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Abstract
The success of implant performance and arthroplasty is based on several factors, including oxidative stress-induced osteolysis. 
Oxidative stress is a key factor of the inflammatory response. Implant biomaterials can release wear particles which may 
elicit adverse reactions in patients, such as local inflammatory response leading to tissue damage, which eventually results 
in loosening of the implant. Wear debris undergo phagocytosis by macrophages, inducing a low-grade chronic inflammation 
and reactive oxygen species (ROS) production. In addition, ROS can also be directly produced by prosthetic biomaterial 
oxidation. Overall, ROS amplify the inflammatory response and stimulate both RANKL-induced osteoclastogenesis and 
osteoblast apoptosis, resulting in bone resorption, leading to periprosthetic osteolysis. Therefore, a growing understanding 
of the mechanism of oxidative stress-induced periprosthetic osteolysis and anti-oxidant strategies of implant design as well 
as the addition of anti-oxidant agents will help to improve implants’ performances and therapeutic approaches.

Keywords Oxidative stress · Periprosthetic osteolysis · Implant integration · Inflammatory response

Introduction: Periprosthetic Osteolysis 
and Implant Failure

Total joint arthroplasty (TJA) is the only fully effective ther-
apeutic choice for patients suffering from end-stage degen-
erative arthritis. The most frequent types of surgery are total 
hip (THA) and knee arthroplasty (TKA). Survivorship of 
total hip arthroplasty (THA) has improved, such that 90% 
of current implants still function optimally at 15 years or 
more post-operatively [1]. Despite improvements in modern 
prosthetic design, 5 to 10% of THA prostheses undergo revi-
sion within 10 years [2, 3]. Although osteolysis after THA 
has been reduced by the use of highly cross-linked poly-
ethylene implant [4], osteolysis and its consequent aseptic 

loosening remain a major indication for revision surgery, 
accounting for 55% of THA revision procedures worldwide 
[5]. Revision surgery leads to an increase in-hospital mortal-
ity, higher morbidity, and poorer functional outcome versus 
primary THA [6–8]. Aseptic loosening is the clinical end-
point of periprosthetic osteolysis, which describes a pro-
gressive resorption of bone caused by a host inflammatory 
response to particulate wear debris [9–11]. Implant materi-
als can release wear particles which may induce adverse 
reactions in patients, such as local inflammatory response 
leading to tissue damage, eventually results in loosening of 
the implant. Implant in ultra-high molecular weight polyeth-
ylene (UHMWPE) can undergo oxidation process, further 
boosting the inflammation, which has been recognized as a 
potential limiting factor for the longevity of this implants in 
total joint replacements [12].

Oxidative Stress and Bone

Oxidative stress is defined as an imbalance between the pro-
duction of reactive oxygen species (ROS) and their elimina-
tion by protective mechanisms. Imbalance in this protective 
mechanism can lead to the damage of cellular component 
such as DNA, proteins, and lipids [13]. ROS are generated 
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by aerobic metabolism in mitochondria [14–16] and include 
superoxide anions (O2–) hydrogen peroxide e (H2O2) and 
free radicals such as hydroxyl radical (OH–). ROS can either 
have beneficial or detrimental effects according to their con-
centrations. At low concentration, ROS act as signaling mol-
ecules to activate physiologic pathways involved in maintain-
ing of cell homeostasis and the regulation functions such as 
signal transduction, gene expression, and activation of recep-
tors [17]. Oxidative stress is also a key factor of the inflam-
matory response [18]. During the inflammatory response, the 
recruitment of different leukocyte types to the site of inflam-
mation involves the production of reactive oxygen species 
(ROS). Moreover, inflammatory mediators such as cytokines 
and chemokines can enhance the production of ROS [13]. 
This detrimental effect of oxidative stress is therefore defined 
as oxidative damage of cells and tissue. In the latest years, 
a significant role of oxidative stress has been suggested for 
surgical trauma, post-surgical healing, and prosthetic implant 
outcome [19]. For this reason, a growing attention is directed 
to the role of oxidative stress in bone remodeling in physi-
ological a pathological conditions, in particular in osteoly-
sis due to bone turnover disorders, osteoporosis, arthritis, 
and implant loosening. Bone is a living tissue undergoing 
continuous remodeling, and oxidative stress can influence 
this process by affecting the differentiation and the prolifera-
tion of the different bone cell types [20–22]. The remodeling 
process is the result of the coordinated action of three types 
of bone cells: osteoclasts, responsible for bone resorption, 
osteoblasts, responsible of new bone matrix deposition, 
and osteocytes, which are major players of bone remodel-
ling and interact with osteoclasts and osteoblasts to maintain 
normal levels of mineralization in response to mechanical 
load and repair micro fractures and micro-damages [23–25]. 
Bone remodeling process can be influenced by several fac-
tors, including hormones, age, inflammation, and oxidative 
stress. In particular, oxidative stress exerts opposite effects 
on the different bone cell types involved in bone remodeling. 
Recent evidences have shown that oxidative stress can affect 
osteoclast differentiation and proliferation [26, 27], leading 
to an unbalance between osteoclast and osteoblast functions, 
thereby resulting in metabolic bone disease and skeletal 
disorders, such as osteoporosis and osteolysis [28, 29]. In 
addition, osteoclasts share common progenitors and features 
with immune cells [30]; therefore, they can directly produce 
ROS, which amplify oxidative stress leading to bone erosion. 
The redox balance is maintained by endogenous anti-oxidant 
pathways, including the ketch-like enol coenzyme A (CoA) 
hydratase (ECH)-associated protein (Keap1)/nuclear factor 
E2-related factor 2 (Nrf2). In response to oxidative stress, 
Nrf2 is activated and stimulates the anti-oxidant response 
in order to reduce intracellular ROS. In presence of altera-
tion or inhibition of Nrf2-mediated pathway, ROS levels 
increase, thereby stimulating osteoclast differentiation and 

proliferation [27, 31]. Conversely, increased levels of ROS 
and the consequent oxidative stress inhibit osteoblasts dif-
ferentiation and induce the apoptosis of osteocytes and osteo-
blasts [23, 32], thus reducing the bone matrix deposition and 
shifting the balance towards bone loss. The interplay among 
osteoclast and osteoblast activity in the bone remodeling pro-
cess is regulated by several factors, and the most important is 
the RANKL/RANK/OPG system [30]. The receptor activator 
of NF-kB ligand (RANKL) is expressed by osteoblasts and 
osteocytes. It binds to its receptor, RANK, on the surface of 
osteoclasts and their precursors, regulating the differentiation 
of precursors into multinucleated osteoclasts and osteoclast 
activation and survival. Osteoblasts and osteogenic stromal 
stem secrete osteoprotegerin (OPG), which protects the skel-
eton from excessive bone resorption by binding to RANKL 
and preventing it from interacting with the receptor RANK, 
expressed on osteoclasts precursors [33]. The expression of 
these regulatory molecules is deeply influenced by oxidative 
stress. In particular, oxidative stress induces RANKL upregu-
lation and OPG downregulation through the activation of pro-
tein kinases, such as ERK1/2 and JNK. OPG is produced by 
the activation of the osteogenic Want/β catenin pathway and 
acts as a soluble decoy receptor that is able to compete with 
RANKL for the binding to the receptor RANK, thereby pre-
venting RANKL-induced bone loss. Oxidative stress blocks 
the activation of OPG, shifting the balance towards the bone-
resorptive action of RANKL and resulting in an increase of 
RANKL/OPG Ratio, which is considered an important deter-
minant of bone mass in normal and disease states and an 
index of bone resorption [26]. In addition, oxidative stress 
has been shown to induce apoptosis of osteocytes [34]. Apop-
totic osteocytes induce lining cells to retract from the bone 
surface, thereby leaving a suitable environment for osteo-
clasts recruitment and activation, through the production of 
RANKL. Under oxidative stress, apoptotic osteocyte further 
stimulates bone resorption by producing sclerotic and DKK-
1, two inhibitors on the osteogenic Want/β-catenin path-
way [35]. A further confirmation of the impact of oxidative 
stress on the bone system came from recent studies on space 
special environment, characterized by microgravity, radia-
tion, vacuum, and extreme temperature[36]. These factors, 
in particular microgravity and radiation, generate oxidative 
stress which directly reduces bone formation, by reducing 
anti-oxidant defense mechanisms [36, 37] and suppressing 
osteoblastic function during mechanical unloading [38].

Oxidative Stress in Aseptic Periprosthetic Osteolysis

Inflammation is the typical response to implanted biomateri-
als, and it is an essential process to determine the success of 
wound healing and implant integration [39–44]. Indeed, after 
arthroplasty, a wound-healing reaction is activated around the 
prosthetic device in order to remodel the surrounding tissue 
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and promote osteointegration [43]. In vitro and in vivo evi-
dences showed that prosthetic bioproducts come in contact 
with innate immunity receptors on the surface of immune 
cells, triggering an acute inflammatory response, character-
ized by the release of inflammatory, cytokine, chemokine, 
and ROS, aimed to remodel the surrounding tissue in order 
to adapt to the prosthetic implant [45–49].

Nevertheless, an excess or a chronic evolution of the 
inflammatory response can lead to tissue damage, result-
ing in periprosthetic osteolysis, which is characterized by 
a low-grade chronic inflammation [26, 40]. The result of 
a long-term activation of the inflammatory response in the 
tissue surrounding the implant is the activation of osteo-
clast at the bone-implant interface and the consequent bone 
resorption, eventually resulting in periprosthetic osteolysis 
a prosthetic loosening. Aseptic loosening is one of the major 
complications of arthroplasty, in particular hip and knee 
arthroplasty, limiting the implant longevity, according to for 
at least 50% of the cases of prosthetic revision surgery [5, 
12, 50–52]. The chronic inflammation is triggered by wear 
debris originated from the prosthetic biomaterial [53]. In the 
prosthetic joint, the continuous adhesion and abrasion of the 
softer material on the bearing surface generate wear debris 
[54, 55]. These wear particles are known as the main agent 
causing periprosthetic osteolysis [56–61]. Wear particles 
can be generated from the surface of the implant, but also 
from the contact point of modular implants [62]. The range 
and size of particles wear debris are heterogeneous: smaller 
particles are generated during repeated rolling movements 
and by sliding and rotational motion on bearing surface by 
adhesion and abrasion, while larger particles originate from 
surface fatigue [63]. The size of wear particles isolated from 
periprosthetic tissue has a range of 0.1 to 1000 µm, but the 
majority belongs to the range of 0.1 to 10 µm. In particu-
lar, particles in the range 0.1–10 µm undergo phagocytosis 
by macrophages, which trigger the release of inflamma-
tory mediators, such as IL-1, IL-6, and TNF-a, as well as 
ROS, that induce the recruitment and the differentiation 
of bone-resorbing osteoclast at the bone-implant interface. 
Since the most used biomaterial for prosthetic devices is 
polyethylene (PE), PE wear debris is considered the major 
players in inflammatory-driven osteoclastogenesis. Several 
evidences in vivo and in vitro suggested that a crucial role of 
this inflammatory response is played by ROS and that oxida-
tive stress is significantly involved in wear debris-induced 
osteolysis. Recent evidences identified a high level of oxi-
dative stress biomarkers in periprosthetic tissue of patients 
undergoing aseptic loosening [19], where high levels of gene 
related to oxidative stress, as well as the activation of gene 
related to the loss of osteogenic activity, were associated 
with an increase of ROS and local inflammation [64]. A sim-
ilar result was described in vitro in bone cell lines exposed 
to wear particles [63, 65, 66]. Increased leveled ROS not 

only contribute to amplify the chronic inflammation, but 
promote RANKL-mediated osteoclast differentiation. The 
use of specific anti-oxidant or inhibitors of NADPH oxidase, 
responsible for ROS production, not only reduces ROS pro-
duction but also bone-resorption activity of osteoclasts, both 
in vitro and in vivo [67]. In addition, alteration in the syno-
vial levels of anti-oxidant enzymes was found in patients 
with aseptic loosening, suggesting a direct role of aberrant 
oxidative stress response in the development of aseptic loos-
ening [68]. A recent study suggests that two oxidative stress 
markers, namely, plasma malondialdehyde (MDA) and total 
anti-oxidant capacity (TAC), could be more informative to 
predict the onset and progression of wear debris-induced 
chronic inflammation [69]. Similarly, a study on total hip 
arthroplasty (THA) aseptic loosening induced by osteolysis 
found an increased expression of oxidative stress response 
enzyme, cyclooxygenase-2 (COX2), and intercellular nitric 
oxide synthase isoform (iNOS) and the increase on high 
mobility box group 1 (HMBG1), an oxidative stress response 
osteoclast differentiation factor, in patients with peripros-
thetic osteolysis[53]. This study also suggests that the moni-
toring of the serum levels of these molecules, in correlation 
with bone remodeling plasmatic markers, could be a sensi-
tive tool for the early detection of periprosthetic osteolysis 
[53]. Most of the studies about periprosthetic osteolysis are 
focused on the osteoclastic function, but a variety of cells are 
involved in this process. Indeed the bone-implant interface 
is composed of a series of bone multicellular units (BMU), 
composed of different cell types (osteoclasts, osteoblasts, 
and other cell of the mesenchymal stem cell lineage). Recent 
studies described the effect of prosthetic wear particles on 
these different cell types. Wear particles stimulate osteo-
blasts to promote osteoclastogenesis and osteolysis [70] and 
to involve macrophages in the production on inflammatory 
cytokine and in bone matrix degradation [71]. Osteolysis 
induced by wear particles is also promoted by osteocytes 
[72] by upregulating resorptive and inflammatory pathways. 
Besides macrophages and osteoclasts, osteoblasts can also 
phagocytosis wear debris and produce inflammatory media-
tors such as IL-6, TNFα, and IL-β in response to the debris 
and soluble factors that regulate osteoclastogenesis [73–76]. 
Human primary osteoblasts are reported to produce high lev-
els of IL-6 in response to wear particles [77] and are affected 
by oxidative stress produced by prosthetic wear debris [78]. 
In this context, a recent study investigates the production 
of different cytokines and osteoimmunological biomarkers 
that might be involved in the alteration of bone formation-
resorption homeostasis, promoting aseptic loosening of the 
implant [74]. In particular, the presence of an anti-oxidant 
agent in the prosthetic biomaterial induces a change in the 
osteoblast osteoimmunological response that has a positive 
effect on the osteolysis induced by wear debris, reducing 
aseptic loosening of the implants [74]. This study underlined 
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that oxidative stress affects not only osteoclast activity, but 
also osteoblast function in the process of periprosthetic 
osteolysis.

Different prosthetic biomaterials can induce oxidative 
stress on bone cells, leading to implant failure. ROS can 
be produced on a metal surface as intermediate product of 
the cathodic half-reaction of corrosion. Electrochemical 
polarization of Ti6Al4V to stimulate the cathodic half-reac-
tion induced oxidative stress in macrophages, osteoblasts, 
endothelial cells, and osteoclasts [65]. Tricalcium phosphate 
(TCP) wear particles have been described to induce oxida-
tive stress in mouse calvaria [79]: in presence of TCP wear 
particles [79], serum levels of tumor necrosis factor-alpha 

(TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) 
were increased, while total anti-oxidation capacity (T-AOC) 
and superoxide dismutase (SOD) activity were decreased. 
Metal-on-metal hip arthroplasty is associated with high lev-
els if cobalt and chromium ions, which can induce oxidative 
stress and affect, bone cells. In particular, cobalt and chro-
mium ions were reported to reduce OPG/RANKL ratio and 
osteoblast activity, and to alter glutathione, superoxide dis-
mutase, and catalase levels, leading to oxidative stress [80]. 
The mechanisms of oxidative stress-induced periprosthetic 
osteolysis are summarized in Fig. 1.

Recently, different in vivo studies evaluated different 
strategies to prevent periprosthetic osteolysis. Veronesi 

Fig. 1  Oxidative stress and 
aseptic periprosthetic osteolysis
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et al. evaluated the use of pulsed electromagnetic fields 
and platelet-rich plasma alone and combined for the treat-
ment of wear-mediated periprosthetic osteolysis, suggesting 
that this approach can be considered a safe, mini-invasive, 
and conservative therapy for counteracting osteolysis and 
prompting bone formation around implants [81]. Similarly, 
Bin Hu et al. showed that microbubble injection in bone 
canals enhances the inhibitory effect of low-intensity pulsed 
ultrasound (LIPUS) on debris-induced osteolysis and further 
strengthens the mechanical fixation of implants in an early-
stage osteolysis model in vivo [82]. Other studies evaluated 
potential drug therapies to prevent periprosthetic osteoly-
sis: metformin was shown to be able to attenuate osteolysis 
induced in mouse calvaria by the particles, inducing a reduc-
tion in osteoclast number and polarization of macrophages to 
an anti-inflammatory functional phenotype [83]. Melatonin 
can also be considered a promising therapeutic agent for 
the prevention and treatment of peri-prosthetic osteolysis. 
Indeed, melatonin was described as able to promote bone 
regeneration and reduce bone resorption at osteolytic sites 
caused by titanium-particle stimulation, by activating Wnt/β-
catenin signaling pathway and enhancing osteoprotegerin 
mediated osteogenic differentiation, thereby suppressing 
osteoclastogenesis [84].

Anti‑Oxidant Strategy to Prevent Implant Failure

Reactive oxygen species generated by local tissue cells and 
from implant surfaces have been suggested to determine 
implant failures [85]. Reactive oxygen intermediates produced 
at implant-bone interfaces act as strong chemoattractants for 
the recruitment of immune cells leading to surrounding tissue 
damage and fibrosis. In addition, ROS produced by immune 
cells can directly lead to the corrosion of the implants [40, 
86]. An imbalance between excessive ROS generation and 
an insufficient anti-oxidant defense mechanism reduces bone-
implant osseointegration, further inducing aseptic loosening. 
Thus, there is a need for biomaterials with bioactive surface 
coating with anti-oxidant properties to improve implant oste-
ointegration, stability, thus improving the effective lifespan 
[87]. Several anti-oxidant strategies have been explored to 
reduce ROS formation in different prosthetic biomaterials, 
ranging from surface functionalization to material doping 
with anti-oxidant agents, according to the different implant 
biomaterial, as well as nutritional supplementation. Tita-
nium and its alloys display a high biocompatibility, but they 
can also cause various side effects in the human body [88]. 
Indeed, titanium biomaterials may induce an innate/adaptive 
immune: in particular, this material induces the production 
of pro-inflammatory cytokines and enhance free radical gen-
eration in the periosteum covering titanium implant [89]. In 
titanium (Ti) substrates, in order to improve the anti-oxidant 
activity for enhanced bone formation, multilayered structure 

composing of chitosan-catechol (chi-C), gelatin (gel), and 
hydroxyapatite (HA) nanofibers was added, resulting in a 
significative increase of implant osteointegration, and pro-
motes osteogenesis under conditions of oxidative stress [87]. 
An emerging anti-oxidant agent against titanium particles 
induced aseptic loosening is resveratrol. It has been widely 
reported that resveratrol has anti-proliferative, anti-oxidative, 
anti-inflammatory, and analgesic effects in many experimen-
tal models [90–93] Preclinical studies provided accumulating 
evidence on its efficacy in ameliorating the degenerative artic-
ular damage that mostly attributed to its pleiotropic properties 
[94, 95]. Moreover, many pieces of evidence have displayed 
resveratrol as one of the nutraceutical candidates for OA ther-
apy in human [96, 97]. A recent study showed that the use of 
resveratrol as an “add-on” medication with meloxican (Mlx) 
was superior in terms of safety and efficacy to Mlx alone for 
the treatment of pain and improvement of physical function 
in patients with knee osteoarthritis (OA) [98]. As anti-oxidant 
agent in the context of implant biomaterials, resveratrol has 
been described by a recent study as having anti-oxidant effects 
of on titanium—particles exposed macrophages, in terms 
of downregulation of oxidative enzymes, such as NADPH, 
iNOS, catalase, SOD, and pro-inflammatory cytokines, such 
as TNFα and NfKB [67].

The flavonoid, naringenin, (4′,5,7-trihydroxy-flavanone), 
a polyphenol compound found in the human diet [99], miti-
gates titanium dioxide (TiO2)-induced chronic arthritis in 
mice: naringenin has been recently reported to ameliorate 
 TiO2 particles induced bone resorption by inducing anti-
oxidant and anti-inflammatory [99]. One of the main bio-
materials utilized in arthroplasty is the ultra-high molecule 
weight polyethylene (UHMWPE) for its survivorship prop-
erties compared to alternative prosthetic materials such as 
metal-on-metal and ceramic-on-ceramic [100–104], despite 
the propensity to generate wear debris [105], which rep-
resent the major limitation of long-term success for total 
joint arthroplasty [106, 107]. Therefore, the main focus of 
UHMWPE development is to minimize host response that 
leads to aseptic implant loosening. The first-generation 
UHMWPE devices were sterilized using high-dose gamma 
irradiation [108, 109] which has the adverse effect to pro-
duce free radicals trapped in the final product [110]. These 
ROS can lead to oxidative degradation of the UHMWPE 
device, as observed in components stored for a long time 
in air-permeable packing prior to implantation [56]. In 
addition, ROS can also trigger host response in terms of 
inflammation and osteoclast activation, ultimately resulting 
in periprosthetic osteolysis. In order to solve this problem, 
temperature-driven manufacturing operation was introduced 
to reduce ROS production in the UHMWPE manufacturing 
process [111]. These additional processes have anyway some 
drawbacks, such as the reduction of mechanical properties 
and only a partial protection against oxidation, because the  
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implants still need to be sterilized with gamma irradiation at 
the end of the process, exposing the device to some extent 
of oxidation. For this reason, a new approach was developed 
to stabilize UHMWPE in order to provide oxidation resist-
ance without reducing UHMWPE fatigue strength. This 
approach is based on the incorporation of anti-oxidant agents 
into the resin or diffusion it into the already consolidated 
and radiated UHMWPE [112, 113]. One of the main anti-
oxidant agents used to stabilize UHMWPE is α-tocopherol, 
also known as vitamin E [114], which is able to stabilize 
proxy radicals formed by oxidation and can also react with 
alkyl macroradicals [114, 115]. Vitamin E incorporation 
has been shown to have no detrimental effect on UHM-
WPE cross-link density, which is the major factor affecting 
UHMWPE wear resistance [114, 116]. Recent studies also 
showed that vitamin E stabilization of UHMWPE increased 
osteoblast response to oxidative stress, inducing cellular 
mechanism aimed to cell survival. Vitamin E anti-oxidant 
effect influences the secretion of osteoimmunological fac-
tors [74], shifting the bone turnover balance toward bone 
protection. This suggests that vitamin E stabilization of 
UHMWPE could contribute to reduce oxidation-induced 
osteolysis and the consequent loosening of the prosthetic 
devices, therefore improving the longevity of total joint 
replacements [73]. Anti-oxidant approach to prevent oxida-
tive stress-based arthroplasty complication can be also based 
on nutrition supplementation. Arthrofibrosis is a debilitat-
ing complication after total knee arthroplasty (TKA) [117, 
118] and the pathogenetic mechanism based on inflamma-
tory process induced by free radicals and oxidative stress, 
responsible for the aggressive proliferation of fibroblasts 
and accumulation of fibrotic tissue. Vitamin C is one of the 
most effective hydrophilic anti-oxidants in biological fluids 
[119–121] preventing free radical-mediated oxidative dam-
age to biological macromolecules including DNA, proteins, 
and lipids [122]. Patients undergoing TKA showed severe 
peri-operative vitamin C depletion. Vitamin C supplemen-
tation has been shown to prevent peri-operative vitamin C 
depletion and might have a protective value for the develop-
ment of post-operative arthrofibrosis. Similarly, supplemen-
tation with melatonin, which is known to have anti-aging 
anti-oxidant effects [123], increased bone mass around the 
prostheses in a mouse model of osteoporosis, ameliorat-
ing mitochondrial oxidative stress response and promoting 
osteogenesis [124, 125]. Oxidative stress-induced osteolysis 
characterizes also other bone disorders, such as osteoporosis 
or osteoarthritis, and several anti-oxidant approaches have 
been directed to prevent bone loss in these diseases. Dihy-
drometacin, a natural compound with anti-inflammatory and 
anti-oxidant effect [126, 127], or corosolic acid [66], a plant 
derived anti-oxidant agent, were shown to reduce lipopoly-
saccharide (LPS)-induced oxidative stress, inhibiting ROS 
production and increasing anti-oxidant pathways. Similarly, 

thymoquinone, the main bioactive component of the black 
seed oil, showed anti-osteoclastogenic properties by inhib-
iting both inflammation and ROS production in osteoclast 
progenitors [128]. The promising results of these studies 
may suggest extending their use also in the prevention of 
oxidative stress-induced periprosthetic osteolysis.

Conclusion

The success of implant performance and arthroplasty is based 
on several factors, including biomaterial characteristic, local 
microenvironment, tissue response, and host-implant interplay. 
In this context, oxidative stress plays a crucial role, because an 
excess of ROS affects both the host response and the implant 
component, leading to oxidative stress-induced osteolysis, 
ultimately resulting in aseptic loosening. Therefore, a grow-
ing understanding of oxidative stress-induced periprosthetic 
osteolysis and strategies to control oxidative stress by implant 
design and anti-oxidant agents will help to improve implant 
performances and evaluate therapeutically approaches.

Wear debris can originate from prosthetic biomaterial as 
a consequence of mechanical stress, biomaterial component, 
or corrosion. These particles undergo phagocytosis by mac-
rophages, inducing a low-grade chronic inflammation and ROS 
production. ROS can also be directly produced by prosthetic 
biomaterial oxidation. On the one hand, ROS amplify the 
inflammatory response; on the other hand, they stimulate both 
RANKL-induced osteoclastogenesis and osteoblast apoptosis, 
resulting in bone resorption, leading to periprosthetic osteolysis.
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