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Abstract
Obesity is a major global health concern, with prevalence rates rapidly rising due to increased availability of highly processed 
foods rich in fats and/or sugars and technological advances promoting more sedentary behaviour. There is increasing evidence 
to suggest that obesity predisposes individuals to developing cognitive impairment and dementia. However, the relationship 
between the brain and the peripheral metabolic state is complex, and many of the underlying mechanisms of cognitive 
impairment in obesity are yet to be fully elucidated. To better understand the links between obesity and dementia, further 
work is required to determine pathological changes occurring in the brain during obesity. In this mini-review, we discuss the 
role of two pathological features of obesity (the gut-brain axis and systemic inflammation) and their potential contribution 
to dementia.
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Introduction

Dementia describes a collection of conditions associated 
with severe and/or chronic cognitive impairment. Cognitive 
impairment is characterised by a deficit in at least one or 
more of the six cognitive domains: language, memory, 
attention, social/emotional, executive and visuospatial 
functioning. Several factors including aging, genetics, 
cardiovascular and metabolic health can modify the 
risk of developing dementia. Alarmingly, due to the 
aging population and that dementia primarily impacts 
individuals > 60 years of age, the prevalence of dementia is 
expected to rise from approximately 57 million global cases 
in 2019 to > 150 million in 2050 (Nicholas et al., 2022). At 
present there is a lack of effective therapies for dementia 

patients. A greater understanding of the pathophysiology 
of dementia, including contributing risk factors, will likely 
accelerate the development of new therapies.

Obesity is one of the fastest growing risk factors for the 
development of dementia. Body mass index (BMI) is the 
most commonly used standard in identifying overweight 
and obesity. The most widely reported BMI cut-offs 
are > 25 kg/m2 for overweight individuals and > 30 kg/m2 
for obese (note, BMI cut-offs vary for different racial and 
ethnic categories). Approximately 1.2 billion individuals 
are classified as overweight, and a further 650 million 
people categorised as obese (World Health Organization, 
2021). Obesity is a multifactorial disease characterised 
by the excessive accumulation and expansion of adipose 
tissue. While the pathology of obesity has significant 
lifestyle, behavioural and environmental components, we 
now appreciate that genetics also play a major role. Genetics 
are thought to account for 40–70% of the heritability of 
obesity (Loos & Yeo, 2022). Interestingly, obesity has a 
heterogeneous effect on dementia risk at different life stages 
(i.e. middle- vs late-adulthood; Singh-Manoux et al., 2018).

While excess storage of nutrients is a hallmark of obesity, 
several other pathological features have been identified. 
Obesity promotes chronic, low-grade inflammation and 
hypertrophy of adipose tissue, which stimulates the release 
of pro-inflammatory mediators, resulting in oxidative stress 
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and end-organ damage (Ellulu et al., 2017). Many of these 
pathological features have damaging effects throughout the 
body, including the brain. For example, inflammation and 
oxidative stress can compromise the precise delivery of oxygen 
and nutrients to active neurons (known as neurovascular 
coupling), which may lead to neuronal dysfunction. Impaired 
neurovascular coupling is a contributing factor in impaired 
cognitive function and dementia. The complexity of obesity 
and cognitive impairment makes identifying therapeutic 
targets to prevent or reverse disease challenging. In this mini-
review we highlight some known pathological features of 
obesity (the gut-brain axis and systemic inflammation) which 
contribute to neuroinflammation and thus, may contribute to 
dementia (Fig. 1).

Pathological Features of Obesity

Obesity results in a plethora of deleterious pathological 
features. These include insulin resistance (Kothari et al., 
2017), gut dysbiosis (Saiyasit et  al., 2020), oxidative 
stress (Hajiluian et al., 2018), inflammasome activation 
(Guo et al., 2020) and systemic inflammation (Wu et al., 
2007) each of which may contribute to neuroinflammation 
and brain injury. For example, insulin resistance has been 
previously shown to contribute to neuroinflammation, 
neurodegeneration, and cognitive impairment (Kothari 
et  al., 2017). Furthermore, hippocampal glutathione 
expression, a marker of oxidative stress and predictor of 
cognitive impairment, is significantly elevated people at 
risk of developing dementia (Turner et al., 2021).

Neuroinflammation is a well-established feature of 
dementia (Pasqualetti et al., 2015). Adipose tissue from 
obese individuals releases immune and/or metabolic 
mediators (e.g. C-reactive protein [CRP], interleukin 
[IL] -1β, leptin) that can cross the blood–brain barrier 
(BBB) and promote neuroinflammation (Van Dyken 
& Lacoste, 2018). These mediators can impair brain 
function leading to cognitive impairment and ultimately 
dementia (Van Dyken & Lacoste, 2018). Visceral adipose 
tissue also acts as an immunoendocrine organ secreting 
hormones, growth factors, enzymes and adipokines that 
regulate metabolism, mediate inflammation, and maintain 
body homeostasis (Kang et  al., 2016). Adipokines 
that modulate insulin resistance, dysregulate the gut-
brain axis, and increase systemic inflammation are of 
particular interest, as they are likely to contribute to 
neuroinflammation and the development of dementia 
pathology.

The Gut‑Brain Axis

Dementia progression may not only be influenced by 
intrinsic factors of the brain but also extrinsic factors from 
the gut. The gut-brain axis describes interactions between 
the gut microbiota, enteric nervous system (ENS) and 
central nervous system (CNS). Oxidative stress, driven 
by disrupted gut microbiota patterns, has been previously 
shown to be one of the key mechanisms promoting 
neuroinflammation (Loffredo et al., 2020). Determining 
the precise contribution of the gut microbiome to dementia 
is complex and requires further investigation as dysbiosis 
(altered gut microbiota patterns) also impacts metabolic, 
cardiovascular, gastrointestinal, and neuroimmune 
pathologies (Vamanu & Rai, 2021), each of which can 
contribute to the development of dementia. Nevertheless, 
it has been established that the gut and brain have a 
dynamic relationship in the development of cognitive 
impairment via neural, endocrine, metabolic, and immune 
pathways during dysbiosis (Forsythe et al., 2014). The 
gastrointestinal tract is regulated locally by the ENS and 
communicates with the CNS via the vagus nerve. Vagal 
afferent endings throughout the gastrointestinal tract can 
differentiate between pathogenic and non-pathogenic 
bacteria (Tanida et  al., 2005). Interestingly, bacterial 
endotoxins, IL-1β, (Wieczorek et al., 2005) and TNF-α 
(Zanos et al., 2018) can send sensory input information 
via the vagal afferent fibres to the CNS to affect behaviour 
and impair cognitive function.

Gut microbiota can also alter gene expression, 
neurotransmitter release, receptor function and 
concentrations of metabolites within the digestive 
tract that are vital for the bidirectional communication 
between the gut and brain (Salami, 2021). For example, 
gut dysbiosis can alter tryptophan metabolism which 
affects serotonergic signalling (Whiley et  al., 2021). 
Additionally, the loss of serotonergic inhibitory tone 
increases hypothalamic–pituitary–adrenal (HPA) activity 
in dementia patients (Whiley et al., 2021). Increased HPA 
activity also elevates cortisol levels to potentially induce 
hippocampal atrophy and impair cognition (Huijbers et al., 
2020).

Short-chain fatty acid (SCFA) production by the gut 
microbiota is heavily influenced by diet and can alter a 
variety of metabolic pathways. In a healthy setting, SCFAs 
regulate energy homeostasis, induce anti-inflammatory 
functions, stimulate leptin production, and increase 
serotonin secretion (Liu et  al, 2020). SCFAs derived 
from the gut microbiota may directly communicate with 
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the brain via endotoxin translocation or vagus nerve 
stimulation/activation. Alternatively, SCFAs may signal 
to the brain indirectly via the actions of peptide hormones 
(Christiansen et al., 2018) or cytokines (Mirmonsef et al., 

2012). Gut dysbiosis decreases SCFA levels which not 
only attenuates anti-inflammatory functions but also alters 
neuronal signalling which may impair cognitive function 
(Salami, 2021).

Fig. 1  Obesity and the potential pathways to dementia. The complex 
interplay between obesity, neuroinflammation and dementia. 
Unhealthy lifestyle factors contribute to excess visceral adipose 
accumulation in obesity, which promotes systemic inflammation 
and insulin resistance. Obesity is also associated with gut dysbiosis 
and reduced short chain fatty acid (SCFA) metabolites. These 

pathological features promote neuroinflammation which in turn 
promotes the pathological features of dementia (i.e. decreased 
neurogenesis, synaptic plasticity and long-term potentiation; the 
development of white matter lesions; neurodegeneration and cerebral 
atrophy). Ultimately, this may impair cognition and cause dementia. 
Created with Biorender.com
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Systemic Inflammation

It is well-established that systemic inf lammation 
can promote neuroinf lammation. Chronic systemic 
inflammation is a hallmark of obesity and can be instigated 
by adipose tissue expansion (adipocyte hypertrophy and 
proliferation). Adipose tissue expansion promotes a 
hypoxic environment where adipocytes undergo apoptosis, 
causing further inflammation (Lindhorst et  al., 2021). 
Increased circulating pro-inflammatory cytokines and 
adipokines (e.g. TNF-α, leptin, resistin, plasminogen 
activator inhibitor-1, CRP, IL-1β and IL-6) contribute to 
systemic inflammation in obesity but are also established 
predictors of cognitive impairment (Kiliaan et al., 2014).

In obesity, adipokine release is dysregulated due 
to unhealthy adipose tissue expansion. This induces a 
phenotypic switch of adipose tissue type, increasing 
pro-inflammatory immune cells and altering the profiles 
of secreted adipokines. Indeed, adipose tissue from 
obese individuals release proportionally more pro-
inflammatory adipokines compared to lean individuals, 
who secrete mainly anti-inflammatory adipokines (Wu 
et  al., 2011). Leptin is a well-known adipokine that 
promotes neuronal health. Leptin also regulates energy 
intake and body mass. Additionally, elevated leptin levels 
increase TNF-α and IL-6 secretion from B cells, which 
further contributes to the pro-inflammatory state (Agrawal 
et al., 2011). High leptin levels can also promote leptin 
resistance and dysregulation of energy intake and body 
mass. Moreover, triglycerides can cross the BBB to 
directly induce hypothalamic leptin and insulin receptor 
resistance, which contributes to cognitive impairment 
(Banks et al., 2004). Inflammation in obesity disrupts the 
leptin signalling pathway to inhibit its protective effects 
on the brain (Forny-Germano et al., 2019). Importantly, 
leptin is regulated in a sex-dependent manner with greater 
circulating levels in females (Couillard et al., 1997). This 
sex-dependent regulation of leptin may contribute to the 
sexual dimorphisms in obesity and cognition, however, 
this requires further investigation.

Adiponectin is another adipokine of interest as it 
also regulates neuronal health. Additionally, it regulates 
glucose and fatty acid metabolism in the periphery 
(Yamauchi et al., 2002). Adiponectin can modify cytokines 
in the brain to exert anti-inflammatory and anti-oxidative 
effects (Thundyil et al., 2012). However, during obesity 
circulating adiponectin decreases which contributes to 
insulin resistance and a chronic pro-inflammatory state, 
making the body more susceptible to the development of 
cardiometabolic diseases (Forny-Germano et al., 2019).

The BBB is a semipermeable structure that facilitates 
the bidirectional movement of cells and circulating factors 

in the brain. Leptin and adiponectin can cross the BBB and 
have protective effects on the brain. However, in chronic 
inflammatory conditions, BBB integrity is compromised, 
allowing potentially neurotoxic substances access to the 
brain. Other circulating factors released in obesity, such 
as IL-6 and TNF-α, further increase BBB permeability 
(Rochfort et al., 2016). Moreover, IL-1β and IL-6 can 
directly bind to neurons within the hippocampus to cause 
neuronal dysfunction and impair working memory (Dinel 
et al., 2011). In addition, TNF-α and its receptor (TNF 
receptor 1) are necessary for synaptic disruptions in 
astrocytes (Habbas et al., 2015). Increased TNF-α alters 
the excitatory transmission in the hippocampal cognitive 
circuit which contributes to learning and memory deficits 
(Habbas et al., 2015). The collective damage to the brain 
of such pro-inflammatory molecules promotes cerebral 
atrophy and white matter injury, ultimately increasing the 
risk of dementia.

Linking Obesity and Dementia

The pathological changes discussed above which contribute 
to neuroinflammation likely precede dementia by many 
years. If not addressed, obesity may result in irreversible 
damage to the brain which only manifests as a clinical 
diagnosis later in life. Indeed, while the classification of 
obesity as a risk factor for dementia has been somewhat 
controversial, recent work has revealed mid-life obesity 
as the critical timepoint for increased risk of developing 
dementia later in life. Longitudinal studies have revealed 
that having a BMI > 25 was associated with increased risk 
of developing dementia 10–15 years later (Bowman et al., 
2019; Singh-Manoux et al., 2018). The association was lost 
when individuals were obese closer to dementia diagnosis 
(Singh-Manoux et al., 2018). Conversely, weight loss late 
in life (likely due to malnutrition) is associated with an 
increased risk of dementia (Joo et al., 2018). Thus, as with 
other risk factors for dementia (such as hypertension), being 
obese in mid-life appears to be the critical timeframe for 
increased disease risk. At this point in the disease process, 
the pathological features of obesity likely causes long lasting 
damage to the brain. While not immediately apparent, the 
damage to the brain parenchyma may ultimately lead to 
dementia later in life.

Conclusion

In this mini-review, we have highlighted some of the 
evidence for the pathological features of obesity that 
may contribute to brain injury and ultimately dementia. 
However, there remains major knowledge gaps regarding 
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the contribution of obesity to dementia. Further investigation 
is needed to elucidate the specific mechanisms that underly 
obesity-induced dementia. A better understanding of 
dementia pathology and its mechanisms in the setting of 
obesity is critical for the development of better treatments 
for the rapidly expanding number of patients with these 
debilitating conditions.
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