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Abstract
From the clinical standpoint, systemic sclerosis (SSc) is characterized by skin and internal organ fibrosis, diffuse fibro-
proliferative vascular modifications, and autoimmunity. Clinical presentation and course are highly heterogenous and life 
expectancy variably affected mostly dependent on lung and heart involvement. SSc touches more women than men with 
differences in disease severity and environmental exposure. Pathogenetic events originate from altered homeostasis favored 
by genetic predisposition, environmental cues and a variety of endogenous and exogenous triggers. Epigenetic modifications 
modulate SSc pathogenesis which strikingly associate profound immune-inflammatory dysregulation, abnormal endothelial 
cell behavior, and cell trans-differentiation into myofibroblasts. SSc myofibroblasts show enhanced survival and enhanced 
extracellular matrix deposition presenting altered structure and altered physicochemical properties. Additional cell types of 
likely pathogenic importance are pericytes, platelets, and keratinocytes in conjunction with their relationship with vessel 
wall cells and fibroblasts. In SSc, the profibrotic milieu is favored by cell signaling initiated in the one hand by transforming 
growth factor-beta and related cytokines and in the other hand by innate and adaptive type 2 immune responses. Radical oxy-
gen species and invariant receptors sensing danger participate to altered cell behavior. Conventional and SSc-specific T cell 
subsets modulate both fibroblasts as well as endothelial cell dysfunction. Beside autoantibodies directed against ubiquitous 
antigens important for enhanced clinical classification, antigen-specific agonistic autoantibodies may have a pathogenic role. 
Recent studies based on single-cell RNAseq and multi-omics approaches are revealing unforeseen heterogeneity in SSc cell 
differentiation and functional states. Advances in system biology applied to the wealth of data generated by unbiased screen-
ing are allowing to subgroup patients based on distinct pathogenic mechanisms. Deciphering heterogeneity in pathogenic 
mechanisms will pave the way to highly needed personalized therapeutic approaches.
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Introduction

Systemic sclerosis (SSc) is clinically characterized in the 
one hand by fibrosis of skin and internal organs leading to 
altered organ structure and ultimately organ dysfunction and 
on the other hand by functional and structural vasculopathy 
resulting among others in Raynaud phenomenon, digital 
ulcers, pulmonary artery hypertension, and renal crisis [1]. 

In SSc, fibrosis and vasculopathy are intimately associated 
and lead to highly heterogeneous clinical manifestations 
with a widely variable prognosis. Main causes of death are 
lung and heart involvement which may occur early or late 
in the disease course [2]. Standardized mortality rates range 
from 2.82 to 3.64 in the most recent meta-analysis [3]. In 
addition, SSc imposes high burden in terms of quality of life 
and social cost.

Inflammation is the physiological response to altered 
tissue and organ homeostasis and is the common denomi-
nator to SSc pathogenesis. We believe that inflammatory 
processes are keys to initiation and progression toward both 
fibrosis and structural vasculopathy in response to events 
perturbing homeostasis. However, deciphering the multiple 
components of inflammation, which simultaneously act in  
many different, often opposing, directions remains an impor-
tant aim to understand SSc pathophysiology.
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From the pathogenic point of view, the questions to be 
answered are many and should address the predisposing 
genetic background, the trigger(s) as well as the mechanisms 
involved in the initiation, and further development of both 
fibrosis and vasculopathy simultaneously taking into account 
clinical heterogeneity (Fig. 1). The term of “intermediate 
pathophenotypes” has been proposed by C. Feghali-Bostwick  
and J. Varga to accommodate the dynamic processes  
underlying heterogeneity in SSc and our understanding of the 
mechanisms involved in SSc pathogenesis at cellular and tis-
sue levels.

Excellent reviews have been recently published address-
ing various aspects of SSc pathogenesis [4–13]. Here, we 
will attempt to provide a synthetic view of the main aspects 
of SSc pathogenesis.

SSc Disease State  The most commonly postulated model 
of disease progression in SSc is sequential, with immune 
activation and subsequent vasculopathy leading to activa-
tion of fibroblasts and fibrosis as the end effect of these pro-
cesses. However, substantial debate animates the SSc com-
munity on what order these events take place. According 
to the definition provided by Stern and Denton, the disease 
state is only tolerated if there is simultaneous dysregulation 
of the immune system, vascular endothelium, and connec-
tive tissue repair system [6]. Thus, SSc can be viewed as a 
three-leg pathology in which major dysfunctional cell types 
are immune cells, endothelial cells, and fibroblasts which 
intensely interact mostly via soluble mediators directly or 
indirectly leading to myo-fibroblast hyperactivation. This 
cell and soluble factor three-leg network establishes further 

interactions with many other cell types of which keratino-
cytes, pericytes, platelets, and adipocytes have attracted par-
ticular attention in recent years (Fig. 2).

SSc Genetic Background

Family Studies   Compared to the general population, the 
risk of developing SSc is higher in first-degree relatives of 
persons suffering of SSc and strong family clustering, with 
an estimated risk of 1.6% versus a 0.026% [14]. However, 
the concordance rate for clinical disease in twins is relatively 
low (4.7% in one study) with higher frequency in concord-
ance for the presence of autoantibodies and T cell responses 
irrespective of clinical expression [14–16]. This is strong 
evidence for the heritability of SSc, at the same time indicat-
ing a weak association with disease phenotype.

HLA  Systemic autoimmunity is favored by a genetic back-
ground in which genes and gene polymorphisms associated 
with the major histopathologic complex (MHC) or human 
leucocyte antigens (HLAs) are of major importance. This is 
the case also for SSc, but most interestingly, the associations 
between HLA haplotypes and SSc vary according to ethnic-
ity and autoantibody (autoAb) status. Thus, risk alleles may 
be different in Fareast Asia compared to Europe or America 
and within USA according to ethnic origin. For example, 
in European Americans (EA) and Latino Americans (LA), 
the DRB1*1104, DQA1*0501, DQB1*0301 haplotype, and 
DQB1 alleles encoding a non-leucine residue at position 26 
(DQB1 26 epi) showed the strongest associations with SSc, 

Fig. 1   Overview of conditions and events leading to systemic scle-
rosis. Schematic diagram highlighting the complex interplay thought 
to play a role in susceptibility and initiation of SSc in which genetic 
predisposition and environmental cues under the pressure of a variety 
of triggers lead to perturbed homeostasis with ensuing autoimmun-

ity. Autoimmunity is represented as the common denominator of the 
three fundamental aspects of SSc: inflammation, vasculopathy, and 
fibrosis. Heterogeneous clinical manifestations would then develop 
according to variable amplification mechanisms resulting in recog-
nized clinical subsets and organ damage



264	 Clinical Reviews in Allergy & Immunology (2023) 64:262–283

1 3

while the strongest association for African Americans (AA) 
was with DRB1*0804 and HLA-DRB1*1102. DRB1*0804, 
DQA1*0501, DQB1*0301, and DPB1*1301 alleles showed 
the highest odds ratio for anti-topoisomerase autoAb (ATA) 
(OR = 14) and HLA-DRB1*0804 for antifibrillarin autoAb 
(AFA) (odds ratio = 7.4) in AA. The anti-centromere autoAb 
(ACA) were best explained by DQB1*0501 and DQB1*26 
epi alleles and anti-RNA polymerase autoAb (ARA) by 
DRB1*0404, DRB1*11, and DQB1*03 alleles in EA and 
LA subjects. Nonetheless, HLA-DPB1*1301 allele was 
associated with the ATA+ in both AA and EA patients dem-
onstrating a transancestry effect [17, 18].

GWAS  In addition to the impact of HLA genes, candidate 
gene approaches and more substantially genome-wide asso-
ciation studies (GWAS) by assessing SNP (single nucleotide 
polymorphism) associations provided evidence on the con-
tribution of chromosomal locations to the risk of develop-
ing SSc. Interestingly, most of the identified genetic regions 
which polymorphisms are associated with SSc involve 
intronic or intergenic regions. Recent evidence suggests 
that these regions may have regulatory function by interact-
ing with gene promoters or enhancers. A recent collabora-
tive effort, by applying a meta-analysis on 14 independent 

European cohorts comprising a total of 26,679 individuals 
(9095 SSc patients and 17,584 healthy controls) has identi-
fied 23 genomic regions significantly associated with SSc of 
which 12 most likely causal [19]. Interestingly, these authors 
identified 43 robust target genes of these regions, thus show-
ing that the expression of more than one gene is influenced 
by these polymorphisms. Remarkably, the majority of recog-
nized polymorphisms are relevant for the immune response 
particularly associated with five main molecular pathways 
identified by in silico analysis: (a) IFN-I signaling pathway, 
(b) T cell activation, (c) B cell activation, (d) NFkB path-
way, and (e) immune system process. However, additional 
susceptibility genes are relevant for endothelial cells there-
fore potentially associated with vasculopathy, and fibroblasts 
with fibrosis. Table 1 inspired from [20] reports enriched 
SSc risk genes, their function, and cells likely involved.

Epigenetic Regulation  Substantial differences have been 
demonstrated in the epigenetic tags when SSc were com-
pared to healthy fibroblasts. In one study, hypomethylated 
genes included ITGA9, encoding an α integrin and other 
relevant genes such as ADAM12, COL23A1, COL4A2, and 
MYO1E, and transcription factors genes RUNX1, RUNX2, 
and RUNX3 were hypomethylated in both dSSc and lSSc. 
Pathway analysis of differentially methylated genes in both 
dSSc and lSSc revealed enrichment of genes involved in 
extracellular matrix-receptor interaction and focal adhesion 
[21]. Another study focusing on Wnt signaling in mononu-
clear cells and fibroblasts found that the promoters of DKK1 
(Dickkopf WNT signaling pathway inhibitor 1) and SFRP1 
(secreted frizzled-related protein 1) were hypermethylated in 
SSc. Promoter hypermethylation resulted in impaired tran-
scription and decreased expression of DKK1 and SFRP1 in 
SSc [22]. Since DKK1 is an inhibitor of the Wnt/β-catenin 
signaling cascade which deeply involved in fibrosis develop-
ment, decreased DKK1 expression may account for greater 
pro-fibrotic signaling.

Gene transcription is also regulated by miRNA, of 
which some have been associated with SSc; miR-21 and 
miR-155 appear to have profibrotic properties, while let-7 
and miR-29 are rather profibrotic. In addition, a significant 
decrease in the levels of miR-29 has been found in lesional 
SSc skin [23]. Increased expression of miR-92a was 
reported in SSc fibroblasts resulting in reduced MMP-1 
expression [24].

SSc Triggers

Within genetic susceptibility, many triggers may be involved 
in disease initiation. They may operate sequentially and 
manifest gender preferences.

Fig. 2   Major cell types and their multiple interactions in SSc patho-
genesis. SSc is here viewed as a three-leg pathology in which major 
dysfunctional cell types are immune cells, endothelial cells, and 
fibroblasts which directly or indirectly intensely interact leading to 
myofibroblast hyperactivation. This cell and soluble factor three-leg 
network establishes further interactions with many other cell types 
including adipocytes, keratinocytes, pericytes, and platelets. The 
concentric reddish shadow highlights the influence of the various 
cell types on the activation of myofibroblasts. Two-head red arrows 
indicate multiple, reciprocal interactions mainly ensured by soluble 
mediators of inflammation. Dashed arrow indicates increase in extra-
cellular matrix (ECM) deposition by myofibroblasts
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Chemicals  The association between environmental risk 
factors and SSc has been extensively analyzed, but the 
role of the environment is not yet fully understood [25, 
26]. Environmental factors can be classified as occupa-
tional (silica, organic solvents) and non-occupational/
non-infectious (drugs, pesticides, silicones, heavy metals) 
[25, 27]. According to a recent meta-analysis, the strongest 
evidence indicates that silica and organic solvents are risk 
factors for SSc. Exposure to vinyl chloride, white spirit, 
solvents, crystalline silica among others, and use of tryp-
tophane have been associated with SSc or SSc-like disor-
ders [28]. While there is substantial evidence that exposure 
to silicones is not a risk factor for SSc, the meta-analysis 
of breast implants exposure highlighted a slight over-risk 
[overall OR 1.68 (95%CI 1.65–1.71; p < 0.001)]. The risk 
of SSc following exposure to silica is higher in males com-
pared with females with more frequent diffuse cutaneous 
SSc and lower survival rates [26, 29].

Infectious Agents  Infectious agents may participate in 
breaking T and B cell tolerance by molecular mimicry and 
by the simultaneous activation of innate responses when 
pathogen-associated molecular patterns (PAMPs) acti-
vate pattern recognition receptors (PRRs), thus tuning the 
immune system to enhanced responses. Immune effector 
mechanisms may then participate to cell damage. Parvo-
virus B19, cytomegalovirus (CMV), Epstein–Barr virus 
(EBV), and retroviruses have all been proposed as initiat-
ing triggers of SSc [30, 31]. Particular attention has been 
attracted by CMV which genetic material has been found in 
endothelial cells and suspected to elicit IgG that specifically 
recognized the CMV late protein UL94 and the endothe-
lial cell surface integrin–NAG-2 protein complex, thereby 
inducing endothelial cell apoptosis [32]. These IgG may also 
activate fibroblasts and enhance collagen production [33]. 
The presence of Parvovirus B19 DNA in the bone marrow 
and/or skin biopsies has been reported. By in situ RT-PCR, 

Table 1   Non-HLA risk genes associated with SSc

DC dendritic cell, dSSc diffuse cutaneous systemic sclerosis, EC endothelial cell, F fibroblast, IFN interferon, IL interleukin, ILD interstitial 
lung disease, Mϕ macrophage, NFκB nuclear factor “kappa-light-chain-enhancer” of activated B-cells, TcR T cell receptor, TGFβ transforming 
growth factor-beta, Th T helper cell

Risk genes Name/function Characteristic Main cell target

DDX6 Mediates mRNA degradation Hypoxia decreases DDX6 expression EC
GRB10 Cell growth inhibitor EC
SOX5 Transcription factor Cell fate determination F
CSK c-Src thyrosine kinase Regulates differentiation F
CAV1 Caveolin-1 Induces TGFβ-R internalization/degradation F
DNASE1L3 DNA fragmentation during apoptosis 

NET degradation
Many

TNFAIP3 Signaling inhibitor (also named A20) NFκB pathway Many
TNIP1 Signaling inhibitor NFκB pathway Many
IRF5 IFN-I signaling Associated with ILD and dSSc DC; EC; F; Mϕ;
IRF7 IFN-I signaling DC; EC; F; Mϕ;
IRF8 IFN-I signaling DC; EC; F; Mϕ; T cells
TLR2 PAMP sensing Increased production of IL-6 by DC DC, Mϕ, F
TNFSF4 Encodes OX40L Co-stimulatory DC
GSDMA/B Gasdermin / pyroptosis Inflammatory cell death Mϕ
RAB2A Autophagosome clearance May impair autophagy EC; Mϕ
ATG5 Autophagy, many roles DC, EC, Mϕ
BANK1 Involved in B cell activation B cell responses B cells
BLK Src Family Tyrosine Kinase B cell biology B cells
PRDM1 Transcription factor /BLIMP1 Plays a role in innate and adaptive immune cells NK; T cells, B cells
CD247 tzeta subunit TcR T cell activation T cells
STAT4 Signal transducer, transcription factor Phosphorylated in response to IFN, IL-12, IL-23 T cells
PTPN22 Thyrosine phosphatase TcR signaling, decreased function T cells
CCR6 Chemokine receptor Recruite Th17 cells T cells
IL21 Interleukin Th follicular T cells
IL12RB1 IL-12 receptor chain T cell polarization T cells, NK cells
IL12RB2 IL-12 receptor chain T cell polarization T cells, NK cells
SCHIP1-IL12A Intergenic IL-12 polarizes Th1 cells T cells, NK cells
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the presence of Parvovirus B19 DNA and TNF was dem-
onstrated in endothelium and fibroblasts [34]. While not 
replicating in fibroblasts, Parvovirus B19 can activate many 
genes involved in inflammation and fibrosis [35]. Similarly, 
EBV infection was shown to induce aberrant toll-like recep-
tor (TLR) activation pathway and fibroblast-myofibroblast 
conversion in scleroderma [36]. From a different angle, 
when bioinformatically predicting the T cell immunodomi-
nant peptides of topoisomerase 1, fibrillarin, and centromere 
protein A in association with selected HLA α/β allelic heter-
odimers, it was reported that these autoantigens are homolo-
gous to viral protein sequences from the Mimiviridae and 
Phycodnaviridae families. These data suggest a possible link 
between HLA alleles, autoantibodies, and infectious triggers 
in the pathogenesis of SSc [18].

Neoplastic Diseases  SSc has complex relationships with 
many different types of cancer [9]. A close temporal asso-
ciation between the onset of SSc and the detection of can-
cer has been described in a subset of patients positive for 
anti-RNA polymerase III (RNApol III) antibodies [37]. 
This observation led to the discovery that mutated autoan-
tigens (RNApol3) are present in the tumors obtained from 
these patients and result in mutant-specific T cell immune 
responses as well as in the generation cross-reactive autoan-
tibodies [38]. These findings support the possibility that, at 
least in some patients, an abnormal (mutated) cancer antigen 
may be the initial trigger for an autoimmune T cell activa-
tion in SSc and autoAb recognizing the mutated RNApol 
III, which then cross-react with the wild-type autoantigen.

Microchimerism  Feto-maternal microchimerism, which is the 
transplacental passage of semi-allogenic fetal cells to the mother 
or vice versa the passage of semi-allogenic maternal cells to 
the fetus, may trigger autoimmunity in SSc [39]. It is supposed 
that microchimeric cells may provide chronic stimulation due to 
MHC-mismatch with enhanced expansion of alloreactive, profi-
brotic Th2 cells [40]. Exposure to vinyl chloride may enhance 
the pathogenic role of microchimeric cells in murine models 
[41], an interesting example of the combined effect of multiple 
triggers operating in conjunction or sequentially to favor SSc.

Sex Bias in SSc

As many other systemic autoimmune disorders, SSc preferen-
tially affects women with a female to male ratio exceeding 4 
to 1 [42–44]. Substantial differences in the clinical presenta-
tion and environmental exposure underlie gender differences in 
SSc. Thus, at diagnosis men preferentially present an active and 
diffuse form of the disease with more frequent heart and lung 
involvement which may impact on survival [45 46]. Exposure 
to chemicals is more frequent in males [28, 43], suggesting that 

perturbed homeostasis by environmental cues substantially adds 
to pathogenetic mechanisms which are enhanced in females.

Sex Hormones  Sex hormones and their cyclic variation during 
the fertile years have profound impact on the immune response 
and likely they play a role on female preponderance in SSc. 
Broadly speaking, estrogens tend to enhance the adaptive 
immune responses and in particular the production of (auto)-
antibodies, while progesterone and androgens may exert inhibi-
tory functions [47–49]. A recent systematic review of the litera-
ture conducted on the role of sex hormones in SSc reported that 
estrogens may be simultaneously fibrogenic and vasodilatory. 
Within the limitation of the small numbers of individuals stud-
ied, compared to healthy controls women with SSc tended to 
have lower levels of androgens, non-significantly higher levels 
of estradiol, while men had increased levels of estradiol [50].

X‑chromosome  The large excess in genes present in the X- 
chromosome compared to the Y-chromosome is compensated 
by the inactivation of one X-chromosome (XCI) copy of the 
two present in females. This is a random and active process 
implicating the long non-coding RNA named XIST, which 
silences by epigenetic modifications almost all genes present 
in X-chromosome [51]. In females, escape from XCI may thus 
allow the expression of two copies of the genes encoded in the 
X-chromosomes, of which many are relevant for the immune 
response and for which the escape from inactivation has been 
demonstrated [52]. For instance, the expression of two copies of 
TLR7 in B cells of healthy females was shown to result in higher 
production of antibodies [53]. The relevance in SSc of such a 
mechanism is currently being explored. Enhanced X monosomy 
in SSc women [54] and specific patterns of X chromosome 
gene methylation in peripheral lymphocytes from monozygotic 
twins discordant for scleroderma [55] have been demonstrated. 
Intriguingly, extreme bias in XCI has been shown in SSc and 
correlated to a decreased expression of FOXP3 and reduced Treg 
function [56]. Further, single nucleotide polymorphisms (SNPs) 
enriched in SSc have been identified in X chromosome genes 
involved in the immune response such as IL13RA2, IRAK1, and 
FOXP3, and while this has not formally being proven, these 
SNPs may contribute to SSc development in females [57–60]. 
About 10% of miRNAs are located on X-chromosome and may 
escape inactivation or be subjected to skewed X inactivation; 
therefore, they may also participate in gender-related differences 
in SSc pathogenic mechanisms [61].

SSc Initial Events

The question of what is first in SSc pathogenesis has no 
definitive answer and spurs substantial debate. From the 
clinical stand point, Raynaud phenomenon in the large 
majority of cases initiate months to years before other clini-
cal manifestations become apparent, including skin and 
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organ fibrosis. Based on this chronological clinical order, 
many authors suspect that vasculopathy is the initiating 
event. In this perspective repeated vasospastic episodes 
triggered by cold exposure occurring in the appropriate 
genetic background may result in altered homeostasis in 
relationship to ischemia/reperfusion processes and may 
provide the substrate for inflammatory responses and struc-
tural vasculopathy. Endothelial cell injury is proposed as a 
crucial initiating event leading to vascular remodeling with 
intimal proliferation of arterioles and capillary breakdown 
and finally, blood vessel occlusion [7, 62, 63]. Of note, 
recognized mechanisms leading to endothelial cell injury 
are mostly immunologic in nature. Anti-endothelial cell 
autoantibodies through ADCC, anti-endothelin, and anti-
angiotensin agonistic antibodies, cytolytic CD4+ T cells, 
γ/δ T cells, and NK cells have been described as effector of 
endothelial cell (EC) activation and/or damage [7, 64–67] 
If this is true, then vasculopathy follows innate and adaptive 
immune responses (Fig. 1). Consistently with this kinetic, 
the presence of serum anti-nuclear antibodies—evidence 
for adaptive immune responses—detected at first evalu-
ation of Raynaud’s is considered an important, independ-
ent predictive element to classify Raynaud as secondary 
to SSc [68, 69]. Taken from a different perspective, it is 
known that monocyte/macrophage and T cell inflammatory 
perivascular infiltrates are detectable early in SSc [70] and 
ultrastructural EC damage appears to follow the appear-
ance of inflammatory mononuclear infiltrates [71]. Thus,  

intricate mechanisms are at play in early events leading to 
SSc in which components of the immune response in rela-
tionship with EC and vessel function and integrity play a 
role, well before fibrosis initiate developing.

SSc Vasculopathy

Fibroproliferative modifications of vessel walls and rarefac-
tion of capillaries underpin vasculopathy in SSc which affects 
mainly the micro-circulation, but also the macro-circulation. 
Endothelial cell (EC) dysfunction and damage are considered 
cornerstones of SSc vasculopathy (Fig. 3). Indeed, structural 
damage and inappropriate repair events distinguish primary 
form secondary Raynaud. Initial mechanisms may involve 
selective increased expression of alpha 2 adrenergic recep-
tors on vascular smooth muscle cells (vSMC) with increased 
response to catecholamines [72]. Imbalance between vasodi-
lating and vasoconstricting agents with reduced production of 
nitric oxide (NO) and enhanced production of endothelin-1 
(ET-1) may lead to ischemia / reperfusion and subsequent 
increased oxidative stress which impact on EC [73]. Platelet  
activation may participate by releasing  potent vasoconstric-
tors such as thromboxane and serotonin [74]. Transition to  
inflammatory events then occurs with opening of tight EC junc-
tions, fluid leakage in the extravascular space, and enhanced  
expression of adhesion molecules, all favoring the recruitment  
of mononuclear cells. EC injury may lead to EC apoptosis [75].  

Fig. 3   Vasculopathy in SSc. In 
SSc, under the influence of a 
variety of stimuli here depicted 
as a bicolor arrowhead, EC 
become dysfunctional and 
undergo damage. Excess in 
vasoconstricting over vasodilat-
ing agents, as well as enhanced 
fibroproliferative events of the 
vessel wall associated with 
reduced angiogenesis and vas-
culogenesis are characteristic. 
Vasculopathic alterations con-
tribute to the developments of 
fibrosis. ET-1, endothelin-1; IL, 
interleukin; NO, nitric oxide; 
ROS, radical oxygen species
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Infectious agents, autoantibodies, toxic compounds, and cytol-
ytic T and NK cells may be causes of EC apoptosis. Significant  
intimal proliferation and accumulation of proteoglycans in the  
arterioles and small sized arteries are common in SSc [76]. 
Moreover, abnormality of the vessel wall is likely to result from 
increased synthesis of extracellular matrix (ECM) by intimal 
and adventitial fibroblasts. Transdifferentiation of EC via the 
process of endothelial-mesenchymal transition (EndoMT) and 
more likely of pericytes into profibrotic myofibroblasts may 
contribute further to vascular wall fibrosis [77]. On the other  
hand, vSMC, under the influence of hypoxia, cytokines and 
growth factors may migrate into the intima, differentiate, and 
then synthesize the matrix of the fibrotic vascular lesions.

Both defective angiogenesis (growth of new vessels from 
existing vessels) and vasculogenesis (de novo formation 
of new vessels) likely contribute to capillary rarefactions. 
Angiogenesis is disturbed through expression of inefficient 
pro-angiogenic mediators, upregulation of inhibitors of angi-
ogenesis and by alteration of transcripts involved in signal 
transduction pathways [78]. Hypoxia enhances the produc-
tion of VEGF which is detectable in high amount in SSc  
sera. However, the relative abundance of a non-signaling var-
iant (VEGF165b) and alterations at the receptors level may 
contribute to altered angiogenesis [79]. Imbalance between 
other pro-angiogenic factors and their receptors are also at 
play [80]. Endothelial progenitor cells (EPCs) originating 
from the bone marrow are fundamental for vasculogenesis. 
Although discrepancies between various reports exist, pos-
sibly related to differences in the markers used for the iden-
tification of these progenitors, the number of circulating 
EPC appears to be reduced in SSc, which may contribute 
to defective vasculogenesis. Alternatively, their recruitment 
at lesional sites could be impaired as suggested by the rela-
tive lack of the recruitment factor cellular communication 
network factor-1(CCN1) reported in SSc digital ulcers [81].

EC may respond to and produce a variety of cytokines 
and other soluble products of inflammation. Thus, they may 
influence the behavior of resident or recently recruited cell 
types in the skin and other organs. Among many others, 
interleukin-1 (IL-1), thymic stromal lymphopoietin (TSLP) 
[82], and IL-33 appear to play important roles in the inter-
action with macrophages, other innate immune cells, fibro-
blasts, and adipocytes. IL-33, which levels are increased 
early in the SSc disease course, might mediate very early 
pathogenic events of SSc through recruitment and stimula-
tion of cells expressing the appropriate receptor [83–86].

Fibrosis and Fibroblasts in SSc

Fibrosis  Fibrosis is the default inflammatory response to 
chronic tissue injury of whatever cause aiming at containing 
and circumscribing tissue damage. Fibrosis itself consist in 

the enhanced deposition over resorption of ECM. In fibrotic 
tissues, the ECM appears to be structurally altered. Fibrosis 
in SSc can be seen as a process resembling wound healing 
in which the resolution phase is not efficacious or even does 
not occur.

The Pro‑fibrotic Milieu  When examined in animal models, 
wound healing processes and fibrotic responses are character-
ized by type 2-like environment governed by the presence of 
IL-4, IL-13, ILC2, Th2-like T cells, and M2 macrophages—
also named alternatively activated macrophages—all dis-
cussed in following paragraphs [87–89]. Very likely, type 2 
environment plays an important role in SSc, particularly in 
skin fibrosis [90]. Specificities related to organs and tissues 
undergoing fibrotic changes are being unraveled by “omics” 
studies at single-cell level and are revealing the presence of 
rare cell types with specific phenotypic and functional charac-
teristics [91]. Within this framework, the response to the mas-
ter pro-fibrotic cytokine TGF-β is thought to be dysregulated 
in SSc. TGF-β is considered to be, at least partly, responsible 
for the fibrotic disease component. TGF-β induces fibroblast  
migration, proliferation, and differentiation and enhances ECM 
production components including various collagens [92, 93]. 
TGF-β has pleiotropic functions, is produced by many cell 
types in association with latency-associated peptide (LAP), 
interacts with the ECM, and requires processing to become 
biologically active. It binds to a heterodimeric receptor which 
intracellular signal is mediated by canonical SMAD signaling 
and complex, additional non-canonical pathways. The activ-
ity of TGF-β is tightly regulated at several levels including  
the availability of the biological active form, receptor binding, 
and most importantly the intracellular signaling pathway level 
which offers potential targets of treatment [94]. Connective 
tissue growth factor (CTGF) also known as CCN2 appears 
to be a necessary cofactor for TGF-β to activate or sustain 
extracellular matrix (ECM) production in both healthy and 
disease states [95]. Platelet-derived growth factor (PDGF), 
IL-6, Wnt/β-catenin (Wnt: Wingless and Int), and hedgehog 
signalling are some of the other important components of the 
profibrotic milieu [96]. As a word of caution, our understand-
ing of the main forces involved in fibrosis, namely in SSc skin 
fibrosis, remains imprecisely defined. When submitting skin 
biopsies from the involved SSc skin to unbiased gene expres-
sion studies, heterogeneous results were obtained across skin 
samples. Patient samples were grouped according to the main 
gene expressed into an “inflammatory,” “fibroproliferative,”  
“limited,” or “normal-like” gene-signature [97–100]. These 
results point to heterogeneous mechanisms leading to skin 
fibrosis which do not match, or match only partially, to clini-
cal classifications and histories.

Myofibroblast  Large agreement identifies in myofibro-
blasts the professional cells involved in the enhanced ECM 
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deposition occurring during fibrosis development. At vari-
ance of what occurs during wound healing, in fibrotic pro-
cesses myofibroblasts after having been activated or trans-
differentiated do not stop producing ECM, possibly because 
they become resistant to apoptosis-inducing signals [101] 
(Fig. 4). Most recently, it has been proposed that myofibro-
blasts are characterized by increased levels of pro-apoptotic 
intracellular mediators, compensated by even higher levels 
of anti-apoptotic intracellular mediators. Among the most 
likely mechanisms responsible for such altered balance 
set-point, stiffness of tissue undergoing fibrosis transduced 
by mechano-sensors to myo-fibroblasts appears to play an 
important role [102]. It is unlikely that fibroblasts autono-
mously initiate the fibrotic response, however with time 
they may become independent from initiating stimuli. As 
an example, ECM stiffness enhances the release of latency 
associated peptide (LAP), followed by activation of trans-
forming growth factor-β (TGF-β) by αv-integrins which then 
favors further ECM deposition [103]. Similarly, fibronectin 
extracellular domain A (FNEDA), expressed in high amounts 
in involved SSc skin, was shown to bind TLR4 and enhance 
collagen production in an in vivo murine model of sclero-
derma. FNEDA production is induced by TGF-β and simul-
taneously enhances TGF-β production by fibroblasts thus  
providing a positive feedback loop potentially able to main-
tain in an autonomous manner sustained fibroblast activation  
[104]. It is also likely that many stimuli of different origin 
may converge on fibroblasts which response is then mono-
morphic [96]. It is however important to stress that several 
subpopulations of fibroblasts have been documented which 
may play distinct and dynamic roles in tissue homeostasis 

and fibrosis [105–107]. In this respect, myofibroblasts are 
capable of contractile properties and are considered profes-
sional ECM producers [88, 108, 109]. Their origin is debated 
and has been ascribed variably at resident fibroblasts, at 
circulating fibrocytes (cells of hematopoietic origin with 
mesenchymal properties including the capacity to produce 
collagen), at smooth muscle cells, at epithelial cells undergo-
ing mesenchymal transition, or similarly at endothelial cells 
undergoing mesenchymal transition (Fig. 4) [110]. Cell fate 
tracing in vivo experiments has however pointed to a larger 
contribution of pericyte transdifferentiation for the genera-
tion of myofibroblasts. Pericytes are naturally endowed with 
contractile properties and acquire the capacity to produce 
ECM components upon migration into tissues undergoing 
fibrosis [88]. Thus, migration, proliferation, differentiation 
of fibroblasts and the relationship they establish with ECM 
and tissue physical properties via mechanosensors are key to 
fibrosis development and persistence [91] (Fig. 4).

Keratinocytes in SSc  The epidermis and in particular 
keratinocytes participate to dermal homeostasis by releasing 
factors that target dermal fibroblast. Reciprocally, keratino-
cytes respond to soluble mediators released by dermal fibro-
blasts [111]. Thus, it is not surprising that SSc epidermis 
presents a variety of abnormalities including altered differ-
entiation, active TGF-β signaling, increased production of 
antimicrobial peptides, with DAMP properties, enhanced 
capacity to stimulate lattice contraction and inflammatory 
responses in dermal fibroblasts [112–117]. Furthermore, epi-
thelial deficiency of the transcription factor Fli1 in mice is 
sufficient to induce a SSc-like phenotype, including fibrosis 

Fig. 4   Myofibroblasts and their 
centrality in the development of 
fibrosis in SSc. Depicted are the 
cells potentially giving origin 
to myofibroblasts, as well as the 
main signals involved in their 
activation and survival. αSMA, 
alpha smooth muscle actin; 
BCL, B-cell lymphoma; ECM, 
extracellular matrix; FAK, 
focal adhesion kinase; MRTF, 
myocardin-related transcription 
factors; ROCK, Rho-associated 
creatinine kinase; SMAD, small 
mothers against decapenta-
plegic; TAZ, transcriptional 
co-activator with PDZ-binding 
motif; TGF-β, transforming 
growth factor-beta; YAP, Yes 
kinase-associated protein
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and systemic autoimmunity [118]. Within this framework, 
SSc keratinocytes, engineered epidermal equivalents, or 
organotypic full skin cultures were shown to respond to 
cytokines which levels are increased in SSc by further mod-
ulating dermal fibroblast responses. IL-17A and IL-22 in 
conjunction with TNF were shown to enhance inflamma-
tory dermal responses and in particular IL-17A was shown 
to counteract, at least partially, the profibrotic activity of 
TGF-β by modulating the Wnt/β-catenin signals [119, 120]. 
These are examples of intercellular circuitries potentially 
aiming at reducing fibrosis still participating to inflammation 
in SSc altered homeostatic conditions (Fig. 5).

Autoimmunity and Inflammation in SSc

Immunological Tolerance Defects in SSc  SSc is considered a 
systemic autoimmune disorder, characterized by the presence 
of autoantibodies directed against ubiquitous (mostly nuclear 
auto-antigens) as well as cell-specific autoantigens. Simi-
larly, autoreactive T cells have been demonstrated recogniz-
ing epitopes of the ubiquitous autoantigens topoisomerase-I 
(topo-I) and RNA polymerase III (RNApol-III) [121, 122]. 
Indirect proof of autoimmunity from the T cell point of view 
is the oligoclonal distribution of TcRs of T cells retrieved 
from SSc blood, skin, and lung, suggestive of an (auto)
antigen-driven clonal expansion [67, 123]. In addition, the 
strong association of SSc with specific HLA alleles supports 
an immune component in the pathogenesis of SSc. Consistent  

with this view the survival advantage provided by profound 
pharmacological immunosuppression rescued by autologous 
hematopoietic stem cell transplantation in severe SSc [124–
126]. However, standard immunosuppression has limited effi-
cacy in SSc when compared to other autoimmune systemic 
disorders. Thus, while defective immune tolerance has a role 
in SSc pathogenesis, possibly in very initial events, impor-
tant additional singularities characterize SSc leading to sus-
tained vasculopathy and fibrosis. Interestingly, the presence 
of autoAb directed against distinct ubiquitous autoantigens is 
usually mutually exclusive and clinical manifestations seg-
regate with the type of autoAb, which supports a pathogenic 
link between autoAb specificities and clinical manifestations. 
However, there is no experimental proof of such a link and for 
the moment being autoAb directed against ubiquitous antigens 
are considered only as epiphenomena, tough clinically useful 
as biomarkers.

Autoimmunity in SSc requires both innate and adaptive 
immune responses at humoral and cellular levels which  
participate to disease initiation under the influence of some 
of the triggers previously mentioned. While no animal 
model faithfully reproduces all the clinical and biologi-
cal features of SSc, it is worth to stress that repeated mice 
immunization with T and B cell autoantigen Topo-I and 
concomitant stimulation of the innate immune response by 
complete Freund adjuvant results in a disease characterized  
by skin and lung fibrosis and autoimmunity in C57Bl/6 
mice [127]. No such results were obtained in autoimmune 
prone mice when immunized with Topo-I in the absence of 
solid innate immunity activation [128]. The evidence thus  
generated strongly support the need of multiple, sustained 
hits to break tolerance and initiate processes leading to 
SSc. In humans, molecular mimicry is potentially impli-
cated in tolerance breakdown. For instance, experimental 
evidence suggestive for SSc having a paraneoplastic origin 
has been provided in association with mutated RNA pol III 
antigen [38]. Similarly, cross-reactive antibodies between  
CMV UL94 antigen and endothelial cells have been docu-
mented [32].

Innate Immune Cells, Soluble Products, and Receptors in 
SSc  All innate immune cells and their capacity to be acti-
vated in the one hand by pathogen (PAMP) or danger due 
to tissue damage (DAMP) molecular patterns via PRRs and 
on the other hand by soluble mediators of inflammation 
(cytokines, chemokines, lipidic mediators, NO, etc.) par-
ticipate to SSc pathogenesis. Of interest, PRR are not only 
expressed by innate immune cells but also by stromal cells 
including fibroblasts and endothelial cells, where they are 
thought to play a substantial role. Similarly, stromal cells 
can produce and respond to soluble mediators of inflamma-
tion. Thus, an intricate web of signals to cells and responses 

Fig. 5   Altered cross-talk between keratinocytes and dermal fibro-
blasts in SSc. The homeostatic relationship between epidermis and 
dermis includes reciprocal signaling here represented by IL-1 pro-
duced by keratinocytes and KGF by fibroblasts. Cytokines dysregu-
lated in SSc alter this cross-talk and variably affect the inflammatory 
and ECM deposition properties of dermal fibroblasts. ECM, extracel-
lular matrix; KGF, keratinocyte growth factor; IL, interleukin; TGF-
β, transforming growth factor beta; TNF, tumor necrosis factor
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by cells constitute the inflammatory network that in SSc 
extends well beyond the “classical” components of the 
immune system. Deciphering this network will potentially 
provide hierarchically important nodes as target for thera-
peutic interventions. Broadly speaking, by sensing altered 
homeostasis and tissue damage, cells of the innate immune 
system may contribute in many ways to initiation and ampli-
fication of inflammatory events leading to fibrosis [91]. On 
the one hand, the release by cells submitted to stressful sig-
nals of pro-inflammatory cytokines, including IL-1, tumor 
necrosis factor (TNF), and IL-6 may turn on macrophages 
which may initiate TGF-β release and activation. In the other 
hand alarmins release, including IL-33, IL-25 (also known 
as IL-17E), and thymic stroma lymphopoietin (TSLP), may 
activate type 2 innate lymphoid cells (ILC2), which partici-
pate to Th2-like T cell responses and enhance the production 
of IL-4 and IL-13 which directly and indirectly participate 
to enhanced ECM deposition. Furthermore, myeloid den-
dritic cells (mDCs) and plasmacytoid DC (pDC) contribute 
to generate the fibroproliferative milieu by releasing type I 
interferon (Fig. 6).

PRR and SSc  Given their central role in sensing dan-
ger, whether due to infectious agents or tissue damage, 
PRR undoubtedly plays a major role in SSc [129]. The 

contribution of PRR to SSc pathogenesis has received 
increasing attention in two distinct directions: the role of 
PRR in the production of type I interferons (IFN-I) or other 
pro-inflammatory cytokines and the contribution of TLRs in  
activating mesenchymal cells, in particular fibroblasts. Here 
follow a few examples. TLR4, which expression is increased 
on SSc fibroblasts [130], mediates chronic fibroblast acti-
vation by sensing FNEDA [104]. Consistently with a role 
in fibroblast activation, an amelioration of tissue fibrosis 
was observed in TLR4 knockout in murine models of sys-
temic sclerosis [131]. TLR8, expressed in monocytes, may 
mediate their transdifferentiation in fibroblasts, potentially 
responding to lytic EBV infection [132]. SSc monocytes 
upon TLR8 activation by ssRNA (and to a lesser extent 
by LPS/TLR4) produce enhanced levels of tissue inhibi-
tor of matrix metalloproteinase (TIMP)-1 [133]. TLR8,  
paradoxically expressed in SSc pDC, plays a role in IFN-I 
production [134]. Always in pDC, TLR7 and TLR9 play a 
role in sensing DNA or RNA shuttled by autoantibodies via 
Fc-gamma receptors or by CXCL4 into the endosomal com-
partment thus also participating to enhanced levels of IFN-I 
in SSc [135, 136]. In addition to TLR9, cytosol-located 
GAS-STING activation by mitochondrial DNA—which 
concentration is increased in SSc plasma—was shown to  
be positively associated with IFN-I and IL-6 expression and  
SSc-ILD progression [137].

In SSc, circulating monocytes and tissue-resident mac-
rophages, potentially under the influence of type 2 cytokines 
(IL-4, IL-13), appear to preferentially express CD163 and 
CD204 and promote fibrogenesis by increasing the produc-
tion of TGF-β. They are involved also in the production of 
a large variety of other inflammatory mediators including 
chemokines, cytokines, matrix metalloproteinases (MMPs) 
and their inhibitors (TIMPs), which composition and role 
may depend on timing and localization. They are likely 
involved both in vasculopathy as well as in fibrosis and they 
may play a role in the perpetuation of the disease having 
pro-reparative properties inefficiently terminated [138]. In 
an experimental murine model of SSc, it was shown that 
epigenetic modifications of macrophages (trained immu-
nity) induced by activation in the one hand with low-dose 
lipopolysaccharide (LPS), on the other hand by BCG (Bacil-
lus Calmette Guérin) could deeply influence the fibrotic 
response with reduced or enhanced fibrosis, respectively 
[139]. Thus, macrophages sensing pro-fibrotic cues may 
propagate or amplify tissue fibrosis. mDCs, beside their role 
as antigen-presenting cells (APCs) may play relevant inflam-
matory functions in SSc [138]. Tissue-resident plasmacy-
toid DC (pDC) also may play a substantial role. pDC were 
shown to respond to CXCL4 (CXC chemokine ligand 4, 
also known as platelet factor 4, PF4) which levels are highly 
increased in SSc sera [140] and forms complexes with DNA 
[136]. These complexes are shuttled into the endosomal 

Fig. 6   Contribution of cells and soluble products of the innate 
immune system to enhanced ECM deposition. Parallel, not mutually 
exclusive pathways involving cells of the innate immune system and 
their soluble products, converge on fibroblasts enhancing their ECM 
synthetic capacity. CXCL, chemokine containing the CXC motif; 
DAMP, danger associated molecular patterns; IFN-I, type I inter-
feron; IL, interleukin; ILC, innate lymphoid cell; pDC, plasmacytoid 
dendritic cell; TGF-β, transforming growth factor-beta; Th2, type 2 T 
helper cell; TNF, tumor necrosis factor; TSLP, thymic stromal lym-
popoietin
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compartment where by interacting with TLR8 or TLR9 favor 
the production of IFN-I, highly increased in about 50% of 
SSc individuals [134, 136]. The relevance of these findings 
was highlighted by the prevention of skin inflammation and 
fibrosis in xenotransplant human-mouse model of sclero-
derma by targeting human pDC [141]. The most recently 
described in the innate cell family are the innate lymphoid 
cells (ILCs). They are endowed with the capacity to rapidly 
produce polarized subsets of cytokines under the control of 
differentially expressed master transcription factors. They 
are activated by PRR ligation and are fast producers of 
cytokines. Relatively little is known yet about ILCs in SSc; 
however, evidence points to an expansion of ILC2 (produc-
ing IL-4/IL-13) in the blood and in the skin. Thus, they may 
contribute to a dysregulated environment favoring fibrosis 
[142]. ILC2, in particular the KLRG1neg ILC2 subset num-
bers appear to be increased in SSc skin correlating with the 
extent of skin fibrosis. Of note, TGFβ favors the expansion 
of the KLRG1neg ILC2 subset and simultaneously decreases 
their production of IL10, which regulates negatively col-
lagen production by dermal fibroblasts [143]. This example 
highlights the intricate relationship in the cytokine network 
that portends enhanced deposition of ECM.

ROS in SSc  An imbalance between oxidant and anti-oxidant 
states is observed in SSc, with increase in the blood of oxi-
dative stress biomarkers such as malondialdehyde (MDA—a 
marker of lipid peroxydation), nitric oxide and endogenous 
nitric oxide inhibitor asymmetric dimethylarginine (ADMA) 
and decreased anti-oxidative biomarkers, such as superox-
ide dismutase and vitamin C [144]. ROS may impact on 
monocyte/macrophages polarization favoring M2-like dif-
ferentiation [145]. ROS participate to fibroblasts activation 
triggering the production of pro-inflammatory cytokines 
such as IL-1β and fibroblasts from SSc are a potent source of 
ROS through an up-regulation of NOX-2 and NOX-4 [146]. 
Further, inflammasome, in particular NLR family pyrin 
domain containing 3 (NLRP3) inflammasome is thought to 
be involved in fibroblasts [147, 148], endothelial cells, and 
macrophages activation in SSc [149]. NLRP3 expression is 
increased in SSc skin and NLRP3-deficient mice are resist-
ant to bleomycin-induced fibrosis. It is possible that oxida-
tive stress could participate to NLRP3 activation [10].

Adaptive Immunity in SSc

T Cells in SSc Skin  Compared to healthy skin, T cells are 
abundant in involved SSc more so early in disease course 
and active collagen synthesis is more pronounced around 
inflammatory infiltrates [150, 151]. T cell effector functions 
are highly heterogenous and differentially affect fibrosis and 

vasculopathy. Within the adagio that type 2 responses favor 
repair and fibrosis, Th2 cells (CD4+T cells producing IL-4 
and IL-13) as well as Tc2 (CD8 T cells producing IL-13), 
in conjunction with the previously mentioned ILC2 may be 
actively involved in enhancing ECM deposition, since both 
IL-4 and IL-13 can directly enhance collagen production by 
fibroblasts [90, 152]. Further, IL-13 may enhance the pro-
duction of TGF-β by macrophages thus indirectly enhancing  
ECM deposition [153]. In addition, SSc-skin infiltrating Treg  
cells, under the influence of IL-33, may become Th2-like 
effectors and release profibrotic cytokines contributing to 
enhanced ECM deposition (Fig. 7). However, Th1, Th17, 
and Th22 cells may also be enriched in SSc skin where they 
potentially participate to inflammation simultaneously, and 
most importantly, opposing fibrosis [119, 120, 154, 155]. 
From another angle, CD4+ and CD8+ T cells with cytolytic 
potential present in SSc skin may participate to vasculopathy 
by enhancing endothelial cell apoptosis [67]. The presence of 
high-affinity, isotype switched, autoantibodies characteristic 
of SSc is further strong evidence for the role and contribution 
of T helper cells, in particular of follicular T cells (TFH) in SSc.  
Indeed, TFH cells are increased in SSc peripheral blood and in 
the skin, they present an activated phenotype, increased capac-
ity to produce IL-21, and higher capacity to stimulate the differ-
entiation of CD19+CD27+CD38hi B cells and their secretion  
of IgG and IgM through the IL-21 pathway than healthy con-
trols. In experimental SSc, the blockade of IL-21 or of induc-
ible T cell co-stimulator ICOS (expressed by TFH) resulted in  
decreased skin fibrosis establishing a link between TFH cells 
and an immune-mediated fibrotic reaction [156, 157]. Finally, 
a study based on single-cell RNAseq has identified eight dis-
tinct T cell clusters, of which one uniquely present in SSc 
skin https://​doi.​org/​10.​1136/​annrh​eumdis-​2021-​220209. 
This CD4+ T cell subset is characterized by the expression 
of CXCL13 and IL-21 in addition to an TFH-like gene expres-
sion signature and that appears to be poised to promote B-cell 
responses within the inflamed skin of patients. Thus, the com-
posite picture provided by studies focusing on T cells in SSc is 
highly complex which may depend on the timing along disease 
course in which the study is made, with a relative predomi-
nance of type 2 responses early and of type 1 (IFN-γ) and 17  
later in disease course, when fibrosis tends to decrease, at  
least in the skin (Fig. 7).

B Cells and Humoral Immunity in SSc  B cells participate 
deeply to SSc pathogenic events both as precursors of autoAb 
producing cells and as inflammatory cells infiltrating tissues 
undergoing fibrosis, namely the skin and the lung [97, 158] 
where they release cytokines and may influence the behavior 
of fibroblasts and other mesenchymal cells [159] (Fig. 7). 
Reduced numbers of the Breg subset with decreased produc-
tion of IL-10 have also been documented and may participate 
to the dysregulated regulatory network in SSc [160].

https://doi.org/10.1136/annrheumdis-2021-220209
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Beyond autoAb directed against nuclear antigens character-
istic of SSc, cell-specific autoAb may very well be patho-
logically relevant. Examples are autoAb directed against the 
receptor A of endothelin-1 (ETAR) or the angiotensin-II 
type 1 receptor (AT1R), which were shown to affect several 
processes ranging from production of collagen by skin fibro-
blasts to angiogenesis modulation [7]. Antagonist autoAb 
directed against MMP1 and MMP3 were described to block 
the enzymatic activity of these proteins, thus reducing the 
digestion of matrix [161, 162]. In the other hand, autoAb 
with relevant agonist properties are those directed against 
the PDGFRα with induction of the ROS-ERK1/2-Ha-Ras 
loop and increased collagen gene transcription in human 
fibroblasts in vitro and in vivo in a humanized mouse model 

of skin fibrosis [163, 164]. These autoAb can be considered 
pathogenic and participate to disease progression in con-
junction with those directed against endothelial cells [64].

Microbiome and SSc  No doubt that microbiome influences 
deeply the immune response and this in two main ways 
[165] first, representing an antigenic challenge with whom 
the immune system needs to cope, mostly by establishing 
tolerance via different mechanisms but also generating spe-
cific innate and adaptive responses; second, by enforcing 
nutritional and metabolic cues that influence the immune 
response, beside the behavior of other host systems. Dys-
biosis is a modification of microbiota with relevant immu-
nological and metabolic consequences. Of interest, main 

Fig. 7   Adaptive immune responses and their roles in SSc. T cells, B 
cells, and their products contribute to both enhanced ECM deposition 
and vasculopathy. This schematic representation highlights the charac-
teristics of conventionally defined as well as of SSc-restricted T cell 
subsets. They may have enhancing or inhibitory functions (blunted 
heads: inhibitory function; arrowhead: enhancing function). T-B cell 
interactions are important for both the generation of agonist/antago-
nist autoAb and tissue damage. CD, cluster of differentiation; CXCL, 

chemokine containing the CXC motif; IFN-γ, interferon-gamma; IL, 
interleukin; TFH, T follicular helper cell; Th, T helper cell. Autoanti-
body specificities: AFA, anti-fibroblast; AT1R, angiotensin-II recep-
tor; ECA, endothelial cell; ETAR, endothein-1 receptor A; MMP, 
matrix metalloproteinase; NAG2, also known as transmembrane 4 
superfamily member 7; PDGF-Rα, platelet-derived growth factor 
receptor-alpha; UL-94, gene coding for the cytomegalovirus (CMV) 
cytoplasmic envelopment protein 2
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organs affected in SSc are the skin, the lung and the gut, 
which are barrier organs in which the microbiota resides. 
SSc-associated dysbiosis has been documented in the skin 
with decreased lipophilic taxa and a marked increase in a 
wide range of gram-negative taxa [166]. In the gut, a distinct 
microbial signature in SSc patients compared with healthy 
controls has been documented [167, 168] with indications 
for a reduction in protective butyrate-producing bacteria and 
by an increase in proinflammatory noxious genera, espe-
cially Desulfovibrio [169]. Similar findings were reported in 
gut microbiomes of IgG4-related disease and SSc patients 
showing increase in opportunistic pathogenic Clostridium 
and Streptococcus species, while butyrate-producing spe-
cies were depleted. Interestingly, the gut microbiomes of 
IgG4-RD and SSc showed signatures similar to those found 
in multiple sclerosis and rheumatoid arthritis, but not those 
found in inflammatory bowel diseases where the most dif-
ferentially abundant taxa are facultative anaerobes [170]. 
Thus, it is likely that the dysbiosis may influence disease 
initiation and disease evolution. At this time point, however, 
whether the microbiome alterations documented in SSc are 
primary or secondary to organ pathology and/or medication 
use is not yet established.

System Biology Approaches to Decipher SSc

Within the last decade or so, we have witnessed the increased 
application of techniques based on the unbiased identifi-
cation of gene expressed in SSc affected organs, particu-
larly but not exclusively the skin and the peripheral blood, 
and more recently single cell RNAseq, that exponentially 
increase the amount of information on cellular and tissue 
alterations characterizing SSc. Additionally, multi-“omics” 
approaches exploring metabolism, epigenetic modifications, 
phenotypes, etc. further contribute novel information. The 
wealth of data is then submitted to sophisticated analysis 
based on complex algorithms aiming at reducing the cata-
logued data to integrated dimensions that are comprehensi-
ble, simultaneously providing new understanding or novel 
perspectives for old knowledge. This type of studies should 
provide a wider conceptual framework to better understand 
SSc physiopathology.

Historically, the Whitfield group published the first gene 
array study on skin biopsies. Expressed genes differentiated 
SSc from healthy controls and were similarly expressed in 
involved and not involved skin [97]. Further analysis based 
on genes expressed in skin provided evidence for the exist-
ence of intrinsic SSc subsets named “inflammatory”, “fibro-
proliferative,” “limited,” or “normal-like” [171]. Active 
immune and defense responses were associated with the 
inflammatory subset; proliferation and cell cycle programs 
with the fibroproliferative subset; and the normal-like subset 

was associated with a distinct lack of inflammatory signa-
ture coupled with fatty-acid metabolism. The limited sub-
set showed deregulation of pathways associated with cell 
adhesion, cardiovascular system development, ECM, and 
immune and inflammatory responses [172]. According to 
these authors, the SSc intrinsic subsets were relatively sta-
ble throughout disease course and unlikely to change over 
time [98]. To identify genes co-expressed across various 
cohorts, consensus clustering analysis led to the identifica-
tion of conserved genes and networks common to distinct 
subsets [173]. The connected gene-gene networks included 
the terms: “adaptive immunity,” “interferon,” “M2 mac-
rophages,” “ECM,” and “proliferation.” A meta-analysis 
of genes expressed in multiple end-target organs including 
the skin, the lung, the esophagus and the peripheral blood 
provided evidence for the occurrence across organs of the 
intrinsic subsets, pointing to the existence of pro-fibrotic 
macrophages in multiple tissues [174].

Similar, but not identical, gene signatures were found 
by other authors with the identification of two promi-
nent transcriptomes in SSc skin: named the “keratin” and 
“fibroinflammatory” signatures. The first associated with 
shorter disease duration the second with diffuse cutane-
ous involvement and a higher modified Rodnan skin score 
(mRSS). A subgroup of patients with significantly longer 
disease duration had a normal-like transcript pattern [175]. 
Further data from the same group reinforced the concept 
that gene expressed in early disease had higher adaptive 
immune cell signatures than in later disease, while fibro-
blast and macrophage cell type signatures were associated  
with higher mRSS. Of further interest, the immune cell 
signatures correlated with the rate of skin thickness pro-
gression prior to, but not after, biopsy [151]. Overall, these 
results support the concept that the pathological processes 
characterizing SSc may be different during the disease 
evolution and enrich our understanding by subgrouping 
patients on the basis of preferential gene expression in  
target organs.

In another study, by generating a normalized catalog of 
differentially expressed genes (DEGs) from 344 skin sam-
ples of 173 patients and submitting DEG to pathway analy-
sis, patients with SSc were grouped into four distinct clusters 
that differed in activation levels of SSc-relevant signaling 
pathways. In this analysis, the phosphoinositide-3-kinase 
protein kinase B (PI3K-Akt) signaling pathway showed the 
closest correlation and temporal association to mRSS. Inter-
estingly, the inflammatory subtype was related to significant 
improvement in skin fibrosis at follow-up in the absence of 
specific treatment [176].

The identification of 415 DEG in skin differentiating SSc 
from HC allowed the generation of a score, named 4S, corre-
lating with mRSS and potentially useful to predict response 
to treatment [99].
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The identification of genes defining intrinsic SSc subsets 
provides ground for applying precision medicine in thera-
peutic approaches. Retrospective analysis of data generated 
during therapeutic trials has indeed offered elements sup-
portive for responses to therapeutic agents depending on the 
intrinsic subset of the treated individual. Thus, agents like 
mycophenolate mofetil or abatacept targeting the immune 
response may be efficacious in the inflammatory subset 
[177–179], while “anti-fibrotic” agents may be more effica-
cious for the fibroproliferative subset [180, 181]. Potentially 
surprising, in a post hoc analysis, individuals belonging to 
the fibroproliferative subset presented a significant advan-
tage in event free survival when undergoing hematopoietic 
stem cell transplantation (HSCT) compared to individuals 
treated with cyclophosphamide in the SCOT trial [182]. 
HSCT tended to confer an advantage over cyclophospha-
mide to individuals of the inflammatory subset, with no dif-
ferences between treatment arms for individuals belonging 
to the normal-like subset. Limiting factor in the interpreta-
tion of these data was the low number of samples and indi-
vidual trajectories available for these analyses; that however 
could provide novel dimensions in the selection of patients 
included in clinical trial beside classic clinical classification.

To summarize pathophysiological information gath-
ered until now by using big data and unbiased methods 
to identify SSc specificities, it appears that SSc hetero-
geneity extends beyond and does not overlap with classi-
cal clinical and serological parameters, that predominant 
gene signatures—intrinsic subsets—differ among SSc 
individuals and tend to persist during disease evolution, 
with however enrichment for immune response genes 
earlier, and macrophage—fibroblast gene later in disease 
course in severe cases. Not yet confirmed in prospective 
studies, responses to therapeutic approaches may differ 
among patient subsets according to the mechanism of the  
therapeutic agent assessed.

Conclusions and Perspectives

SSc represents a major challenge for our understating of 
physio-pathological processes leading to disease state and 
disease progression. The heterogeneity in SSc clinical 
manifestations influences disease identification and clas-
sification and, to a certain extent, our approach to medical 
management. However, the subtle mechanisms underpin-
ning clinical heterogeneity are, by far, poorly understood. 
Major progress in our understanding, based on increas-
ingly more precise identification of cell types and inter 
cellular signaling as well as of intracellular molecular cues 
at play in SSc physio-pathology has spurred enthusiasm in 
the scientific community and has led to the recent approval 
of therapeutic agents that may alter the disease course.  

We should admit, however, that the pace of improve-
ment is slow and a major gap still exist between scientific 
advancement and clinical application. We believe that the 
integration of “omics” approaches to sophisticated sys-
tem biology analyses will contribute to the refinement  
of our understanding and should be intensively applied, 
particularly in controlled clinical trials. By employ-
ing these methods, the comparisons in tissue responses 
between placebo and active arms in well characterized 
patient populations should provide interesting new infor-
mation on mechanisms at play in subsets of patients and 
their deviation under the pressure of therapeutic agents. 
In view of SSc clinical heterogeneity, possibly linked to 
heterogeneity in pathogenic mechanisms, it is unlikely that 
the responses to a given agent will be homogeneous. We 
believe that differences in responses within supposedly 
homogenous subsets of patients will be extremely informa-
tive from the pathogenic point of view and will provide 
substantial advancement. In this perspective, we propose  
that small rather than large trials, in which deep “omics” will  
be applied to extremely selected group of patients will 
provide relevant information. To overcome the constrains 
linked to the rarity of the disease, these trials should be 
conducted across multiple, well-coordinated, integrated, 
and equipped centers. Trials in which mechanisms will 
be primary outcomes will provide solid ground for solid  
therapeutic secondary outcomes.
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