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Abstract
Recent advances in medical genetics elucidated the background of diseases characterized by superficial dermal and epidermal 
inflammation with resultant aberrant keratosis. This led to introducing the term autoinflammatory keratinization diseases 
encompassing entities in which monogenic mutations cause spontaneous activation of the innate immunity and subsequent 
disruption of the keratinization process. Originally, autoinflammatory keratinization diseases were attributed to pathogenic 
variants of CARD14 (generalized pustular psoriasis with concomitant psoriasis vulgaris, palmoplantar pustulosis, type V 
pityriasis rubra pilaris), IL36RN (generalized pustular psoriasis without concomitant psoriasis vulgaris, impetigo herpeti-
formis, acrodermatitis continua of Hallopeau), NLRP1 (familial forms of keratosis lichenoides chronica), and genes of the 
mevalonate pathway, i.e., MVK, PMVK, MVD, and FDPS (porokeratosis). Since then, endotypes underlying novel entities 
matching the concept of autoinflammatory keratinization diseases have been discovered (mutations of JAK1, POMP, and 
EGFR). This review describes the concept and pathophysiology of autoinflammatory keratinization diseases and outlines 
the characteristic clinical features of the associated entities. Furthermore, a novel term for NLRP1-associated autoinflam-
matory disease with epithelial dyskeratosis (NADED) describing the spectrum of autoinflammatory keratinization diseases 
secondary to NLRP1 mutations is proposed.
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Introduction

In 1997, pathogenic variants in the gene MEFV causing 
familial Mediterranean fever were identified [1]. This 
discovery marked a breakthrough in the understanding of 
systemic diseases caused by congenital hyperactivation of 
the innate immune system that manifests by heterogenous 
patterns of systemic inflammation [2, 3]. Later, more 
disorders sharing similar pathogenetic pathways result-
ing in self-limited episodes of fever and serosal, synovial, 
and cutaneous symptoms were genetically characterized 
[4]. This emerging group was named “autoinflammatory 
diseases.” The phenomenon of autoinflammation was 

distinguished from autoimmunity by lacking the typical 
stigmata of the latter, e.g., high-titer autoantibodies or 
antigen-specific T lymphocytes.

Two decades after explaining the cause of familial Medi-
terranean fever, Akiyama et al. proposed the term “auto-
inflammatory keratinization diseases” (AiKDs) for a sub-
category of autoinflammatory disorders characterized by 
superficial dermal and epidermal inflammation altering the 
keratinization process [5]. The hallmarks of AiKDs involve 
the hyperactivation of the innate immune system caused 
primarily by genetic factors and the resulting mixed patho-
mechanisms of autoinflammation and autoimmunity.

The purpose of this review is to present the concept and 
pathophysiology of AiKDs and outline the characteristic 
features of the conditions included in this group.

Innate Immunity and Autoinflammation

The innate immune system is a conservative line of defense 
preventing loss of homeostasis induced by environmental 
and endogenous stressors [6]. Its primary role is to control 
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the breach by infectious agents, but its function is being con-
stantly elucidated in heterogenous physiological processes 
[7]. Innate immunity comprises constitutive and inducible 
mechanisms [8]. Constitutive immune responses involve 
restriction factors, antimicrobial peptides, basal autophagy, 
and proteasomal degradation. Inducible responses are 
dependent on sensing by pattern recognition receptors 
(PRRs), e.g., toll-like receptors (TLRs) and nucleotide-
binding oligomerization domain (NOD)-like receptors 
(NLR) showing high affinity toward conserved microbial 
structures [9]. PRRs sense pathogen-associated molecular 
patterns (PAMPs) and danger-associated molecular patterns 
(DAMPs). Subsequent downstream signaling from PRRs 
elicits the production of cytokines and other molecular sig-
nals orchestrating the organism’s response to the detected 
perturbation. Among others, these processes also influence 
the fine-tuning of acquired immune responses, which can 
result in the simultaneous activation of mixed pathways of 
autoimmunity and autoinflammation [10].

Pathogenesis of Autoinflammatory Diseases

Genetically determined malfunctioning of innate immunity 
can cause systemic inflammation to develop spontaneously 
or upon a minor trigger [11]. This can be caused by either 
loss-of-function mutations in genes responsible for suppress-
ing the inflammatory responses or gain-of-function muta-
tions in genes that propagate these processes [12].

Theoretically, every modality of innate immune response 
may be affected. However, the most uniform classification 
of autoinflammatory syndromes based on the underlying 
pathophysiological mechanisms distinguishes four primary 
groups of entities [12, 13]:

1. Inflammasomopathies and other disorders associated 
with aberrant IL-1 family signaling

2. Type I interferonopathies
3. Disorders of NF-κB and/or aberrant TNF activity
4. Diseases caused by other miscellaneous mechanisms

Inflammasomopathies and Other Disorders Associated 
with Aberrant IL‑1 Family Signaling

IL-1 cytokine superfamily (i.e., IL-1α, IL-1β, IL-18, and 
IL-36) is a primary factor orchestrating inflammatory  
reactions in response to tissue damage [14]. The active 
forms of IL-1β and IL-18 are generated from their inactive 
precursors by caspase-1 proteolysis. The latter is an enzyme 
activated by inflammasomes, i.e., protein complexes 
assembling upon conformational changes in core nucleating 
proteins induced by cellular stressors [15–17]. Various  
inflammasomes, e.g., pyrin, NLRP1, NRLP3, NLRP12, and 
NLRC4, have been distinguished based on the associated 

nucleating proteins. Importantly, the cellular expression of 
inflammasomes and their substrates varies in different tissues; 
hence, their spontaneous activation in autoinflammatory 
disorders may be associated with organ-specific symptoms 
[16, 18]. Considering the primary role of inflammasomes in 
triggering IL-1-mediated responses, inflammasomopathies 
are discussed together with disorders associated with aberrant 
IL-1-dependent signaling. IL-36, a member of the IL-1 
superfamily highly expressed in keratinocytes and endothelial 
cells, shows a different mode of activation dependent primarily 
on soluble neutrophil proteases, such as cathepsin G [19].

Interferonopathies

Interferons are cytokines involved in innate and adaptive 
immune responses [20]. They exert their action through 
type I and II receptors with subsequent signal transduction 
through Janus kinases [21]. Three groups of interferons have 
been distinguished: type I (IFNα, IFNβ signaling through 
the type I IFN receptor), type II (IFNγ signaling through 
type II IFN receptor), and type III (IFNλ signaling through 
a receptor sharing the same pathways of downstream signal-
ing with type I IFN) [22–24]. Described autoinflammatory 
syndromes are due to type I IFN abnormalities [25, 26]. 
This group of cytokines is primarily associated with anti-
viral responses dependent on the sensing of viral DNA or 
RNA. Therefore, the underlying pathomechanisms of inter-
feronopathies involve improper sensing or accumulation 
of nucleic acids or waste proteins (e.g., due to proteasomal 
abnormalities) and amplified receptor signaling [26].

Disorders of NF‑κB and/or Aberrant TNF Activity

The NF-κB complex mediates downstream signaling trig-
gered by both intra- and extracellular danger signals [27]. 
The result of NF-κB complex activation is the release of 
transcription factors enhancing the expression of proinflam-
matory molecules, with the TNF cytokine family as its pri-
mary effector and reciprocal regulator [27, 28]. Among the 
many processes which can lead to the hyperactivation of 
the NF-κB cascade and TNF function are decreased activ-
ity of the NF-κB negative regulators (e.g., A20 haploinsuf-
ficiency), increased activation by factors such as caspase 
recruitment domain–containing protein (CARD), and acti-
vating mutations in genes encoding TNF receptor 1 (e.g., in 
TRAPS syndrome) [29–31].

Diseases Caused by Other Miscellaneous Mechanisms

Novel discoveries regarding the innate immune system 
explain the pathogenesis of autoinflammatory syndromes 
that do not fall into the described categories. Among those 
newly identified pathomechanisms are hyperreactive 
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external calcium entry in B cells and expansion of innate 
inflammatory cells seen in PLAID syndrome, disruption 
of transport from the Golgi apparatus to the endoplasmic 
reticulum due to defective coatomer protein subunit α in 
COPA syndrome, and impairment of pathways regulating 
actin polarization and cytoskeletal architecture in CDC42 
deficiency [32–34]. Possibly, identification of new patho-
mechanisms could augment new categories of autoinflam-
matory diseases with the resultant discerning of more well-
defined subgroups sharing similar pathways.

Autoinflammation and Autoimmunity

Autoimmunity is a state of disrupted acquired immune 
response in which T cells and B cells are primary effec-
tors [35]. The hallmark of autoimmunity involves improper 
sensing of autoantigens as danger signals with the resultant 
formation of autoantibodies targeting functional structures 
of the cell such as the nucleus [36].

Recently, innate immune system has been revealed as a 
significant contributing factor to the initiation and amplifica-
tion of autoimmune diseases [26, 37–39].

In the initiation phase, autoantigens are detected and 
internalized by antigen-presenting cells in a TLR-dependent 
manner. This causes the activation of caspase-1 and inflam-
masome-induced production of active IL-1 cytokine fam-
ily members [40]. Subsequent signaling through the IL-1 
receptor (IL-1R) promotes the survival and differentiation of 
naïve T cells which induce B cells to start antibody produc-
tion [41]. Additionally, a stable differentiation of Th17 cells 
from naïve T cells also depends on the IL-1 family cytokines 
(mainly IL-1α and IL-1β).

TLR-dependent signaling further elicits the production of 
IFN-α stimulating the cascade of dendritic cell maturation, 
presentation of autoantigens, and lymphocyte recruitment 
with subsequent production of autoantibodies [35]. IFN-α 
is also secreted by plasmacytoid dendritic cells upon inter-
nalization of autoantigen-autoantibody immune complexes 
which activate other dendritic cells and T cells [42, 43]. This 
promotes a self-sustained amplification of inflammation.

Another example of the close relationship between auto-
inflammation and autoimmunity is the CARD-dependent 
NOD-2 activation, which leads both to the activation of 
IL-1β, mediated by caspase 1, and NF-κB-induced transcrip-
tion of proinflammatory factors [44].

It is therefore clear that some diseases considered mainly 
autoinflammatory can also be associated with simultaneous acti-
vation of adaptive immunity and autoimmune stigmata. How-
ever, in contrast to the monogenic background of most autoin-
flammatory diseases, autoimmune disorders are more frequently 
associated with polygenic inheritance, with certain susceptibility 
loci being attributed to the pathways listed above [45, 46].

Autoinflammatory Keratinization Diseases

Genetic susceptibility for the development of inflam-
matory keratinization diseases, e.g., psoriasis, is well 
established [47]. The familial predetermination has a 
primarily polygenic background. In these cases, the 
pathogenesis is thought to be largely driven by the adap-
tive immunity. The discovery of monogenic aberrations 
causing hyperactivation of the innate immune system 
led to developing the umbrella term AiKDs to reflect the 
different etiology and clinical implications of inflam-
matory keratinization diseases with mixed pathomecha-
nisms of autoinf lammation and autoimmunity [48]. 
According to Akiyama et al. AiKDs are defined by the 
following criteria [5]:

1. The inflammation is primarily confined to the epidermis 
and upper dermis;

2. The inflammation leads to hyperkeratosis constituting 
the main characteristic phenotype of AiKDs;

3. AiKDs develop mainly due to genetic causative factors 
associated with the hyperactivation of innate immunity;

4. The concept of AiKDs encompasses diseases with mixed 
pathomechanisms of autoinflammation and autoimmunity.

The Autoinflammatory Keratinization Disease Spectrum

Originally, disorders included in the spectrum of AiKDs 
involved variants of generalized pustular psoriasis (GPP), 
palmoplantar pustulosis, type V (atypical juvenile) pityria-
sis rubra pilaris (PRP), impetigo herpetiformis, acroderma-
titis continua, and familial forms of keratosis lichenoides 
chronica [5]. Detection of new pathogenetic mechanisms 
dependent on the hyperactivation of innate immunity is 
causing the spectrum of AiKDs to expand [49]. Since the 
introduction of this concept, certain changes in nomencla-
ture have also been proposed to better categorize AiKDs 
based on the underlying pathomechanism. For example, a 
compound term of CARD14-associated papulosquamous 
eruption (CAPE) was coined for cases of psoriasis and 
PRP sharing similar clinical features (age of onset, loca-
tion, family history) and favorable treatment outcomes 
dependent on IL-12/IL-23 blockade [50].

Described AiKDs fall into the following categories of 
autoinflammatory diseases described above:

1. Inflammasomopathies and other disorders associated 
with aberrant IL-1 family signaling due to

(a) Deficiency of the IL-36 receptor antagonist (IL-
36Ra) (DITRA)
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(b) Deficiency of the IL-1 receptor antagonist (IL-
1Ra) (DIRA)

(c) NLRP1 hyperactivation

2. Disorders of NF-κB and/or aberrant TNF activity due to

(a) CARD14 hyperactivation
(b) Adaptor protein complex 1 subunit σ1C (AP1S3) 

deficiency

3. Diseases caused by other miscellaneous mechanisms

(a) Mevalonate pathway abnormalities
(b) Janus kinase 1 hyperactivity
(c) Proteasome maturation protein deficiency
(d) Epidermal growth factor receptor deficiency

In some reviews, hidradenitis suppurativa is included 
within the AiKDs [51, 52]. However, due to the complex 

and most often polygenic background of this disease, incom-
patibility of the clinical features, and the presence of deep 
inflammatory infiltrates in histopathology, this article will 
not discuss hidradenitis suppurativa.

The pathogenesis of the most relevant AiKDs is illus-
trated in Fig. 1.

Inflammasomopathies and Other Disorders Associated 
with Aberrant IL‑1 Family Signaling

IL‑36Ra Deficiency IL-36 family is composed of three ago-
nists (IL-36α, IL-36β, and IL-36γ) and an antagonist (IL-
36Ra) [53, 54]. IL-36 cytokines are primarily expressed by 
T cells, keratinocytes, and other cutaneous cells [55]. They 
promote inflammation by stimulating antigen presentation 
and induction of immunocompetent cells.

Inactive full-length IL-36 is processed by enzymes 
derived from neutrophils, such as the cathepsin G (Cat G), 
elastase, and proteinase-3 [56]. This causes the upregulation 

Fig. 1  Pathogenesis of the most significant autoimmune keratiniza-
tion diseases associated with (1) increased IL-36R signaling caused 
by deficiency of IL-36RA, (2) CARD14 hyperactivation causing the 
upregulation of NF-κB, (3) NLRP1 inflammasome activation, and (4) 
mevalonate pathway abnormalities causing impaired synthesis of iso-
prenoids. CARD14—caspase recruitment domain family member 14; 
CCL-20—chemokine C-C motif ligand 20; FDPS—farnesyl diphosphate 

synthase; IL—interleukin; CXCL-1—chemokine C-X-C motif ligand 
1; IL-36R—interleukin 36 receptor; IL-36RA—interleukin 36 recep-
tor antagonist; MVD—mevalonate decarboxylase; MVK—mevalonate 
kinase; NF-κB—nuclear factor kappa-light-chain-enhancer of activated 
B cells; NLRP1—nucleotide-binding oligomerization domain-like recep-
tor containing a PYRIN domain 1; PMVK—phosphomevalonate kinase; 
TNF—tumor necrosis factor
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of IL-36R signaling which triggers a cascade of proinflam-
matory factor release. In keratinocytes, activated IL-36β 
induces the upregulation of TNF, Th17 cytokines (IL-17A, 
IL-17C, IL-22), and chemokines (IL-8, chemokine [C-X-C 
motif] ligand 1 [CXCL-1], chemokine [C-C motif] ligand 20 
[CCL-20]) [54]. This constitutes a classic psoriatic cytokine 
milieu and explains the causative role of IL-36 in driving 
the superficial cutaneous inflammation. Apart from causing 
chemotaxis of granulocytes, IL-36 also induces their adhe-
sion and diapedesis [19, 57]. This observation is possibly 
the main reason for the occurrence of pustules in diseases 
associated with IL-36 signaling.

The negative regulation of IL-36 is mediated by IL-36Ra, 
whose active form is induced by neutrophilic elastase [58, 
59]. Thus, deficiency of IL-36Ra caused by IL36RN loss-
of-function mutations propagates IL-36-dependent signaling 
and the ensuing immune cascade described above.

In 2011, the role of IL36RN mutation resulting in IL-36Ra 
deficiency was first associated with a recessively inherited 
familial variant of generalized pustular psoriasis in 9 Tuni-
sian families [60]. This led to propose a novel autoinflam-
matory disease referred to as DITRA (OMIM no. 605507). 
The same pathway was also demonstrated to underlie several 
sporadic GPP cases across the globe [61, 62]. Data analysis 
revealed that patients with IL-36Ra deficiency are typically 
characterized by early-onset systemic inflammation and the 
absence of concurrent psoriasis vulgaris (Fig. 6) [63]. There-
fore, screening for IL36RN mutation is advisable in individu-
als presenting these clinical features. IL36RN mutations have 
also been detected in other pustular dermatoses, including 
acrodermatitis continua and impetigo herpetiformis [64, 65].

Among the histological features of diseases mediated by 
IL36RN mutations, the presence of hyperkeratosis may be 
elusive and overwhelmed by the massive neutrophilic infil-
tration [66]. This could raise the question of whether this 
subgroup should be included in the AiKD spectrum. How-
ever, the common view is that the processes of keratinocyte 
differentiation and proliferation are affected in these entities, 
which justifies their recognition as AiKDs.

IL‑1Ra Deficiency IL-1Ra deficiency (DIRA, OMIM no. 
612852) follows the same pathogenetic concepts as the 
IL-36Ra deficiency (DITRA) and is based on impaired 
negative regulation of IL-1 cytokine superfamily [67, 68]. 
However, the broader physiological role of IL-1 cytokines 
and their more ubiquitous expression in different tissues 
translate to the involvement of multiple organs, includ-
ing the skin, bones, and central nervous system [68, 69]. 
Excessive signaling via the IL-1R induces neutrophil 
chemotaxis, infiltration, and pustule formation [70]. Cuta-
neous symptoms resemble those in IL-36Ra deficiency and 
imitate GPP [67]. However, patients are more commonly 
characterized by a very early onset of autoinflammatory 

stigmata, severe systemic symptoms, and markedly ele-
vated inflammatory markers.

To date, DIRA has not been proposed to fall into the 
spectrum of AiKDs, possibly due to the associated severe 
extracutaneous manifestations. However, the evident autoin-
flammatory etiology and cutaneous findings resulting from 
superficial inflammation substantiate the designation of 
DIRA as an AiKD.

NLRP1 Hyperactivation NLRP1 is a core protein forming 
a part of an inflammasome complex [18, 71]. It contains 
five different domains: an aminoterminal pyrin domain 
(PYD), a NACHT domain, six leucine-rich repeat (LRR) 
domains, a function-to-find domain (FIIND), and a car-
boxyterminal CARD. NLRP1 is considered a primary 
sensor of danger signals in the epithelia, and its expres-
sion is particularly prominent in keratinocytes [72]. Gain-
of-function mutations in the NLRP1 gene cause exces-
sive activation of the associated inflammasome with the 
resultant overproduction of the IL-1 cytokine superfamily 
causing pyroptosis and cell death [73]. Other mediators 
triggered by NLRP1 activation involve TNF, IL-5, IL-6, 
IL-8, IL-17, S100A9, and FGF7 which play an important 
role in altering keratinocyte differentiation and prolifera-
tion [74–76]. As a long-range effect, NLRP1-mediated 
inflammation may contribute to the acquisition of muta-
tions with oncogenic potential [18]. NLRP1 hyperactiva-
tion was discovered in the prototypic AiKD, i.e., familial 
keratosis lichenoides chronica [71]. The latter is associated 
with germline gain-of-function mutations in PYD and LRR 
domains of NLRP1. However, more cases of NLRP1 dys-
regulation resulting in epithelial inflammation have been 
discovered, justifying the recognition of a novel, joint spec-
trum of AiKDs (see the “Nucleotide-Binding Oligomeriza-
tion Domain-Like Receptor Containing a PYRIN Domain 
1 (NLRP1)-Associated Autoinflammatory Disease With 
Epithelial Dyskeratosis (NADED)” section).

Disorders of NF‑κB and/or Aberrant TNF Activity

CARD14 Hyperactivation CARD14 regulates the central hub 
of intracellular signaling, i.e., the NF-κB [77]. CARD14 is 
composed of a CARD domain, coiled-coil (C-C) domain, 
SH3 domain, PDZ domain, and GuK domain [78]. These 
elements are homologous in CARD14, CARD10, and 
CARD11, but the distribution of the former is primarily 
limited to the skin [79].

Upregulation of NF-κB caused by activating mutations in 
CARD14 induces the expression of IL-8 and CCL20 [30]. 
Those chemokines recruit immunocompetent cells, which 
subsequently promote the Th17 axis and the production of 
IL-23 by dendritic cells [80].
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Heterozygous gain-of-function mutations in CARD14 
have been implicated in the pathogenesis of atypical juvenile 
PRP (OMIM no. 173200) and GPP with concurrent psoriasis 
vulgaris (OMIM no. 602723) [5]. An overlap in the clinical 
features of those entities led to elaborating the joint term of 
CAPE (locus MIM no. 607211) [50].

Adaptor Protein Complex 1 Subunit σ1C Deficiency AP1S3 
gene encodes adaptor protein complex 1 subunit σ1C [81]. 
It is a conservative heterotetramer protein participating in 
intracellular vesicular trafficking. Deficiency of AP1S3 was 
shown to cause abnormal TLR3 expression and accumula-
tion of p62 protein leading to disruption of autophagy [82, 
82]. As an effect, NF-κB activation and upregulation of 
IL-36 are seen.

AP1S3 mutations were detected in patients with general-
ized pustular psoriasis, palmoplantar pustulosis, and acro-
dermatitis continua (OMIM no. 616106) [81–83]. Although 
relatively infrequent, they might coexist with other muta-
tions (e.g., IL36RN, CARD14) and complicate the genetic 
background of pustular psoriasis. It seems that AP1S3 defi-
ciency is the most closely associated with palmoplantar 
pustulosis [84].

Diseases Caused by Other Miscellaneous Mechanisms

Mevalonate Pathway Abnormalities The mevalonate path-
way is involved in the biosynthesis of isoprenoids [85]. The 
latter constitute precursors of various substances involved in 
cell physiology, e.g., quinones acting as a part of the electron 
transport chain, sterols forming cell membrane components, 
and carotenoids [86]. Consequently, the processes of cell 
growth, division, and differentiation affecting keratinocytes 
are largely attributed to the mevalonate pathway [87]. Addi-
tionally, deficiency of geranyl pyrophosphate constituting a 
product of the mevalonate pathway possibly leads to inflam-
masome activation [88]. This mixed influence on the process 
of keratinization and spontaneous inflammation led to pro-
pose porokeratosis associated with the mevalonate pathway 
abnormalities (MVK, OMIM no. 175900; PMVK, OMIM no. 
175800; MVD, OMIM no. 614714; and FDPS mutations, 
OMIM no. 616631) as a member of AiKDs [49].

Janus Kinase 1 Hyperactivity The Janus kinase/signal trans-
ducers and activators of transcription (JAK/STAT) pathway 
is a ubiquitous trait present in all human cells [89]. Trig-
gering the surface receptors leads to JAK phosphorylation 
and subsequent activation of STATs. The latter modifies the 
transcription of genes associated with diverse physiological 
functions, including inflammation. There are 4 isoforms of 
JAK: JAK1, JAK2, JAK3, and TYK2 [90].

JAK1 is associated with signaling via the interferons, IL-2, 
IL-6, and IL-10. JAK1-activating mutations were detected 
in hematologic malignancies, such as acute lymphoblastic 
leukemia [91]. Based on a recent report, heterozygous JAK1 
mutations were also implicated in triggering superficial cuta-
neous inflammation and aberrant keratosis [92].

Proteasome Maturation Protein Deficiency Proteasome 
maturation protein (POMP) is encoded by the POMP gene 
[93]. The function of POMP is associated with the matura-
tion of both proteasomes and immunoproteasomes. It is a 
ubiquitous protein showing expression across all the lay-
ers of the epidermis. Decreased assembly of proteasomes 
associated with POMP abnormalities results in the unfolded 
protein response and causes endoplasmic stress [94]. Exces-
sive endoplasmic stress can induce aberrant keratinocyte dif-
ferentiation and apoptosis coexisting with mild superficial 
lymphohistiocytic infiltrates in histology, thereby fulfilling 
the criteria of AiKDs. The pathogenic role of endoplasmic 
stress has been reported in several dermatoses, including 
psoriasis, reflecting new pathways leading to autoinflam-
mation and the presence of typical cutaneous findings of 
AiKDs [95].

Epidermal Growth Factor Receptor Deficiency Epidermal 
growth factor is a molecule orchestrating epidermal matura-
tion and differentiation. It is bound by the epidermal growth 
factor receptor (EGFR), whose activation decreases the 
expression of the enzymes responsible for lipid matrix bio-
synthesis, influences the cornified envelope formation, and 
downregulates tight junction proteins [96]. EGFR deficiency 
further causes the upregulation of phospholipase A2, NF-κB, 
and c-Jun N-terminal kinase 1 stimulating the superficial der-
mal inflammation [97]. Therefore, it may result in developing 
a classical AiKD phenotype with concomitant renal and car-
diovascular defects reported across the literature [98].

Clinical Approach to Autoinflammatory 
Keratinization Diseases

As in other autoinflammatory syndromes, establishing the 
diagnosis of AiKD can be challenging. In most cases of 
inflammatory keratinization diseases, there is no monogenic 
mutation resulting in the hyperactivation of innate immunity. 
At the same time, the clinical features may imitate conven-
tional inflammatory keratinization diseases. Therefore, we 
propose a clinical approach to the diagnosis and manage-
ment of AiKDs illustrated in Fig. 2.

First, autoinflammation should be suspected in inflam-
matory keratinization diseases whenever there is a history of 
early onset and familial incidence [48]. This should also be 
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Fig. 2  Suggested diagnostic approach to the autoinflammatory 
keratinization diseases. This figure shows the most significant 
disorders. ACH—acrodermatitis continua of Hallopeau; AGEP—
acute generalized exanthematous pustulosis; DIRA—deficiency of 

the interleukin-1-receptor antagonist; GPP—generalized pustular 
psoriasis; NADED—NLRP1-associated autoinflammatory disease   
with epithelial dyskeratosis; PRP—pityriasis rubra pilaris
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considered in the setting of concomitant systemic syndromes 
such as recurrent fever, arthritis, and cholangitis. However, 
by definition of AiKDs and in contrast to other autoinflam-
matory diseases, the inflammation is primarily present in 
the epidermis and upper dermis [5]. Hence, extracutaneous 
features involving the nervous system, bones, and gastro-
intestinal tract are atypical findings. This also explains the 
difference in the morphology of skin lesions between AiKDs 
and other autoinflammatory syndromes. Most autoinflam-
matory diseases characterized by deep cutaneous inflamma-
tion can be classified into clinico-pathological patterns such 
as urticarial dermatosis, neutrophilic dermatosis, or granulo-
matosis [99]. In contrast, AiKDs present with hyperkeratotic 
and/or pustular lesions reflecting the superficial inflamma-
tion altering the keratinization process.

Once AiKD is considered in the differential diagnoses, the 
history and physical examination should be detailed to deter-
mine specific features of the analyzed case. The morphology, 
location, and triggers of cutaneous lesions should be carefully 
studied, along with the possible pattern of inheritance. In most 
cases, a skin biopsy is recommended to confirm the diagnosis 
of a suspected inflammatory disorder of keratinization. These 
established patterns of clinical and histological symptoms 
should be complemented by genetic studies.

Identification of causative mutations can tailor the treat-
ment regimen to the particular case. In contrast to classic 
systemic treatments such as methotrexate and oral retinoids, 
most AiKDs will respond to pharmaceuticals targeting the 
IL-1, IL-12/IL-23, or IL-17 pathways [48, 50]. For example, 
favorable effects of treatment with IL-1 receptor antagonist 
anakinra were reported in a patient with generalized pustu-
lar psoriasis associated with IL36RN mutation [100]. The 
IL-1R blockade is not commonly used in classic forms of 
inflammatory keratinization diseases. Hence, effort should 
be made to establish the possibility of expanding the avail-
able therapeutic options and improve the management of 
patients with AiKDs.

Below we provide a brief, clinically oriented description 
of the most significant AiKDs (Tables 1 and 2).

Generalized and Localized Variants of Pustular Psoriasis

Clinical Features

Psoriasis is a frequent inflammatory keratinization disease 
characterized by a chronic course and a significant negative 
effect on the quality of life [47]. It is estimated that the prev-
alence of psoriasis amounts to 3% of the general population 
[47, 101]. Psoriasis can be divided into two primary sub-
types: the more frequent nonpustular type (approx. 90% of 
cases) presenting with papulosquamous lesions and the less 
prevalent pustular type. The spectrum of pustular psoriasis 
involves generalized forms (the acute von Zumbusch variant 

(Fig. 3), impetigo herpetiformis, annular pustular psoriasis, 
and juvenile pustular psoriasis) and localized forms (pal-
moplantar pustulosis (Fig. 4) and acrodermatitis continua 
of Hallopeau (Fig. 5). Most pustular psoriasis subtypes can 
present as AiKD [5].

The diagnosis of psoriasis is clinical [101]. In doubtful 
cases, histopathological examination can be performed to 
confirm the clinical suspicion. According to the name, the 
pustular forms of psoriasis are characterized by the forma-
tion of sterile pustules. The von Zumbusch variant is typi-
cally accompanied by systemic symptoms (fever, malaise, 
uveitis, osteoarthritis, cholangitis) and elevated biomark-
ers of systemic inflammation. It is also a potentially lethal 
condition, threatening with quick progression of cutane-
ous lesions into erythroderma. The confluence of pustular 
lesions may result in epidermal detachment causing electro-
lyte abnormalities, increased risk of infection, and other seri-
ous complications [102]. The localized variants are rarely 
associated with systemic manifestations but tend to present 
a protracted course [101].

Impetigo herpetiformis is considered to be a form of GPP 
developing during pregnancy [65, 102]. In most cases, the 
lesions begin during the third trimester. Similarly to GPP, 
impetigo herpetiformis is a potentially life-threatening con-
dition. Apart from the risk to the mother, it is associated 
with possible fetal distress resulting from placental insuffi-
ciency [103]. Hence, the prompt diagnosis and treatment are 
essential to prevent severe maternal and fetal complications.

Palmoplantar pustulosis constitutes a localized variant 
of psoriasis affecting the palms and/or the soles [104]. The 
clinical picture involves persistent eruptions of sterile pus-
tules superimposed on an erythematous and desquamative 
background. The prevalence of PPP is estimated at up to 
0.05% of the general population and is slightly higher in 
women [105]. The lesions may coexist with typical lesions 
of psoriasis vulgaris in other locations and nail changes 
(onycholysis, pitting, nail destruction) [106].

Acrodermatitis continua of Hallopeau (ACH) is a very 
rare form of localized pustular psoriasis distinguished by 
the presence of lesions on the distal digits of the hands and/
or the feet and involvement of the nail apparatus resulting 
in onychodystrophy (Fig. 5) [102, 107]. It may also be asso-
ciated with osteitis of the distal phalanges. ACH has been 
reported in patients suffering from occasional GPP flare-
ups, which supports the view that those two diseases belong 
to the common spectrum [102].

Acute generalized exanthematous pustulosis (AGEP) is 
the main differential diagnosis of GPP [108]. AGEP is a 
widespread pustular drug reaction driven by drug-specific 
CD4 and CD8 lymphocytes [109]. The skin lesions have 
an almost identical morphology and progression as in GPP. 
Small pustules superimposed on an erythematous base are 
initially seen in the skin folds and may quickly spread to 
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other skin areas. AGEP can be associated with systemic 
symptoms (fever, malaise) and laboratory abnormalities 
including elevated C-reactive protein, hypocalcemia, hypoal-
buminemia, and leukocytosis (with concomitant eosinophilia 
in approximately 30% of cases) [109]. The offending drugs 
are usually administered 48 h prior to the onset of symptoms. 
Identification of the common genetic background of GPP 
and AGEP raised controversies about whether AGEP is not 
indeed a form of drug-induced GPP [66].

Another differential diagnosis of GPP is the subcorneal 
pustular dermatosis (SPD), also known as the Sneddon-
Wilkinson syndrome [110]. SPD is characterized by the 
presence of flaccid hypopyon pustules with annular distri-
bution. Similarly to GPP and AGEP, the lesions tend to arise 
in the intertriginous areas and may progress to involve the 
trunk and extremities. SPD tends to run a relatively benign 

and self-limiting course. Systemic symptoms are infre-
quent. It usually begins in adulthood, but several cases of 
childhood-onset cases have also been reported [111, 112]. 
Clinically, SPD may imitate IgA pemphigus, but it is differ-
entiated by negative direct and indirect immunofluorescence 
studies [113]. It was shown that SPD may coexist with a 
number of other disorders, involving connective tissue dis-
eases (rheumatoid arthritis, systemic lupus erythematosus) 
and hematologic disorders (IgA monoclonal gammopathy, 
multiple myeloma) [110]. To date, the pathogenesis of SPD 
is unknown.

Histology

The histological features of pustular psoriasis involve the 
presence of Munro microabscesses and spongiform pustules 

Fig. 3  Sterile pustules in generalized pustular psoriasis. a, b Histol-
ogy shows Munro microabscesses and spongiform pustules of Kogoj 
c occasionally accompanied by typical features of psoriasis vulgaris 

(acanthosis, confluent parakeratosis, elongation of rete ridges, and 
dilation of papillary blood vessels)

Fig. 4  Palmoplantar pustulosis. Sterile pustules limited to palms (a) and/or soles (b) which may rupture and produce fissures and erosions, 
thereby impairing fine motor skills and walking
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of Kogoj (Fig. 3c) [101]. The lesions can coexist with fea-
tures of psoriasis vulgaris (acanthosis, confluent parakera-
tosis, elongation of rete ridges, and dilation of papillary 
blood vessels) or be present in the setting of otherwise 
unchanged epidermis.

Genetic Background

As discussed previously, autoinflammatory variants of gener-
alized and localized pustular psoriasis can result from several 
pathogenetic pathways, i.e., IL36RN loss-of-function (OMIM 
no. 605507), CARD14-activating (OMIM no. 602723), and 
AP1S3 loss-of-function (OMIM no. 616106) pathogenic vari-
ants. The IL-36Ra deficiency results from biallelic loss of 
function variants in IL36RN [61]. The patients with IL-36Ra 
deficiency present a more severe phenotype and have an ear-
lier onset of GPP compared to those with CARD14 variants 
(Fig. 6) [108]. CARD14-activating variants stimulate the tran-
scription of pro-inflammatory factors in the NF-κB-dependent 
pathway. This can lead to the onset of pustular psoriasis in 
patients with concurrent psoriasis vulgaris. Other clinical 
features involve early age of onset; prominent involvement of 
the cheeks, chin, and ears; family history of psoriasis or PRP; 
and minimal improvement using classic therapies of psoria-
sis [50]. Lastly, AP1S3 variants seem most closely associated 
with palmoplantar pustulosis [84].

Recently, the role of IL36RN variants was shown to 
underlie most cases of impetigo herpetiformis particularly in 
the East Asian populations [114]. This supports the hypoth-
esis on a common pathogenetic background of impetigo 
herpetiformis and GPP. IL36RN variants were also detected 

in patients with AGEP, substantiating the already difficult 
differentiation with GPP [118].

Treatment

GPP is an infrequent entity. Therefore, large randomized 
controlled trials assessing the efficacy of different treat-
ment modalities are lacking [101, 119]. There is even less 
data regarding autoinflammatory cases of GPP caused by 
IL36RN and CARD14 mutations.

Generally, it is recommended to treat acute severe GPP 
with cyclosporine or infliximab [120]. In more chronic cases, 
systemic retinoids (acitretin) and methotrexate can be con-
sidered. However, patients with autoinflammatory forms of 
pustular psoriasis may be recalcitrant to standard treatment 
modalities [50]. Furthermore, TNF inhibition with infliximab 
was shown to induce paradoxical palmoplantar pustulosis in 
a subset of patients with psoriasis vulgaris [121]. Therefore, 
off-label use of other biologics should be considered.

Based on experimental data, patients with IL36RN 
variants could benefit from the blockade of IL-36R 
signaling. This assumption was recently tested in a 
proof-of-concept study of spesolimab, an anti-IL-36R 
antibody which showed high efficacy after single-dose 
administration [122]. Spesolimab has been recently 
approved by the US Food and Drug Administration and 
the European Medicines Agency for the treatment of GPP 
flares in adults [123, 124]. Imsidolimab is another biologic 
targeting IL-36R under investigation in GPP [125]. In a 
clinical trial of palmoplantar pustulosis, imsidolimab 
failed to meet the primary outcomes.

Fig. 5  Acrodermatitis continua of Hallopeau. Pustular lesions occupying the distal phalanges of the hands (a) and/or the feet (b). There is a 
prominent involvement of the nail apparatus resulting in onychodystrophy
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Considering that both IL-36Ra deficiency and CARD14 
hyperactivation induce inflammatory cascade involving Th1 
and Th17 molecules, inhibition of those signals could be asso-
ciated with favorable clinical outcomes. Indeed, patients with 
those variants were shown to improve after administration of 
biologics targeting IL-12/IL-23 (ustekinumab), IL-17 (secuki-
numab), and TNF (etanercept, infliximab, adalimumab) [119].

With respect to impetigo herpetiformis, most recent reports 
of cases refractory to conventional treatment (i.e., topical 
steroids, cyclosporine, and phototherapy) showed a favorable 
response to secukinumab [115–117]. TNF inhibitors, particu-
larly certolizumab for its safety in pregnancy, also seem to be 
a potentially beneficial treatment strategy [102].

It is important to mention that systemic steroids can 
induce GPP exacerbations, especially if rapidly tapered. 
However, some data support their cautious use as adjuvant 
treatment in cases associated with systemic symptoms or 
arthritis. For example, the Japanese guidelines for the man-
agement of GPP advocate oral steroids particularly in preg-
nancy, during which many drugs are contraindicated because 
of their teratogenic potential [126].

Deficiency of Interleukin‑1 Receptor Antagonist (DIRA)

Clinical Features

DIRA is a rare, severe disorder associated with uncontrolled 
signaling via the IL-1R due to the deficiency of its negative 
regulator, the IL-1Ra [67, 68, 127].

DIRA usually starts in the neonatal period and has a 
dramatic course resulting in a mortality of up to 30% in 
untreated infants [127]. The clinical features involve a pus-
tular rash imitating GPP, aseptic multifocal osteomyelitis, 
thrombotic events, and central nervous system vasculitis [67, 
127]. In longstanding, non-treated disease hyperostosis may 
be seen. Additional disease stigmata involve elevation in 
acute phase proteins and pathergy.

Histology

The findings on the cutaneous biopsy are identical to GPP. 
However, the inflammatory infiltrates may contain even 
larger amounts of neutrophils [67, 128].

Fig. 6  Generalized pustular lesions in a child with confirmed deficiency of the IL-36 receptor antagonist (DITRA)
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Genetic Background

DIRA (OMIM no. 612852) is caused by biallelic loss-of-
function pathogenic variants in IL1RN [127]. To date, 10 
different variants have been reported. In the largest case 
series described to date, Aksentijevich et al. [129] presented 
1 patient from Newfoundland who was homozygous for a 
deletion of 2 bp (c.156_157delCA) causing a frameshift 
mutation, three patients from families of Dutch ancestry 
homozygous for a nonsense mutation affecting the amino 
acid at position 77 (nucleotide mutation, c.229G → T; result-
ant amino acid mutation, E77X), two patients from a con-
sanguineous Lebanese family homozygous for a nonsense 
mutation (c.160C → T), and one patient from Puerto Rico 
homozygous for a deletion of approximately 175 kb on chro-
mosome 2q affecting six interleukin-1-related genes. Report-
edly, the symptoms varied in terms of pustular rash severity 
and internal organ involvement even in patients with the same 
genotypes, which underscores the probable effect of environ-
mental factors on the genotype-phenotype correlation.

Treatment

The successful treatment of DIRA can be achieved by 
blocking the IL-1 inflammatory pathway. Among the pos-
sible treatment options are anakinra (recombinant IL-1Ra), 
canakinumab (an anti-IL-1β monoclonal antibody), and 
rilonacept (a soluble decoy IL-1R) [68, 130–132]. Treatment 
with those agents was shown to be effective in improving 
the balance between pro- and anti-inflammatory signaling 
via IL-1R and constricting the autoinflammatory cascade 
in DIRA.

Nucleotide‑Binding Oligomerization Domain‑Like 
Receptor Containing a PYRIN Domain 1 
(NLRP1)‑Associated Autoinflammatory Disease With 
Epithelial Dyskeratosis (NADED)

As discussed above, NLRP1 inflammasomes are key struc-
tures orchestrating the immune response in the epithelia 
[133]. Akiyama et  al. distinguished familial keratosis 
lichenoides chronica (KLC) as the prototypic AiKD asso-
ciated with activating mutations in NLRP1 [5]. However, 
more cases of NLRP1 hyperactivation characterized pri-
marily by skin and mucosal inflammation and variable 
systemic involvement have been described (Table  2). 
Similarities in terms of clinical presentation, histology, 
and pathogenesis justify expanding this group and distin-
guishing it as a separate endotype of AiKDs. Therefore, we 
propose a joint term of NLRP1-associated autoinflamma-
tory disease with epithelial dyskeratosis (NADED) which 
encompasses the whole spectrum of AiKDs secondary to 
NLRP1 hyperactivation.

Clinical Features

The onset of NADED is usually during infancy or early 
childhood [18, 74–76, 133–135]. The patients may present 
cutaneous, oral, laryngeal, and/or ocular symptoms.

Cutaneous lesions vary in size from small papules to large 
crateriform plaques resembling keratoacanthomas [133, 135, 
136]. The lesions are hyperkeratotic and may partially resolve 
with scarring (Fig. 7a). Recurrent erythematous suppurative 
papules and plaques have also been described. The Koebner 
phenomenon, e.g., following cutaneous biopsies, has been 
reported [134]. The lesions favor the trunk, buttocks, and 
extremities and usually spare the face and head area. They 
may be arranged in a pattern distribution (linear, reticulate) 
[137]. The patients may complain of itching or pain.

Palmoplantar punctate or papular hyperkeratotic lesions 
are a typical finding [74–76, 135]. In several pedigrees, 
recurrent, spontaneous formation of well-differentiated 
squamous cell carcinomas with a surprising tendency for 
self-resolution was reported [136]. Hypertrophic nail defor-
mation, dyshidrosis, atrophoderma vermiculata, and severe 
atopy may also be seen with variable frequency [136, 
138–142]. Based on available data, it seems that FKLC is 
indeed a mild form of NADED.

Apart from cutaneous lesions, the patients may also 
develop mucosal involvement [18, 75, 76, 133, 134]. Ocular 
symptoms are reported most frequently and include pho-
tophobia, conjunctivitis, corneal dyskeratosis, keratopa-
thy with neovascularization, and, in the most severe cases, 
complete corneal opacification [18, 75, 76, 135, 140]. Oral 
involvement can manifest with leukoplakia, swelling of the 
gingival mucosa, dental dysplasia, and alveolysis [75, 134, 
135, 143, 144]. The latter may lead to early tooth loss. Fur-
thermore, patients may present multiple laryngeal papillo-
mas and dysphonia [74, 142, 145].

NADED symptoms are usually limited to the epithelia. 
However, some patients, particularly those with mutations 
within the FIIND and linker domains, present systemic 
symptoms [133, 134]. These involve recurrent fever, oli-
goarticular arthritis, uveitis, growth retardation, hepatosple-
nomegaly, autoimmune hemolytic anemia, and thyroiditis. 
Laboratory tests may reveal elevated CRP, low vitamin A, 
and anti-nuclear and antiparietal antibodies.

Histology

Reported histological features of the cutaneous and mucosal 
lesions in NADED were quite uniform across different stud-
ies [76, 133, 134]. Smaller papular lesions tend to show 
unspecific findings such as irregular acanthosis, orthohy-
perkeratosis interrupted by focal parakeratosis, hypergran-
ulosis, and variable lichenoid infiltrate along the dermo-
epidermal junction. Larger plaque and crateriform lesions 
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show massive orthohyperkeratosis with focal parakeratosis, 
acanthosis, and numerous dyskeratotic cells with a tendency 
to replace the granular layer in some specimens (Fig. 7b). 
In cases with oncogenic transformation, typical features of 
well-differentiated squamous cell carcinoma may be seen 
[136]. Mucosal lesions show comparable features, i.e., acan-
thosis, focal parakeratosis, dyskeratosis, and primarily lym-
phocytic inflammatory infiltrate in the corium and lamina 
propria [74, 135].

Genetic Background

To date, more than 30 cases of NADED have been 
described worldwide [74–76, 133–135]. Reported modes 
of inheritance involve autosomal recessive, autosomal 
dominant, or autosomal codominant (Table 2). The under-
lying mutations have been mapped to PYD, FIIND, LRR, 
and linker domains of NLRP1, most likely resulting in the 
disruption of the auto-inhibitory domain of NLRP1 [18]. 
A prominent intrafamilial clinical heterogeneity reported 
in NADED suggests the effect of largely unknown genetic, 
epigenetic, and environmental modifying factors. This was 
partly elucidated by Li et al. [76] who described two sib-
lings sharing the same NLRP1 gene variant resulting in 
a p.Leu813Pro substitution of the LRR domain who pre-
sented significantly different phenotypes. The younger sis-
ter had generalized inflammatory nodules with keratotic 
plugs reminiscent of multiple keratoacanthomas, while the 
older sister showed lesions compliant with familial kera-
tosis lichenoides chronica. The authors attributed those 
differences to additional genomic variants associated with 
atopy and psoriasis and denoted IL-5 and IL-17 as the most 

probable cofactors of severe cutaneous inflammation in the 
younger sister.

Treatment

Currently, there are no targeted treatment options for 
NADED. Steroids, retinoids, and TNF inhibitors were gen-
erally reported as unsuccessful [133, 135]. Treatments tar-
geting IL-1 were used in four cases yielding mixed results. 
Systemic anakinra, later switched to canakinumab, consid-
erably improved systemic symptoms in one patient [133]. 
In another study, a combination of systemic canakinumab 
and eye drops with anakinra showed favorable outcomes 
with respect to oral and ocular involvement [75]. However, 
another study reported a lack of effect of canakinumab in 
two siblings with NADED [76].

Pityriasis rubra pilaris

Clinical Features

Pityriasis rubra pilaris is a papulosquamous inflammatory der-
matosis sharing certain pathogenetic and clinical similarities 
with psoriasis [32, 33]. PRP is an infrequent entity, but its exact 
incidence is uncertain. It is estimated that PRP is diagnosed in 
approximately 1 in 5000–50,000 adult patients and 1 in 500 pedi-
atric patients presenting with skin disease [146]. PRP is charac-
terized by hyperkeratotic papules, which tend to coalesce into 
diffuse orange-red plaques (Fig. 8a). A hallmark of PRP involves 
the presence of small areas of non-involved skin referred to as 
“islets of sparing” in between those plaques [147]. Another char-
acteristic feature is the presence of palmoplantar keratoderma.

Fig. 7  NLRP1-associated autoinflammatory disease with epithelial 
dyskeratosis (NADED). The patient presented dyskeratotic cutaneous 
lesions in the form of crateriform plaques, which resolved with scar-

ring (a). Histology showed numerous dyskeratotic cells and acantho-
sis (b). Photos by courtesy of Dr. Felipe Velásquez
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In 1980, Griffiths proposed a classification of PRP into 
five subtypes adopting the morphology of skin lesions, age 
of onset, and prognosis as the primary criteria [146]. Among 
those subtypes, type V PRP represents the atypical juvenile type 
comprising most cases of familial PRP and around 5% of total 
PRP cases. Type V PRP is characterized by an early onset and 
chronic, recalcitrant course. Follicular hyperkeratosis and ich-
thyosiform dermatitis are common findings, while some patients 
also exhibit sclerodermatous changes in their hands and feet.

Histology

Histology of PRP typically demonstrates psoriasiform 
hyperplasia, follicular plugging, lack of epidermal micro-
abscesses, and intact granular layer or hypergranulosis, 
with the latter three features differentiating it from psoria-
sis (Fig. 8c) [147, 148]. Additionally, instead of confluent 
parakeratosis, PRP shows a vertical and horizontal pattern 
of orthokeratosis alternating with spotty parakeratosis. In 

the papillary dermis, vascular ectasia is usually seen, albeit 
not as prominently as in psoriasis. Mild dermal perivascular 
lymphohistiocytic infiltrate can be present.

Genetic Background

Most cases of PRP are not associated with a monogenic 
autoinflammatory predetermination. Familial PRP is attrib-
uted to gain-of-function variants in CARD14 which results 
in NF-κB activation and transcription of pro-inflammatory 
cytokines, primarily IL-17, IL-22, and IL-23 [78]. Analysis 
of inheritance in the initial report revealed an incomplete 
penetrance in some of the analyzed families, which implies 
that the phenotypic expression of these causative variants 
could be modified epigenetically or by environmental fac-
tors. In the skin, NF-κB promotes keratinocyte viability dur-
ing differentiation [149]. In line with that, mice with hyper-
activation of NF-κB develop generalized papulosquamous 
skin lesions.

Fig. 8  Pityriasis rubra pilaris and CARD14-associated papulos-
quamous eruption (CAPE). Patient with pityriasis rubra pilaris pre-
sented typical diffuse hyperkeratotic papules which progressed to 
erythroderma with characteristic islets of sparing, i.e., foci of unin-

volved skin (a). The second patient with CARD14-activating muta-
tion showed lesions mimicking psoriasis (b). Histology of pityriasis 
rubra pilaris revealing follicular plugging, preserved granular layer or 
hypergranulosis, and alternating areas of ortho- and parakeratosis (c)
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Treatment

Familial PRP and psoriasis due to CARD14 variants form 
one spectrum known as CARD14-associated papulosqua-
mous eruption (CAPE) (Fig. 8b) [50]. The shared molecu-
lar background ensues analogic treatment strategies. Classic 
treatments such as acitretin and methotrexate may be associ-
ated with lower success rates than in sporadic PRP [150].

Transcriptional responses of NF-κB are induced primar-
ily by TNF. However, this pathway seems less suitable for a 
therapeutic target in case of sporadic NF-κB activation due 
to CARD14 mutations [150, 151]. Indeed, TNF inhibitors 
showed unsatisfactory therapeutic effects in CAPE. Most 
credible data on targeted treatments point to the beneficial 
effect of ustekinumab [50]. Case reports further suggest 
a possible role of IL-17 inhibition with secukinumab and 
ixekizumab [152, 153].

Porokeratosis

Clinical Features

Porokeratosis refers to a heterogenous group of keratini-
zation diseases manifesting by single or multiple atrophic 
plaques surrounded by a hyperkeratotic ridge-like border 
[87, 154]. It is an infrequent entity characterized by a slight 
male predominance. The lesions of porokeratosis favor the 
extremities. Importantly, long-standing porokeratosis is a 
risk factor for the development of cutaneous cancers.

The common clinical variants are grouped into local-
ized (classical porokeratosis of Mibelli, linear porokeratosis, 
punctate porokeratosis, solar facial porokeratosis, and geni-
tal porokeratosis) and generalized (disseminated superficial 
porokeratosis, disseminated superficial actinic porokeratosis, 

and disseminated palmoplantar porokeratosis) [154]. Cur-
rently, the crucial differentiation between spontaneous and 
AiKD porokeratosis cases is based on the presence or absence 
of the segmental or mosaic superimposed distribution (Fig. 9a) 
[155–157]. In their paper proposing porokeratosis as an AiKD, 
Takeichi and Akiyama exemplified the rare eruptive pruritic 
papular porokeratosis [87]. It is characterized by suddenly 
appearing itchy lesions that resolve spontaneously within 
months with post-inflammatory hyperpigmentation. Descrip-
tion of all the variants exceeds the scope of this review.

Histology

The most typical histologic feature of porokeratosis is the 
presence of cornoid lamellae (Fig. 9b) [49, 154]. These 
structures can be described as tightly packed thin columns 
of parakeratotic cells. Cornoid lamellae overlie foci of 
hypogranulosis and vacuolated keratinocytes. These features 
are accompanied by the occasional presence of dyskeratotic 
keratinocytes below the spinous layer and superficial dermal 
inflammation of variable density.

Genetic Background

A recent study analyzing seven families with porokeratosis 
revealed novel causative genetic variants in the mevalonate 
pathway [158]. The genes MVK, MVD, PMVK, and FDPS 
encode mevalonate kinase, mevalonate decarboxylase, phos-
phomevalonate kinase, and farnesyl diphosphate synthase, 
respectively [154, 159]. They are involved in the synthesis 
of isoprenoids constituting essential intermediate products of 
cholesterol and sterol biosynthesis. Downregulation of iso-
prenoids affects cell growth and differentiation. Porokeratosis 

Fig. 9  Linear porokeratosis—segmental hyperkeratotic plaques in a child (a). In histology, the most typical phenomenon is the presence of cor-
noid lamellae, i.e., thin columns of parakeratotic cells overlying foci of hypogranulosis and vacuolated keratinocytes (b)
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(OMIM nos. 175900; 175800; 614714; 616631) is an auto-
somal dominant disorder developing as a result of second-
hit somatic mutation causing loss of heterozygosity [160]. 
This process occurs in carriers of germline dominant muta-
tion inherited from one of the parents when another acquired 
mutation affecting wild-type allele appears solely in the 
keratinocytes [159]. The latter is mostly attributed to UVA-
induced mutagenesis, which explains the photodistribution of 
lesions in most cases of porokeratosis. As MVK is expressed 
not only in keratinocytes, but also leukocytes, loss-of-function 
mutations in both alleles of this gene can result in an onset of 
systemic diseases, such as the hyper-IgD syndrome (OMIM 
no. 260920) presenting with cutaneous lesions, recurrent 
fever, lymphadenopathy, hepatosplenomegaly, and arthralgia 
[161]. Hyper-IgD most frequently presents with erythematous 
macules and papules that do not consistently show features of 
aberrant keratinization in histopathology [162].

Treatment

Porokeratosis usually runs a protracted and recalcitrant 
course [154]. To date, no causative treatment normal-
izing the mevalonate pathway has been elaborated. 
Common treatment modalities involve topical agents 
(steroids, retinoids, imiquimod, 5-fluorouracil) and sys-
temic retinoids [154]. Procedures such as surgical exci-
sion, cryotherapy, and laser therapy can be considered. 
Recently, several reports showed promising results of 
combination creams containing cholesterol with simv-
astatin or lovastatin [160, 163–166].

JAK1‑Associated Autoinflammatory Keratinization 
Disease with Hepatitis and Autism

Clinical Features

Recently, a case report of a child with early-onset ichthyotic 
eczema coexisting with eosinophilia, liver abnormalities, 
growth retardation, and autism was published [92]. Quickly 
progressing hepatic cirrhosis produced the necessity to per-
form liver transplantation at the age of 3 years. Furthermore, 
the patient presented growth retardation, moderate motor 
impairment, learning disability, and hyperlipidemia. Similar 
cutaneous findings were also reported in other studies ana-
lyzing the role of increased JAK1 activation, underlying a 
novel potential pathway of AiKDs with associated systemic 
symptoms [167–169].

Histology

Skin pathology showed compact acanthosis, hyperkerato-
sis spongiosis, and superficial lymphocytic infiltrate [92]. 
Hepatic biopsy revealed features of cirrhosis.

Genetic Background

A case of JAK1-associated disorder first denoted as an 
autoinflammatory keratinization disease was described 
by Takeichi et al. and was due to a de novo heterozygous 
c.1786C > G mutation in the JAK1 gene [92]. As men-
tioned above, the patient also showed eosinophilia and 
hepatic and central nervous system involvement. Five 
years earlier, a family with heterozygous mutation in 
c.1901C > A JAK1 variant presenting widespread lesions 
reminding atopic dermatitis, pronounced eosinophilia, 
eosinophilic infiltration of the liver and gastrointesti-
nal tract, and liver cysts had been described (OMIM no. 
618999) [169]. Strikingly similar symptoms were also 
reported in another patient described by Gruber et  al. 
who harbored a de novo heterozygous c.2108 G > T JAK1 
mutation [168]. Therefore, it seems that regardless of the 
particular variant, JAK1-activating mutations result in 
superficial inflammatory lesions and eosinophilia asso-
ciated with internal organ involvement (particularly the 
gastrointestinal tract).

Treatment

The patient described by Takeichi et al. received no tar-
geted treatment and died of an unknown cause at the age 
of 22 years [92]. Based on the experimental data, it is 
known that increased JAK1 activity results in the upregu-
lation of the TNF, IFN-γ, and IL-6 signaling pathways. 
Indeed, Del Bel et al. reported favorable treatment out-
comes of ruxolitinib [169]. Therefore, selective JAK1 
inhibitors (e.g., upadacitinib) and anti-TNF biologics 
could prove successful in the treatment of similar autoin-
flammatory syndromes [92].

Keratosis Linearis with Ichthyosis Congenita 
and Sclerosing Keratoderma Syndrome

Clinical Features

Keratosis linearis with ichthyosis congenita and scle-
rosing keratoderma (KLICK) syndrome (OMIM no. 
601952) is an extremely rare autosomal recessive skin 
disorder. Patients present palmoplantar keratoderma, 
hyperkeratotic plaques (often in a linear distribution), 
ichthyosiform scaling, circular constrictions around the 
fingers, and multiple linear papular lesions in the arm 
folds and on the wrists [94]. Additionally, an atypical 
case of KLICK has been recently published [170]. The 
patient presented widespread erythematous lesions that 
were well demarcated and nonmigratory as well as dif-
fuse thin white scaling.
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Histology

Cutaneous biopsy revealed irregular hyperplasia, hyper-
granulosis, superficial hyperkeratosis, parakeratosis, and 
superficial lymphohistiocytic infiltrates [94].

Genetic Background

To date, all cases of KLICK syndrome have been linked to 
homozygous 1-bp deletion in the 5′ untranslated region of 
the POMP gene [94]. POMP encodes a proteasome matura-
tion protein whose downregulation likely results in the accu-
mulation of undegraded ubiquitinylated proteins, thereby 
leading to cellular stress and abnormal keratinization. So 
far, it remains unknown as to why one of the cases described 
by Onnis et al. [170] presented with atypical erythematous 
lesions reminiscent of erythrokeratoderma.

Treatment

Based on the scarce data, it seems that treatment with reti-
noids, mainly acitretin or etretinate, could alleviate the 
symptoms of KLICK [94].

Epidermal Growth Factor Receptor Deficiency

Clinical Features

EGFR deficiency (OMIM no. 131550) was first described 
in 2014 as a cause of papulo-pustular rash, loss of scalp hair, 
and trichomegaly in a premature infant of Polish-Roma ori-
gin. The child also suffered from gastrointestinal and respira-
tory symptoms (watery diarrhea, respiratory difficulties, and 
bronchiolitis) and died of infection and electrolyte imbalance 
at the age of 2.5 years [171]. The same etiology was demon-
strated in two siblings with skin thinning, dryness, ichthyotic 
lesions, absence of subcutaneous fat, and alopecia of the scalp 
and eyebrows [172]. The children also showed severe gas-
trointestinal and respiratory abnormalities and died in early 
infancy. These reports were followed by a series of 18 EGFR 
deficiency cases presenting similar clinical features [98]. At 
the time of publication, only one patient survived until adoles-
cence. Cutaneous symptoms were described as ichthyosiform 
dermatitis with hyperkeratinization and formation of chronic 
papules and pustules.

EGFR deficiency should be differentiated with neona-
tal inflammatory skin and bowel disease type 1 resulting 
from homozygous mutations of ADAM17 [173, 174]. This 
condition also presents with neonatal-onset psoriasiform 
erythroderma, diarrhea, short or broken hair, and wiry or 
disorganized eyelashes. Clinical similarities between EGFR 

deficiency and neonatal inflammatory skin and bowel dis-
ease type 1 could be attributed to the fact that ADAM17 
converts several molecules, including EGF, TNF, and trans-
forming growth factor α (TGF-α). Therefore, described 
symptoms should prompt genetic screening for both 
ADAM17 and EGFR.

Histology

Cutaneous biopsies performed in several confirmed EGFR 
cases revealed diffuse parakeratosis, mild acanthosis, superfi-
cial perivascular and perifollicular lymphocytic infiltrate, der-
mal atrophy, and wiry-appearing collagen fibers [98, 171, 172].

Genetic Background

EGFR deficiency has been linked to homozygous (c.1283G 
> A) or compound heterozygous (c.292C > T and c.1094 T 
> A) mutations in the EGFR gene [98]. The former has 
been described in patients of Roman origin, while the latter 
has been reported only in one case from Japan. All patients 
with EGFR deficiency presented strikingly similar symp-
toms, and all but one died in early infancy. It seems that 
both genotypes lead to the onset of severe cutaneous lesions 
and alopecia frequently associated with gastrointestinal and 
renal symptoms.

Treatment

The treatment of EGFR deficiency is symptomatic and 
involves fluid therapy, electrolyte supplementation, anti-
septics, emollients, and photoprotection [98, 171, 172]. 
The patients usually die in early childhood due to infec-
tious complications, gastrointestinal tract perforation, or 
respiratory distress.

Conclusions

Autoinflammatory keratinization diseases are a challenging 
group of disorders manifesting hyperkeratotic inflammatory 
lesions. Innate immunity plays a central role in the pathogen-
esis of these entities. Understanding the mechanisms lead-
ing to a sporadic onset of superficial dermal and epidermal 
inflammation altering the keratinization process is key for 
efficient differentiation and treatment. Family history, early 
onset, and presence of systemic syndromes are suggestive 
features that should prompt genetic screening. The grow-
ing knowledge of the molecular pathways affecting the acti-
vation of the innate immune system will probably help to 
identify new subgroups of autoinflammatory keratinization 
diseases in the future.
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