hypospadias Moisan [16]

SW Salt wasting
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treatment, high levels of ACTH and angiotensin II can sti-
mulate adrenal-like cells causing development of testicular
adrenal rest tumors (TARTs) and rarely ovarian adrenal rest
tumors [75, 87]. The prevalence of TARTs varies between
34 and 94% according to different reports in males with
CAH due to 21OHD [82, 85, 88, 89]. TARTs have been
reported in some patients with 3βHSD2D [15, 63, 75], but it
is difficult to estimate the prevalence. Also, it has been
demonstrated that presence of TARTs has a negative impact
on fertility in males with 21OHD [82, 88, 90]. Similarly, in
previous case reports, males with 3βHSD2D and TARTs
have been found to have severely impaired spermatogenesis
[63, 75, 82]. High dose of corticosteroids might reduce the
size of TART [63]. It has been recommended that all
patients with CAH should undergo regular testicular
examination with ultrasonography [1, 7, 90]. Even though
these recommendations were primarily written for 21OHD
it can be assumed that males with 3βHSD2D have equal
benefits.

Bone mineral density and fractures

Supraphysiological glucocorticoid replacement has harmful
effects on bone mineral density (BMD) via multiple
mechanisms [91, 92]. Only one case of 3βHSD2D and
BMD measurements has been reported, and has showed
osteoporosis [75]. In general, studies in adults with CAH
have demonstrated impaired BMD [4, 93–100], even
though there are exceptions with normal BMD [101, 102],
and better than other DSD conditions [103]. Prednisolone
may be associated with worse BMD than hydrocortisone
[95, 97, 104, 105]. Fractures have not been reported in
3βHSD2D so far but may be increased in CAH in general
[93, 95, 97, 99, 100, 103].

Obesity, diabetes, and cardiovascular disease

Obesity, including severe, has been reported in patients with
3βHSD2D [63, 75], probably due to iatrogenic Cushing
syndrome. It could be assumed that the prevalence of
obesity, diabetes and cardiovascular disease in 3βHSD2D is
similar to most other forms of CAH, most commonly
21OHD, and mainly due to glucocorticoid excess but
androgen excess and/or deficiency may also contribute. The
majority of studies including adults and children with CAH
have reported an increased body fat mass assessed by DXA
[96, 101, 102, 106, 107], which enables separation between
lean mass (which may be increased due to hyperan-
drogenism) from fat mass. Elevated cardiometabolic risk,
including insulin resistance [4, 94, 108–117], has been
reported in a large number of studies on CAH, with a few
reporting increased rate of established cardiovascular dis-
ease [103, 118], and diabetes (including gestational

diabetes) [81, 109, 118]. Very few individuals with CAH
above 50 years of age have been included in studies, and
thus it could be expected that the rate will increase since
cardiovascular disease and diabetes usually develop later in
life [1].

Psychiatric diseases

Psychiatric disorders have so far not been reported in stu-
dies with exclusively 3βHSD2D recruited [119]. In studies
of CAH psychiatric diseases have only occasionally been
investigated and these have shown an increased rate [103,
120, 121], especially of depression [122], alcohol misuse
[120, 121], and suicidality [103, 120].

Adrenal tumors

Chronic elevation of ACTH will lead to hyperplasia of the
adrenal cortex and sometimes subsequent tumor formation
[123–125]. Adrenal tumors have so far not been reported in
3βHSD2D but are known to affect 11–82% of patients with
other CAH variants [124, 126, 127]. Adrenal incidentalo-
mas, i.e., adrenal tumors found serendipitously by imaging
for other reasons than suspected adrenal tumor or disease
[128], have sometimes been the initial presentation of CAH,
including classic CAH, both in case reports and adrenal
incidentaloma cohorts [125, 129–134].

Mortality

Very little is known about the mortality in individuals with
3βHSD2D. The introduction of glucocorticoid replacement
and increased awareness have increased the survival of
classic 21OHD [5], and this is most probably also the case
in 3βHSD2D. In population studies, patients with CAH had
generally an increased mortality rate (hazard ratio 3–5) and
died 6.5–18 years earlier, compared to controls [122, 135].
Adrenal crisis was the main cause of death [135], iterating
the importance of stress dosing during acute illness [40, 41].
Mortality studies in pure 3βHSD2D will probably never be
performed due to its rareness.

Treatment

Glucocorticoid and mineralocorticoid replacement is similar
to other forms of CAH. In SW crisis, treatment includes
prompt rehydration, correction of hypoglycemia, and par-
enteral hydrocortisone (intravenous or intramuscular) [15,
40, 41]. For follow-up children are treated with hydro-
cortisone in a dose of 10–15 mg/m2/day. Long-acting glu-
cocorticoids such as dexamethasone and prednisolone,
known to suppress growth in children, can be used during
adulthood [7, 33, 67]. Compared to 21OHD it seems to be
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more difficult to suppress the androgens in 3βHSD2D,
which could be speculated be due to the DHEAS as a
constant source of DHEA, testosterone and DHT. This may
result in a need for slightly higher doses of glucocorticoids
in 3βHSD2D with subsequently more long-term negative
outcomes. Mineralocorticoid replacement can be achieved
with fludrocortisone 0.1 mg/day [33] with regular monitor-
ing of plasma renin activity [1, 7, 67]. Sex hormone
replacement therapy should be considered for patients who
show delayed progression through puberty [16]. In addition,
testosterone replacement therapy might be considered for
male patients with testosterone responsive microphallus to
augment penile growth [33]. Hormonal replacement therapy
should be combined with regular clinical and biochemical
evaluation of these patients [15]. Surgical intervention
might be indicated in some circumstances including
undescended testis [63], hypospadias repair [20], and severe
genital virilization [136–138]. Bilateral adrenalectomy has
occasionally been used in selective cases with 21OHD or
11OHD to better control hyperandrogenism and/or to be
able to lower the glucocorticoid doses with similar control
of the hyperandrogenism [139]. Its utility in 3βHSD2D is
currently unclear.

Conclusion

3βHSD2D is a very rare form of CAH and the phenotype
varies according to the severity of the HSD3B2 mutations.
In severe forms, the neonate can present with SW crisis
but the diagnosis can be delayed in mild forms until
adolescence. Hormonal criteria for the diagnosis of
3βHSD2D have been developed and it was proposed that
Δ5-17-hydroxypregnenolone above 100 nmol/L, either
basal or after ACTH stimulation, is the best single bio-
logical criterion of 3βHSD2D. However, molecular
genetic testing is recommended to confirm the diagnosis.
Glucocorticoid and mineralocorticoid replacement are the
main treatments. Sex hormone replacement and surgical
corrective procedures may be indicated in some patients.
On the basis of case reports, 3βHSD2D may be associated
with infertility, obesity, osteoporosis, TARTs, and
reduced final height. However, very little is known about
mortality, cardiovascular health, mental health, and
adrenal tumor risk due to the rareness of 3βHSD2D but
can be presumed to be elevated, and similar to 21OHD.
Although in 3βHSD2D it seems to be more difficult to
suppress the androgens, subsequently leading to slightly
higher glucocorticoid doses. This may result in more
long-term negative outcomes.
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