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Abstract
Peroxisome proliferator-activated receptor (PPAR) β/δ belongs to the family of hormone and lipid-activated nuclear recep-
tors, which are involved in metabolism of long-chain fatty acids, cholesterol, and sphingolipids. Similar to PPAR-α and 
PPAR-γ, PPAR-β/δ also acts as a transcription factor activated by dietary lipids and endogenous ligands, such as long-chain 
saturated and polyunsaturated fatty acids, and selected lipid metabolic products, such as eicosanoids, leukotrienes, lipoxins, 
and hydroxyeicosatetraenoic acids. Together with other PPARs, PPAR-β/δ displays transcriptional activity through inter-
action with retinoid X receptor (RXR). In general, PPARs have been shown to regulate cell differentiation, proliferation, 
and development and significantly modulate glucose, lipid metabolism, mitochondrial function, and biogenesis. PPAR-β/δ 
appears to play a special role in inflammatory processes and due to its proangiogenic and anti-/pro-carcinogenic properties, 
this receptor has been considered as a therapeutic target for treating metabolic syndrome, dyslipidemia, carcinogenesis, and 
diabetes. Until now, most studies were carried out in the peripheral organs, and despite of its presence in brain cells and in dif-
ferent brain regions, its role in neurodegeneration and neuroinflammation remains poorly understood. This review is intended 
to describe recent insights on the impact of PPAR-β/δ and its novel agonists on neuroinflammation and neurodegenerative 
disorders, including Alzheimer’s and Parkinson’s, Huntington’s diseases, multiple sclerosis, stroke, and traumatic injury. 
An important goal is to obtain new insights to better understand the dietary and pharmacological regulations of PPAR-β/δ 
and to find promising therapeutic strategies that could mitigate these neurological disorders.

Keywords PPAR delta · Agonists · Lipid metabolism · Neurodegenerative disorders · Neuroprotection · Hypoxia/ischemia · 
Alzheimer’s disease

Introduction

Peroxisome proliferator-activated receptors (PPAR) belong 
to the family of hormone and lipid-activated nuclear recep-
tors, which are involved in metabolism of cholesterol, 

sphingolipids, and fatty acids. The transcriptional activity 
of PPARs is known to engage in a variety of cellular func-
tions including cell differentiation, proliferation, and devel-
opment (Hong et al. 2019). These receptors heterodimerize 
with retinoid X receptor (RXR), and the dimer regulates 
gene expression in response to dietary-derived fatty acids as 
well as exogenous agonists. Activation of these receptors by 
endogenous or exogenous ligands can evoke transduction of 
signals and induce interaction with lipoproteins, coactiva-
tors, or corepressors (Evans and Mangelsdorf 2014; Varga 
et al. 2011). PPARs not only play a role on regulating lipid 
metabolism and signaling, but also for maintenance of car-
bohydrates and glucose homeostasis.

Similar to PPAR-α and PPAR-γ in this family, PPAR-β/δ, 
which is also known as PPAR-δ, was cloned from the mouse 
genome and identified as an orphan nuclear receptor in the 
90 s (Hong et al. 2019). Subsequently, two existing isoforms 
of this protein were identified by alternative splicing of gene 
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NR1C2. PPAR-β/δ contains the canonical structure domains 
common to other nuclear receptor family members, includ-
ing the amino-terminal AF-1 trans-activation domain, a 
DNA-binding domain, and a dimerization and ligand-bind-
ing domain with a ligand-dependent trans-activation func-
tion AF-2 at the carboxy-terminal region (Azhar 2010). The 
amino-terminal AF-1 trans-activation domain is responsible 
for transcriptional activation. It provides constitutive acti-
vation function independent of ligand binding. The DNA-
binding domain (DBD, domain C), which is comprised of 
two zinc-finger motifs, is involved in DNA recognition and 
protein–protein interaction. While the hinge domain (domain 
D) is succeeded by the C-terminal Ligand-binding domain 
(LBD, domains E/F), which contains not only the ligand-
binding pocket, but also regions important for dimerization 
and the AF-2 domain. Ligand binding is thought to induce 
structural changes in the AF-2 domain, allowing the recruit-
ment of co-activator proteins important for transcriptional 
activation, thereby serving as a switch to activate PPARs 
(Brunmeir and Xu 2018). So far, only one post-translational 
modification for PPAR-β/δ is known. Koo and colleagues 
showed that PPAR-β/δ SUMOylation at K104 is removed 
by SUMO-Specific Protease 2 (SENP2) and this promotes 
the expression of FAO genes in muscle (Koo et al. 2015).

PPAR-β/δ is comprised of 441 amino acids with a 
molecular weight of 49.9 kDa. According to Gene Cards, 
this protein is widely expressed and detected in human tis-
sues, including the brain, pancreas, liver, and heart (Hong 
et al. 2019). Although PPAR-β/δ is expressed in cells in all 
brain regions, neurons appear to have the highest expression. 

Warden et al. (2016) demonstrated localization of PPAR iso-
types in the adult mouse and human brain (Fig. 1). Using 
quantitative PCR and double immunofluorescence micros-
copy, investigation among brain parts indicated highest level 
of mRNA and proteins in the prefrontal cortex (Warden et al. 
2016). In the brain, although all PPAR isoforms have been 
detected in neuronal and astrocytes, PPAR-β/δ appeared to 
have low immunoreactivity in microglia as compared with 
other PPARs members. Analysis of subcellular localization 
indicated that PPAR-β/δ in neurons is present both in the 
cytoplasm and nucleus. Nevertheless, its intracellular locali-
zation may change depending on patho-physiological condi-
tions and applied therapy (Gamdzyk et al. 2018).

Until recently, studies on the role of PPAR-β/δ were 
largely carried out with peripheral organs/tissue (Phua et al. 
2020). Its expression is detected at early stage of embryo-
genesis, and disruption of this gene is lethal due to severe 
placental defects. The knockout animals are character-
ized by alterations of skin and fat mass, and impairment 
of brain development. PPAR-β/δ seems to play a key role 
in embryo development, and its deletion can induce a high 
rate of mortality around embryonic day 10.5 (E10.5) (Hall 
et al. 2008; Nadra et al. 2006). At this time of development, 
the expression of PPAR-β/δ could be detected in all brain 
regions, including the cerebral cortex, thalamus, cerebel-
lum and brainstem, and reaching peak levels between E 
13.5 and E 15.5 (Gofflot et al. 2007; Braissant and Wahli 
1998). The expression of PPAR-β/δ was found in neurons, 
astrocytes, oligodendrocytes, and recently, also in microglia 
cells (Schnegg and Robbins 2011; Carniglia et al. 2013). In 

PPAR β/δ

Blood vessel
Endothelial

cells

Neurons
***

Astrocytes
**

Oligodendrocytes
**

Microglia
+/- *

PFC
***

NAC
**

AMY
**

VTA
*

Fig. 1  PPAR-β/δ expression in different brain parts and cells. PFC 
prefrontal cortex, NAC nucleus accumbens, AMY amygdala, VTA ven-
tral tegmental area; ***, **, * level of PPAR-β/δ expression; on the 

basis of data described by Warden et al. (2016), Schnegg and Robbins 
(2011), Carnigila et al. (2013)
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addition, this receptor is also expressed in brain capillary 
endothelial cells, suggesting an involvement in regulation 
of blood/brain barrier (Akanuma et al. 2008). Studies using 
genetically modified PPAR-β/δ null mice indicated changes 
in brain weight, and concomitantly, the body weight was also 
smaller as compared to the wide-type control (Peters et al. 
2000). Histological study showed disturbances in myelina-
tion in the corpus callosum, more frequently in females com-
paring to males (Markham et al. 2009).

Role of PPAR‑δ in Lipid Metabolism 
and Signaling Pathways

During the past decade, most studies on PPAR-β/δ were 
carried out with muscle and other peripheral tissue/organs, 
and relatively few studies were carried out with the brain 
(Grimaldi 2007; Phua et al. 2020; Wang et al. 2020). The 
study by Rosenberger et al. (2002) showed significant altera-
tions of phospholipids and esterified fatty acids, together 
with gender differences in the brain of PPAR-β/δ null mice. 
Results with PPAR-β/δ null mice also showed defects in 
brain peroxisomal acyl-CoA utilization and thus projected 
a role in myelination. PPAR-β/δ also can influence genes 
engaged in enzymes responsible for fatty acid β oxidation 
pathway in mitochondria and peroxisome (Grimaldi 2007; 
Lamichane et al. 2018). Information in Fig. 2 demonstrates 

the potential roles of PPAR-β/δ in lipid metabolism in the 
brain. In many instances, these roles are comparable to those 
demonstrated in hepatocytes and in some tumor cells (Beyaz 
and Yilmaz 2016).

PPAR-β/δ can alter brain membrane phospholipids, 
through post-translational modification via the acylation 
process. This process may lead to changes in protein func-
tions, such as the myelin proteolipid proteins (PLP) (Cam-
pagnoni and Macklin 1988). On the other hand, activation 
of PPAR-β/δ by long-chain saturated and unsaturated fatty 
acids (LCSFA, LCUFA) and their metabolites may lead to 
regulation/modulation of transcription of genes encoding 
proteins such as fatty acid binding proteins (FABP) and fatty 
acid translocase (FAT).

PPAR-β/δ is also engaged in regulation of cholesterol 
release and metabolism. However, despite that adult CNS 
contains 23% of the total sterol pool in the entire body, little 
information is available regarding this receptor and choles-
terol in the brain (Dietschy and Turtley 2004). Cholesterol 
is an important constituent of the plasma membrane and is 
the major component of myelin in adult human brain where 
it consists 70–80% of the whole brain cholesterol. In human 
adult brain, cholesterol level reaches 23 mg/g w.bw, how-
ever, at birth only 6 mg/g bw and in adult mouse brain about 
18 mg/g bw. With participation of apolipoprotein E and A, 
PPAR-β/δ may alter cholesterol metabolism in the brain, 
and exert effects on neural and glial cells differentiation. 
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Fig. 2  The role of PPAR-β/δ in lipid metabolism. FA fatty acids, 
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However, the relationship between cholesterol metabolism, 
PPARs, and neurodegeneration/neuroinflammation is till 
now not fully elucidated.

In the peripheral system, PPAR-β/δ agonists have been 
proposed for treatment of metabolic syndrome (MetSD) 
which is tightly connected with long-chain fatty acid 
(LCFA) homeostasis (Varga et  al. 2011). Nevertheless, 
molecular sequence of events leading to imbalance of lipid 
homeostasis is still not well understood. It is suggested that 
higher levels of circulating LCFA and their availability can 
induce fat accumulation in adipose tissue, liver, and other 
tissues, leading to insulin resistance and DMT2. Activa-
tion of PPAR-β/δ in animal model leads to improvement 
of lipid homeostasis and insulin sensitivity (Tanaka et al. 
2003). There is evidence that LCFA signaling is mediated 
by PPAR- β/δ, which also plays a crucial role in lipid absorp-
tion and intestinal physiology. Due to the proangiogenic and 
pro-/anti-carcinogenic properties of PPAR-β/δ ligands, these 
compounds may serve as therapeutic agents for treating met-
abolic syndrome, dyslipidemia, and diabetes (Bishop-Bailey 
and Swales 2008).

PPAR-β/δ plays a crucial role in diseases associated 
with alterations of lipid and glucose metabolism, including 
MetSD, DMT2, and atherosclerosis. MetSD is a complex 
pathological condition together with dyslipidemia, hyper-
glycemia, central obesity, and hypertension, many are asso-
ciated with prothrombotic and proinflammatory state. The 
study by Serrano-Marco et al. (2011) suggested that PPAR-
β/δ activation could impede IL6-induced STAT3 activation 
by inhibition of ERK1/2 and prevention of STAT3 associa-
tion with Hsp90. This effect may contribute to the suppres-
sion of cytokine-induced insulin resistance in adipocytes 
and possibly may also occur in the brain. Obviously, more 
studies are needed to better understand the role of this recep-
tor in neurodegenerative and neuroinflammatory diseases.

Role of PPAR‑β/δ in Oxidative Stress 
and Neuroinflammation

PPARs are known to modulate inflammatory processes asso-
ciated with lipid signaling pathways. Suppressing inflamma-
tory processes in the CNS could lead to reduction of brain 
damage and improvement of motor and cognitive outcome 
(Villapol 2018). Resident microglia and infiltrated inflam-
matory cells were regarded as mediators responsible for this 
process (Salvi et al. 2017).

PPAR-β/δ is not only a lipid sensor, but also a regulator of 
mitochondrial function, and may influence oxidative stress 
and inflammation in brain cells as well as proliferation and 
angiogenesis in vascular endothelial cells (Bishop-Bailey 
and Swales 2008). There is evidence that PPAR-β/δ regu-
lates vascular function by enhancing VEGFR expression, 

phosphorylation of AKT, and subsequently regulating 
endothelial NO production and reducing ROS and inflam-
mation (Jiang et al. 2019).

Systemic inflammatory responses (SIR) evoked by the 
endotoxin lipopolysaccharide (LPS) may contribute to neu-
rodegenerative disorders (Brown 2019). PPARs are unique 
set of fatty acid regulated transcription factors controlling 
both inflammation and lipid metabolism (Varga et al. 2011; 
Schnegg and Robbins 2011). It was recently reported that 
PPAR-β/δ agonists exerted significant anti-inflammatory 
effects and suppressed the genes encoding iNOS, several 
chemokines such as CXCL1, CXCL2, CXCL10 interleukins 
IL1, IL6, and other cytokines TNF-α, IFN-γ, and concomi-
tantly enhanced IL10 (Kuang et al. 2012; Chehaibi et al. 
2017; Beyaz and Yilmaz 2016). Agonist of PPAR β/δ such 
as GWO 742 could decrease neutrophil infiltration into the 
brain during ischemia and protects against neuroinflam-
mation (Chehaibi et al 2017). However, activation of other 
members of PPARs evoked also anti-inflammatory effect 
(Varga et al. 2011; Carniglia et al. 2013; Villapol 2018).

In our previous studies, acute SIR evoked by LPS admin-
istered i.p. to mice-induced memory impairment showed 
alterations of transcription of pro-oxidative, inflammatory 
genes, and genes engaged in cells death signaling (Czapski 
et al. 2010; 2016; Jacewicz et al. 2009). During the last dec-
ade, there has been increasing interest on the involvement 
of PPAR-β/δ in inflammatory processes (Bishop-Bailey and 
Bystrom 2009; Piqueraset al 2009; Schnegg and Robbins 
2011).

PPAR‑β/δ in AD and Other 
Neurodegenerative Disorders

Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is the most prevalent, progres-
sive, and irreversible neurodegenerative disease that leads to 
dementia. There are many underlying mechanisms towards 
the pathogenesis of AD, including the widely known amy-
loid pathogenesis with liberation and oligomerization of 
amyloid beta peptides (Aβ), and hyperphosphorylation of 
the microtubule-associated tau protein, and its polymeriza-
tion into insoluble, neuronal fibrillary tangles (NFTs). These 
alterations lead to astrocytes and microglia cells activation, 
and consequently, inflammatory response (Selkoe and Hardy 
2016). On the cellular level, alterations of mitochondrial 
activity/ function and increase of oxidative stress may 
play a crucial role in AD pathogenesis (Tiwari et al. 2019; 
Schmitt et al. 2012; Swerdlow 2018). Recent studies fur-
ther indicated and suggested that abnormal sphingolipids, 
phospholipids, and fatty acids metabolism could be early 
and key events in the pathogenesis of AD (Kunkle et al. 
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2019; Cuyvers and Sleegers 2016; Jęśko et al. 2019a, b; 
Picard et al. 2018). Among these lipids, fatty acids and their 
metabolites through specific receptors and PPARs signal-
ing are engaged in regulation of brain function, learning 
and memory. Recent studies have described the essential 
role of PPAR-α in regulation of lipid metabolism, neuronal 
function, synaptic plasticity, and cognition (Wójtowicz et al. 
2020; Sáez-Orellana et al. 2020). Due to the complexity of 
AD pathophysiology, there is advantage for testing agonists 
that target different isoforms of PPARs (Reich et al. 2019).

Previous studies have shown that downregulation of 
PPAR-β/δ could be linked to both neuroinflammation and 
insulin resistance in the brain (de la Monte and Wands 
2006). Alzheimer’s disease is often regarded as a brain form 
of diabetes, and insulin deficiency or resistance to insulin 
may lead to neurodegeneration (Tong et al. 2016a, b). Insulin 
plays a fundamental role in regulating Extracellular Signal-
Regulated Kinases (ERK), which are essential for learning 
and memory, and are compromised in early AD (Dineley 
et al. 2014). Therefore, maintaining the action of insulin in 
the brain could potentially restore brain function and reduce 
neurodegeneration (Tong et al. 2016a, b; Jęśko et al. 2019a, 
b). PPARs are known to modulate insulin-stimulated gene 
expression, by responding to signals that are transmitted 
from surface cells membranes (Collino et al. 2008). As com-
pared to other PPARs, PPAR-β/δ seems to be most expressed 
in the brain (Cimini et al. 2005), and expression of PPAR-β/δ 
was reduced in the brains of AD patients similar as PPAR-α 
but the expression of gene for PPAR-γ was selectively upreg-
ulated (de la Monte and Wands 2006) (Fig. 3).

A new PPAR-δ/γ agonist (T3D-959) with 15-fold higher 
PPAR-β/δ selectivity/potency (comparing to PPAR-γ) is in 
an exploratory phase II clinical trial on thirty-four mild-
to-moderate AD patients. (Chamberlain et al. 2020). Due 
to PPAR-β/δ, PPAR-γ activation this agonist might have 

synergistic/ additive effects on glucose metabolism and 
regulation of glucose homeostasis in the brain (Chamber-
lain et al. 2020). In a previous study, T3D-959 administra-
tion was shown to significantly improve motor functions and 
normalize structure of white matter in streptozotocin (STZ)-
induced animal model of sporadic AD (intra-cerebrally 
injected STZ). The data also showed good blood–brain 
barrier penetration, good therapeutic index, and high brain 
concentration for this compound (Tong et al. 2016a, b). 
This compound also effectively restored integrity of tem-
poral lobe, hippocampal structure, and IGF-1 sensitivity 
and inhibited neuroinflammation (de la Monte et al 2017; 
Malm et al. 2015; Tong et al. 2016a, b). Results from the 
latest phase of the study showed that T3D-959 is generally 
safe and well tolerated by AD patients (Tong et al. 2016a, 
b). Plasma metabolome profile indicated dose-related sys-
temic effects on insulin-related metabolism. Moreover, rela-
tive FDG-PET imaging displayed regional, dose-dependent 
effects of this compound on cerebral metabolic rate of glu-
cose. Studies on cognitive assessments (ADAS-cog11 and 
DSST) indicated improvements with possible pharmacody-
namics related to T3D-959 mechanism of action. Due to the 
encouraging results of the phase II clinical trial, this drug 
warrants further investigation in a larger clinical study with 
a proper placebo-controlled group (Chamberlain et al. 2020).

The insulin sensitizing action of PPAR-β/δ is probably not 
the only event with possible impact on AD. As mentioned 
before, PPAR-β/δ has a potent anti-inflammatory effect and 
it can stabilize myelin sheath, decline Aβ deposits, as well 
as exert other molecular effects (Collino et al. 2008; Dunn 
et al. 2010; Sergey et al. 2009) (Fig. 4). Moreover, experi-
mental depletion of PPAR-β/δ indicated not only increases 
in neuroinflammation, but also oxidative stress, astrogliosis, 
and Aβ42 deposition (Barroso et al. 2013).

Fig. 3  PPAR-β/δ engagement 
in neurological disorders. 
AD-Alzheimer’s disease, PD 
Parkinson’s disease, HD Hun-
tington’s disease, MS multiplex 
sclerosis, ALS amyotrophic 
lateral sclerosis
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In a transgenic model of AD (5XFAD mice), the PPAR-
β/δ agonist GW0742 could decrease parenchymal Aβ depos-
its, although intraneuronal Aβ was not affected (Malm et al. 
2015). The results of this study showed that this agonist not 
only significantly decreased Aβ load in the cerebral cortex 
and hippocampus, but also decreased the level of several 
cytokines (IL1, IL6, CCL2, and TNF-α) and microglial 
activity surrounding Aβ deposits. The action of GW0742 
was also analyzed in hippocampus of mice with Aβ1-42-
induced neurotoxicity (An et al. 2016). Administration of 
aggregated oligomer of Aβ1-42 (410 pmol/mouse) greatly 
disrupted memory and learning (in Morris Water Maze 
and Y-maze tests). This perturbation was associated with 
decreased expression of PPAR-β/δ in the mouse hippocam-
pus (An et al. 2016). Intra-hippocampal infusion of GW0742 
could also reverse the decreased expression of hippocam-
pal PPAR-β/δ, repressed neuroinflammation and apoptotic 
responses triggered by Aβ1-42 oligomers, and enhanced 
Bcl2/Bax ratio in hippocampus (An et al. 2016).

PPAR-β/δ and other members of these receptor family 
are involved in neuroinflammation processes in AD as well 
as other neurodegenerative disorders. The study of Sergey 
et al. (2009) showed that the PPAR-β/δ agonist, GW0742 
could significantly reduce astrocyte activation, thus exert-
ing anti-inflammatory effect on glial cells. These authors 
also reported that PPAR-β/δ agonist could reduce amyloid 
burden, an event presumably mediated by its effect on amy-
loid clearance.

Parkinson’s Disease

There is evidence for protective properties of PPAR-β/δ 
agonists in Parkinson disease (PD) (Chaturwedi and Beal 
2008). The study by Iwashita et al. (2007) demonstrated 
that PPAR-β/δ agonists GW501516 and L165041 exhib-
ited protective function against striatal dopamine depletion 
induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP). These agonists also inhibited caspase-3 activation, 
thereby protecting (SHSY-5Y) neuronal cells from action of 
MPP + (1-methyl-4-phenylpyridinium) and exerted protec-
tive effects also in in vivo model of PD. Moreover, the study 
of Das et al. (2014) demonstrated the effect of PPAR-β/δ 
agonist—GW0742—in a rat model of PD-associated cogni-
tive impairment. In this study, rats given MPTP resulted in 
DNA fragmentation and oxidative stress. Subsequent treat-
ment with GW0742 was shown to partially restore cogni-
tive functions impaired by MPTP. Immunochemical (Tunel) 
assay, and assays of glutathione (GSH) and malondialdehyde 
(MDA) revealed that GW0742 reduced oxidative stress and 
DNA fragmentation. In a recent study, intracerebroventricu-
lar administration of GW501516, a highly selective agonist 
for PPAR-β/δ was shown to exert protective effects in PD 
model induced in mice by MPTP (Chen et al. 2019). In this 
study, GW501516 not only reduced the movement impair-
ment in the PD mice, it also suppressed dopaminergic neu-
rodegeneration and inhibited activation of the nucleotide-
binding domain and leucine-rich-repeat-protein 3 (NLRP3) 
inflammasome in the astrocytes but not microglia.

Fig. 4  Potential PPAR-β/δ 
mechanisms of action, construc-
tive in Alzheimer’s disease

Inflamma�on

Oxida�ve
stress

Mitochondrial
biogenesis

An�oxida�ve
enzymes

Neurotoxicity
of Amyloid-β

Modula�on of 
insulin signaling

Glucose
homeostasis

Neurotoxicity
of Tau protein

PPAR β/δ

Lipid 
metabolism

Apopto�c
pathway



92 NeuroMolecular Medicine (2021) 23:86–98

1 3

Huntington’s Disease

The study of Dickey et al. (2016) documented that PPAR-
β/δ-mediated transcriptional alteration could involve mito-
chondrial abnormalities and bioenergetic defects in Hun-
tington Disease (HD). The study showed that PPAR-β/δ 
dysregulation is crucial in the pathogenic cascade of HD 
and it could elicit neuroprotection in neurons from mouse 
models of HD. Moreover, treatment with its selective agonist 
evoked a robust positive response. Through testing PPAR (α, 
γ and β/δ) individually, and with the use of agonist treatment 
or shRNA knockdown, this study confirmed the important 
role of PPAR-β/δ in HD. Experiments on transgenic PPAR-
β/δ mice revealed the necessity of PPAR-β/δ for neuronal 
function (Dickey et al. 2016).

Multiple Sclerosis

The role of PPAR-β/δ has been studied in Multiple Sclerosis 
(MS), a disease involving demyelination of central nervous 
system and affecting nearly one million people worldwide 
(Dean et al. 1994; Lucchinetti et al. 2011). MS is known 
for deficiencies in sensory and motor areas, resulting prob-
ably from autoimmune mechanism. MS patients also showed 
changes in plasma lipid profiles, implicating the role of 
lipids in MS pathogenesis (Weinstock-Guttman et al. 2011). 
The most widely used model for studies on MS is Experi-
mental autoimmune encephalomyelitis (EAE) (Constanti-
nescu et al. 2011). Studies showed that PPAR-β/δ agonists, 
through a negative feedback loop, could reduce inflamma-
tion and damage of tissues in EAE models of MS (Polak 
et al. 2005). The study by Drohomyrecky et al. (2019) also 
demonstrated that mutant mice hypomorphic for PPAR-β/δ 
receptor showed a more severe course of inflammatory pro-
cess in CNS, and this event could be revered by PPAR-β/δ 
agonists (Drohomyrecky et al. 2019).

PPAR‑β/δ in CNS Hypoxia/Ischemia

Neurodegeneration and neuroinflammatory processes play a 
significant role in brain ischemia/hypoxia pathology. Alter-
ation of lipid metabolism, including polyunsaturated fatty 
acids and synthesis of several eicosanoids and docosahexa-
noids were recognized as the early and most important 
events in ischemia/hypoxia encephalophathy (Bazan 1970; 
Tang and Sun 1985; Strosznajder and Domanska-Janik 1980; 
Nalivaeva and Rybnikova 2019). Omega 3 fatty acids sup-
plementation was shown to exert protection via anti-inflam-
matory action by suppressing microglia response in neonatal 
hypoxic-ischemic brain injury (Zhang et al. 2010). Study by 
Saganuma et al. (2013) also demonstrated that docosahex-
aenoic acid (DHA) supplementation may be beneficial in 

ischemia hypoxia encephalopathy. In a rodent model of brain 
ischemia, the data by Song et al. (2019) showed that oleic 
acid (OA) could mediate neuroprotection through PPAR-γ 
activation and its anti-inflammatory effect.

Using GW0742, a specific agonist for PPAR-β/δ receptor, 
the study by Gamdzyk et al. (2018) demonstrated that stimu-
lation of PPAR-β/δ could exert neuroprotective effects in a 
rat model of neonatal hypoxic–ischemia (HI). In this study, 
administration of GW0742 reduced brain infarct area, brain 
atrophy, apoptosis, and improved neurological function at 
72 h and 4 weeks post HI. Additionally, GW0742 adminis-
tration induced several molecular processes, e.g., enhancing 
the transcription of gene coding PPAR-β/δ, increase in miR-
17-5p level, and downregulation of the Thioredoxin Inter-
acting Protein (TXNIP) in the ipsilateral hemisphere. These 
events also led to inhibition of the Apoptosis Signal-regu-
lating Kinase 1 (ASK1/p38) signaling pathway and reduced 
apoptotic cell death. In contrary, GSK3787, an antagonist 
of this receptor, was shown to reverse the protective effects 
evoked by intranasal administration of GW0742. The study 
of Hack et al. (2012) and Zaveri et al (2009) demonstrated 
the effect of PPAR-β/δ antagonists GSK3787, GSK0660, 
and SR13904, respectively.

In the recent review article, Gamdzyk et al. (2020) com-
pared neuroprotective efficacy of PPAR-β/ δ agonists to 
PPAR-α and PPAR-γ and conclude that despite of being 
the most highly expressed in CNS, the available data on 
the effect of this receptor agonists in stroke as well as other 
neurological disorders are relatively poor and thus needing 
further investigations. However, the last results of Chehaibi 
et al. (2017) demonstrated several ameliorating effects of 
PPAR-β/δ agonist GW0742 in mice brain ischemia evoked 
by occlusion of middle cerebral artery (MCA). The signifi-
cant anti-inflammatory effect was exerted by this agonist, 
which decreased the neutrophil infiltration, the level of sev-
eral chemokines and interleukins such as IL-1β, IL6, and 
other cytokines. Using the same model of brain ischemia. 
Pialat et al. (2007) previously demonstrated in magnetic 
resonance imaging (MRI) scan that PPAR-β/δ-null mice 
comparing to control wild mice indicated significant dif-
ferences in lesion volume. The effect of GW0742 was also 
investigated by Tang et al. (2020) in a collagenase-induced 
intracerebral hemorrhage (ICH) mouse model. In this study, 
PPAR-β/δ agonist was administered (intraperitoneally in a 
dose of 3 mg/kg body weight) 30 min before ICH, and its 
neuroprotective effects included mitigation of behavioral 
dysfunction and molecular pathways associated with acti-
vation of inflammation and apoptosis. A previous study by 
Paterniti et al. (2010) evaluated the involvement of PPAR-
β/δ in spinal cord injury (SCI) in mice evoked by application 
of vascular clips (force of 24 g) to the dura via a four-level 
T5 to T8 laminectomy. GW0742 (administered i.p. in a dose 
of 3 mg/kg body weight) exerted significant neuroprotective 
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effect, and ameliorated the recovery of limb function. The 
protective effects of this agonist include inhibition of neu-
trophil infiltration, expression of proinflammatory cytokines 
and altered molecular processes leading to cell death 
through changes of transcription of pro- and anti-apoptotic 
proteins (Fasl, Bax, Bcl2). The protective processes evoked 
by GW0742 could be eliminated by specific receptor antag-
onist (GSK0660), which was administered (1 mg/kg bw) 
at 30 min before GW0742. This high-affinity PPAR-β/δ 

agonist GW0742 was able to evoke significant neuropro-
tective effects in secondary damage, during experimental 
spinal cord injury (SCI) in mice (Paterniti et al. 2010). In 
this study, GW0742 treatment (0.3 mg/kg−1 i.p) at 1 and 
6 h after SCI, significantly reduced inflammation, nitric 
oxide synthesis, nitrotyrosine formation and activation of 
apoptotic signaling. Moreover, this agonist protected against 
edema and showed positive effect on motor recovery score. 
The study of Esposito et al. (2012) indicated that GW0742, 

Table 1  Natural and synthetic agonists of PPAR-β/δ

Natural Synthetic
Specific PPAR-β/δ agonists

PPAR-β/δ agonists
Saturated fatty acids
– Stearic acids (SA) 18:0 oktadecanoic acid (Korbecki et al. 2019)
– Palmitic acid (PA) 16:0 hexadecanoic acid (Korbecki et al. 2019)
Monounsaturated fatty acids
– Palmitoleic acid 16:1 (n-7)
cis-hexadec-9-enoic acid (Korbecki et al. 2019)
– Oleic acid (OA) 18:1 (n-9)
cis-octadec-9-enoic acid (Korbecki et al. 2019)
Polyunsaturated fatty acids
– Docosahexaenoic acid (DHA) 22:6 (n-3) all-cis-4,7,10,13,16,19-

docosahexaenoic acid (Korbecki et al. 2019)
– Eicosapentaenoic acid (EPA) 20:5 (n-3)
– all-cis-5,8,11,14,17 eicosapentaenoic acid (Korbecki et al. 2019)
– Linoleic acid (LA) 18:2 (n-6)
all-cis—9,12-octadecadienoic acid (Han et al. 2017a, b; Korbecki 

et al. 2019)
– Γ-linoleic acid (GLA) 18:3 (n-6)
all-cis-6,9,12-octadecatrienoic acid (Korbecki et al. 2019),
– Dihomo-γ-linoleic acid (DGLA) 20:3 (n-6)
8,11,14-Eicosatrienoic acid gamma- Homolinolenic acid (Han et al. 

2017a, b)
– Arachidonic acid (AA) 20:4 (n-6)
all-cis-5,8,11,14 eicosatetraenoic acid (Korbecki et al. 2019)
Arachidonic acid metabolites
– 8(S)-HETE 8S-hydroxy-5Z,9E,11Z,14Z-eicosatetraenoic acid (Kor-

becki et al. 2019)
– 15-HETE 15-hydroxyeicosatetraenoic acid (Korbecki et al. 2019)
Eicosanoids
 15d-PGI2 15-deoxy-∆-12,14-prostaglandin J2
 PGJ2—prostaglandin J2
 PGI2 (prostacyclin)—prostaglandin I2
 PGA1/2—prostaglandin A1/A2
 PGB2—prostaglandin B2
(Han et al. 2017a, b part I/II)

– L165041 (4-[3{4-Acetyl-3-hydroxy-2-propylphenoxy} propoxyl}] 
phenoxy)acetic acid; (Han et al. 2017a, b part I/II)

– GW501516 2-Methyl-4(((4-methyl-2-(4-trifluoromethyl-phenyl)1,3-
thiazol-5-yl) methyl) sulfanyl)phenoxy)acetic acid (Han et al. 2017a, 
b part I/II)

– GW0742 [4-[[[2-[3-Fluoro-4-(trifluoromethyl) phenyl]-4-methyl-
5-thiazolyl]thio]-2-methyl phenoxy]acetic acid; (Han et al. 2017a, b 
part I/II)

– GW1929 (2S)-((2-Benzoylphenyl)amino-3[4-[2-(methylpyridin-2-
ylamino) ethoxy]phenyl)-propionic acid; (Han et al. 2017a, b part I/II)

– CER-002 (Han et al. 2017a, b part I/II)
– HPP593 (Han et al. 2017a, b Part II)
– GW2433 2-[4-(3-{[2-(2-chloro-6-fluorophenyl) ethyl] [(2,3-dichloro-

phenyl) carbamoyl] amino} propyl) phenoxy]-2-methylpropanoic acid 
(Li et al. 2018)

– MBX-8025 2-[4-[[2R)-2-ethoxy-3-[4 (trifluoromethyl) phenoxy]
propyl]thio]-2-methylphenoxy]acetic acid (Han et al. 2017a, b part I/
II; Xu et al. 2018; Hong et al. 2019)

– Carbaprostacyclin (cPGI) 6,9α-methylene-11α,15S-dihydroxy-prosta-
5E,13E-dien-1-oic acid (Han et al. 2017a, b part I/II)

– ETYA 5,8,11,14- eicosatetraynoic acid (Korbecki et al. 2019)
Dual PPAR-α/βδ agonists
– GFT505 2-(2,6-dimethyl-4-(3-(4-(methylthio) phenyl)-3-oxo-1-prope-

nyl)phenyl)-2-methylpropanoic acid (Han et al. 2017a, b part I/II; Li 
et al. 2018)

– KD-3010 (Xu et al. 2018)
Dual PPAR-βδ/γ agonists
– T3D-959 sodium 2-(5-(2-(5-ethyl-2-(4-methoxyphenyl)oxazol-4-yl)

ethoxy)-2,3-dihydro-1H-inden-1-yl)acetic acid (Chamberlain et al. 
2020)

Pan PPAR-α/βδ/γ agonists
– Chiglitazar l-tyrosine, O-[2-(9H-carbazol-9-yl) ethyl]-N-[2-(4-

fluorobenzoyl)phenyl] (Han et al. 2017a, b part I)
– Netoglitazar (Han et al. 2017a, b part I)
– Sodeglitazar (Han et al. 2017a, b part I)
– Indeglitazar 3-[1-[(4-methoxyphenyl) sulfonyl]-5-methoxy-1H-indole-

3-yl] propanoic acid (Han et al. 2017a, b part I)
– Sipoglitazar 3-[3-ethoxy-1-[4-(2-phenyl-4-thiazolylmethoxy)benzyl]-

1H-pyrazol-4-yl]propionic acid (Han et al. 2017a, b part I)
– IVA337 (Li et al. 2018)

PPAR-β/δ antagonists
GSK3787—4-chloro-N-[2-[[5-(trifluoromethyl)-2-pyridinyl]sulfonyl]ethyl]benzamide
(Paterniti et al. 2010)
GSK0660—3-[[[2-methoxy-4-(phenylamino)phenyl]amino]sulfonyl]-2-thiophenecarboxylic acid methyl ester (Paterniti et al. 2010)
SR13904 (Zaveri et al. 2009)
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through targeting divergent downstream pathways regulating 
PPAR-β/δ receptors, could decrease changes on both molec-
ular and cellular levels that take place in spinal cord damage. 
CNS hypoxia–ischemia hemorrhage and traumatic injury are 
closely connected with vascular alterations, oxidative stress 
and hypertension. In a preclinical study, Toral et al. (2016) 
showed antihypertensive effects of PPAR-β/δ in spontane-
ously hypertensive rats (SHR) as well as in other animal 
models. Pharmacological activation of PPAR-β/δ exerted 
several protective effects, improved the endothelial dysfunc-
tion, decreased vascular inflammation and vasoconstriction 
responses. There is evidence that other isoforms of PPARs 
can also show protective effects on cerebral ischemia dam-
age. In a study by Wu et al. (2016), cultured neurons were 
subjected to in vitro oxygen–glucose deprivation (OGD), 
and treatment with GW9662, an antagonist for PPAR-γ, 
could ameliorate neuronal apoptosis and inhibit p22phox 
subunit of NADPH oxidase (Wu et al. 2016). It is possible 
to suggest that agonist acting simultaneously on PPAR-γ 
and PPAR-β/δ could be more effective in OGD model and 
in brain ischemia pathology comparing to PPAR-γ alone. 
Despite of evidence indicating ability for PPAR-β/δ agonists 
to exert neuroprotective effects on cerebral ischemia injury, 
there were also negative results, probably depending on the 
type of agonists used and method of administration. For 
example, in a study by Knauss et al. (2018) oral administra-
tion with SAR 145, a known lipophilic agonist for PPAR-
β/δ, could not improve short or long outcomes after focal 
cerebral ischemia induced to mice through middle cerebral 
artery occlusion (Knauss et al. 2018).

PPAR‑β/δ in Brain Tumors (Neuroblastomas 
and Gliomas)

Despite of the recognition of PPAR-β/δ in metabolic 
and inflammatory diseases, there is increasing interest in 
developing appropriate ligands/antagonists towards treat-
ment of cancer (Wagner and Wagner 2020; Reil and Lee 
2008; Liu et al. 2018). However, the molecular mechanism 
of PPARs in carcinogenesis is still not fully elucidated, 
and data from in vitro and in vivo studies are still contro-
versial. Tatenhorst et al. (2008) concluded in their review 
articles that the agonists of PPARs could be promising 
for new approaches in human CNS tumor therapy. Subse-
quently, Youssef and Badr (2011) tried to explain the com-
plexity of these receptor responses and their conforma-
tional changes that influence their ability to recruit specific 
functionally distinct coactivators. For better understand-
ing of the complicated role of PPAR-β/δ in carcinogen-
esis, these authors recalled the work of Mukherjee et al. 
(1994), showing that some receptors (such as androgen 

receptors) exhibited capability to interact with 150 pro-
teins/polypeptides, and thus suggested such a possibility 
for PPAR in carcinogenesis. It also seems that, in the case 
of PPAR-β/δ, the complex coactivators and repressors in 
PPAR-β/δ could be subjected to deeper analysis. Recent 
studies of Yao et al. (2017) showed that PPAR-β/δ could 
inhibit human neuroblastoma cell tumorigenesis by induc-
ing protein p-53 and SOX2 mediated cell differentiation. 
These results suggest that combinatorial activation of reti-
noic acid receptor, PRAR-α and PPAR-β/δ may be promis-
ing therapeutic approach for RA-resistant neuroblastoma 
patients. Ding et al. (2020) demonstrated the impact of 
PPAR-β/δ and PPAR-γ polymorphism on glioma risk and 
prognosis in the Chinese Han population.

Summary and Perspective

Considering their anti-inflammatory, neuroprotective, and 
anti-tumors properties, PPAR-β/δ agonists are promising 
treatments of AD and other neurodegenerative disorders. A 
list of the natural and synthetic agonists for PPAR-β/δ is 
shown in Table 1. These PPAR-β/δ ligands should be applied 
in various other pathologies as DMT2, MetSD, atherosclero-
sis, obesity, hepatosteatosis. The role of PPAR-β/δ in cancer 
should be better elucidated and understood. Besides PPAR-
β/δ, agonists of PPAR-α and PPAR-γ may also be involve 
in neurodegenerative diseases, in MetSD and dyslipidemia. 
Therefore, future studies should test PPAR-β/δ ligands in 
combination with ligands of other PPARs receptor in these 
neurological disorders and in inflammation.
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