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Abstract
The field of Immunology is one that has undergone great expansion in recent years. With the advent of new diagnostic 
modalities including a variety of genetic tests (discussed elsewhere in this journal), the ability to diagnose a patient with a 
primary immunodeficiency disorder (PIDD) has become a more streamlined process. With increased availability of genetic 
testing for those with suspected or known PIDD, there has been a significant increase in the number of genes associated 
with this group of disorders. This is of great importance as a misdiagnosis of these rare diseases can lead to a delay in what 
can be critical treatment options. At times, those options can include life-saving medications or procedures. Presentation of 
patients with PIDD can vary greatly based on the specific genetic defect and the part(s) of the immune system that is affected 
by the variation. PIDD disorders lead to varying levels of increased risk of infection ranging from a mild increase such as 
with selective IgA deficiency to a profound risk with severe combined immunodeficiency. These diseases can also cause a 
variety of other clinical findings including autoimmunity and gastrointestinal disease.
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Introduction

As the number of defined PIDDs increases, classification of 
the diseases remains important to those who care for these 
patients so that critical information can be easily dissemi-
nated [1, 2]. Additionally, a molecular diagnosis of those 
diseases provides a better understanding of infection risk 
and associated non-infectious comorbidities and allows for 
a more targeted treatment approach. Staying up to date with 
the ever-evolving number of PIDDs can be challenging as 
noted by Tangye et al. in their most recent update on novel 
inborn errors of immunity [2]. Due to a number of new 
diagnosable PIDDs since the last update just 1 year ago in 
2020, the IUIS (International Union of Immunologic Socie-
ties) Committee released an interim update in 2021. That 
update included 26 novel monogenic gene defects leading 
to inborn errors in immunity. This article includes recently 
described monogenic gene defects that have been associated 
with PIDDs.

Severe Combined Immunodeficiencies

Understanding of the genetic basis of severe combined 
immunodeficiency (SCID) has changed rapidly in the last 
decade with expanded newborn screening and improved 
genetic testing. Infants with SCID have an absence of 
functioning T lymphocytes with variable involvement of B  
lymphocytes and NK lymphocytes. Early diagnosis of dis-
ease is critical to allow for appropriate treatment, which can 
include hematopoietic stem cell transplantation (HSCT) or 
gene therapy. While many genetic causes of SCID have been 
previously described, several new genetic causes of SCID 
have been recently identified.

SCID Due to Cellular Defects

LAT Deficiency

Linker for activation of T cells (LAT) is a transmembrane 
molecule that acts as a scaffold protein in the T cell recep-
tor (TCR) signaling pathway. Different autosomal recessive 
mutations resulting in premature termination have been 
linked to immunodeficiency in two unrelated consanguine-
ous families [3, 4]. One family had complete loss of protein 
expression, and those infants had very low T lymphocyte 
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counts, with normal numbers of B lymphocytes and NK 
lymphocytes. Recurrent infections and failure to thrive 
were noted at presentation. In the second family, the protein 
retained some function, and those patients had a combined 
immunodeficiency clinical picture. These children had high 
numbers of γδ T lymphocytes and progressive development 
of lymphopenia and hypogammaglobulinemia. Clinically, 
they presented with recurrent infections, autoimmune cyto-
penias, lymphadenopathy, and hepatosplenomegaly. In both 
family groups, several patients died due to disease and trans-
plant complications.

SLP76 Deficiency

SH2 domain-containing leukocyte protein of 76kD (SLP76) 
associates with the Grb2 adaptor protein to act as a sub-
strate for tyrosine kinases in the TCR activation pathway. 
One patient has been described with a homozygous muta-
tion in the SLP76 gene that presented skin abscesses, rash, 
and autoimmunity [5]. Notable lab findings were very low 
CD4 + cells, clonally expanded CD8 + cells, and impaired 
PHA proliferation. Numbers of B lymphocytes and NK 
lymphocytes were normal, but the population of switched 
memory B cells was reduced.

EXTL3 Deficiency

Exostosin-like glycosyltransferase 3 (EXTL3) is part of a 
group of glycosyltransferases that regulate glycosaminogly-
can heparin sulfate. Nine patients from five unrelated fami-
lies were identified with homozygous pathogenic variants in 
EXTL3 [6]. All patients presented with skeletal abnormali-
ties and most had neurodevelopmental delay. Interestingly, 
three of the five families had a T − B + NK − SCID pheno-
type while two families had no immune dysfunction. Those 
with T − B + NK + phenotype also presented with erythro-
derma, eosinophilia, oligoclonal T cell expansions, and high 
risk of death in infancy.

RAC2 Gain‑of‑Function

RAC2 is required for the transfer of electrons in the NADPH 
oxidase pathway, and previous loss of function mutations 
were found in patients with impaired neutrophil chemot-
axis. Ten patients from six different families were identi-
fied to have heterozygous GOF mutations [7–10]. Patients 
have been described with low T cells, B cells, and NK cells. 
IgG levels are low with impaired specific antibody devel-
opment. Impairment can range from T − B − NK + SCID to 
combined immune deficiency. Clinically, affected individu-
als have recurrent bacterial and viral infections with some 

developing pulmonary failure and requiring lung transplant 
secondary to infections.

T − B + NK + SCID Due to Defects in Thymus 
Development

PAX1 Deficiency

PAX1 is one of the paired box (PAX) families of tran-
scription factors. PAX1 plays an important role in 
embryogenesis, specifically in the pharyngeal pouches 
that become the thymus. Homozygous mutations in PAX1 
had previously been identified as a cause of otofaciocer-
vical syndrome type 2 which is associated with microtia 
and other facial development abnormalities. A subset of 
patients with PAX1 mutations in three unrelated families 
has been described with a T − B + NK + SCID phenotype 
related to absent thymus tissue [11, 12]. These patients 
have an Omenn syndrome–like phenotype with erythro-
derma, eosinophilia, and severe bacterial infections. Sev-
eral infants have died following HSCT from infections. 
Testing revealed that even though most had evidence of at 
least partial donor chimerism, none were able to achieve 
T cell reconstitution. Thymic transplantation is required 
for treatment of these patients.

FOXN1 Haploinsufficiency

Forkhead box N1 (FOXN1) expression is required for 
development of thymic function as it is a transcription fac-
tor that regulates epithelial cells in the thymus. Homozy-
gous loss-of-function (LOF) mutations in FOXN1 have pre-
viously been identified as a cause of T − B + NK + SCID. 
With expanded TREC testing in newborns, a population 
of infants with FOXN1 haploinsufficiency was identified 
[13]. A study of 25 infants and 22 adults identified with 
heterozygous FOXN1 mutations revealed that prior to 
2 years of age, these children have noted to have low T 
lymphocyte counts involving both CD4 + and CD8 + cells. 
During infancy, these children were noted to have recurrent 
bacterial and viral infections that were sometimes severe. 
The CD4 + T lymphocyte count improved after age two, 
but CD8 + T lymphopenia was noted in most of the adults 
studied. The risk of severe infection is present until nor-
malization of CD4 + lymphocyte population, but HSCT did 
not lead to T lymphocyte reconstitution when pursued. The 
role of thymic transplant for infants with FOXN1 haplo-
insufficiency is not yet known. Many of the infants were 
noted to have eczema, and both age populations had nail 
dystrophy noted on exam.
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Combined Immunodeficiencies

Combined immunodeficiency (CID), like SCID, results 
from impaired functions of both the cellular and humoral 
immune systems. Unlike SCID, they do not generally 
cause fatality from infection in the first year of life 
but can result in significant morbidity and mortality. 
Improved testing has provided new insight into the 
genetic cause of many CIDs, including those which share 
features with previously described CIDs.

Hyper IgE Syndromes

In recent years, many genetic mutations have been identi-
fied that are associated with most of the features classi-
cally associated with autosomal dominant hyper IgE syn-
drome (AD-HIES) which is caused by a dominant negative 
mutation in STAT3. Most of these diseases are triggered 
by an autosomal recessive inheritance, but other dominant 
negative mutations have also been described.

ZNF341 Deficiency

ZNF341 is a C2H2-zinc finger transcription factor that 
binds to the promoter region of the STAT3 gene and is nec-
essary for expression of STAT3. Patients in four unrelated 
families were described with autosomal recessive muta-
tions in ZNF341 leading to low STAT3 expression and are 
phenotypically nearly identical to STAT3 deficiency with 
facial dysmorphism, eczema, recurrent skin and respira-
tory infections, susceptibility to mucosal fungal infections, 
and skeletal and joint abnormalities [14, 15]. Patients are 
noted to have decreased T-helper (Th)17 and NK cells, 
normal numbers of B cells with reduced memory B cells, 
and impaired specific antibody production in the context 
of elevated serum IgE and IgG.

IL‑6 Receptor Deficiency

Two patients were identified from unrelated families with 
homozygous mutations in the IL-6 receptor gene (IL6R) 
[16]. Both patients presented with eczema, recurrent 
skin abscesses, and pyogenic pneumonias beginning in 
infancy. Patients were found to have eosinophilia, elevated 
serum IgE, and slightly low IgG. Fevers are uncommon, 
and C-reactive protein (CRP) does not rise with infections. 
Patients have elevated serum levels of IL-6. In contrast to 
STAT3 deficiency, these patients have reduced but sufficient 
Th17 function and have not been found to be prone to fungal 
infections. One patient is well controlled with prophylactic 

antibiotics and intravenous IgG replacement, but the other 
has not had success with prophylactic antibiotics and con-
tinues to have frequent, pyogenic skin infections.

IL6 Signal Transducer Deficiency, Complete and Partial

The IL6ST gene encodes for a cytokine receptor subunit 
called GP130 that binds to multiple receptors including 
IL-6, IL-11, leukemia inhibitory factor (LIF), and oncostatin 
M. Two pathogenic, autosomal recessive variants have been 
identified in the IL6ST gene [17–20]. One defect inhibits 
signaling through all GP130-associated receptor pathways 
where the second defect inhibits signaling through all but 
the LIF receptor pathway.

The mutation that preserves LIF pathway signaling has 
been identified in two unrelated patients. Both patients have 
a phenotype remarkably like STAT3 deficiency with early-
onset pneumonias, elevated IgE, scoliosis, craniosynostosis, 
and eczema. These patients were shown to have absent STAT3 
response to IL6 stimulation. Patients can have decreased  
Th17 cells, reduced B cells, and eosinophilia.

The variant with complete LOF has been identified in 
seven patients from four families [19]. These patients were 
found to have a fatal Stuve-Weidermann-like syndrome. 
Many patients died in utero or in the early neonatal period 
with notable skeletal dysplasia and respiratory distress. One 
affected patient who lived to be 6 years of age developed 
eczema at 1 year of life and had scoliosis, short stature, and 
periods of hyperthermia. She died from cardiorespiratory 
arrest following scoliosis surgery.

IL6ST Dominant Negative

In addition to the two LOF variants in IL6ST, a dominant 
negative mutation has been described in 12 patients from 
8 unrelated families [21]. This pathogenic variant leads to 
accumulation of mutant proteins in the cell surface. These 
patients have been shown to have significantly elevated IgE, 
eosinophilia, eczema, recurrent pyogenic skin and pulmo-
nary infections, and scoliosis. However, unlike patients with 
STAT3 deficiency and IL6ST partial deficiency, the Th17 
cell population is normal.

ERBIN Deficiency

ERBB2-interacting protein (ERBIN) forms a cytoplasmic 
complex with STAT3, and phosphorylated SMAD2/3 that 
is integral to sequestering SMAD2/3 and ultimately has an 
inhibitory effect on transforming growth factor β (TGF-β). 
Unregulated TGF-β leads to an increase in T-regulatory 
(Treg) cells, increased IL-4Rα expression, and increased 
Th2 cytokine expression. Three related patients were found 
to have an autosomal dominant mutation in ERBIN and 
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share many features with STAT3 deficiency related to this 
altered complex formation including recurrent infections, 
eczema, elevated serum IgE, eosinophilia, retained primary  
teeth, and skeletal and vascular abnormalities [22]. Interestingly, 
patients with ERBIN deficiency do not have the recurrent 
fungal infections, decrease in Th17 lymphocytes, or specific 
antibody defects that are seen in STAT3 deficiency.

Elevated IgE Not Associated with HIES

Several reported PIDDs can present with a notably elevated 
IgE but do not share the other features associated with HIES. 
The following disorders have been described over the past 
few years.

CARD11 Dominant Negative

CARD11 (also known as CARMA1) is a scaffolding protein 
that functions in lymphocyte receptor signaling pathways 
including Nuclear Factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) and mechanistic target of rapamycin 
(mTOR) complex 1 pathways. Autosomal recessive mutations 
in CARD11 have been previously described as a cause of CID 
leading to risk of opportunistic infections such as Pneumocystis 
jiovecii (PJP). A germline GOF mutation in CARD11 has been 
shown to cause BENTA (B cell expansion with NF-κB and T 
cell anergy). Recently, a dominant negative heterozygous muta-
tion in CARD11 was identified in four patients in three families 
[23]. These patients were found to have normal T cell numbers 
with defective proliferation that results in Th2 skewing, normal 
B cells, eosinophilia, and an elevated serum IgE. Clinically, 
affected patients present with notable atopy, cutaneous viral 
infections, recurrent respiratory infections, and lymphoma.

STAT5b Dominant Negative

Homozygous pathogenic variants in STAT5B are associated 
with T lymphopenia and impaired proliferation. Recently, 
a dominant negative mutation was identified in multiple 
patients from three unrelated families [24]. These patients 
share some features with those with autosomal recessive 
STAT5b deficiency, notably short stature, which is related 
to the role that STAT5b plays in growth hormone signaling. 
Patients with the dominant negative mutation did not have 
immune dysfunction or recurrent infections but did have 
associated eczema and an increased serum IgE.

Arp2/3‑Mediated Filament Branching Defect

Defects in the Actin-related protein 2/3 complex subunit 1 
B gene (ARPC1B) have been described to cause an autoso-
mal recessive disease that shares some clinical features with 
patients who do not express Wiskott-Aldrich syndrome protein 

(WASP) [25–27]. These patients had thrombocytopenia with 
small or normal platelet size and associated-bleeding episodes. 
Patients are at risk for invasive bacterial infections and signifi-
cant cutaneous viral infections. They also have increased rates 
of atopic diseases including eczema, food allergy, and asthma, 
and frequently have associated eosinophilia and elevated serum 
IgE and IgA levels, though specific antibody function is nor-
mal. Inflammatory complications of vasculitis and colitis have 
been reported. Immunologic testing is notable for defective 
Treg function and defects in cytoskeleton function that impact 
the formation of the immunologic synapse.

Combined Immunodeficiencies Associated with DNA 
Repair Defects

NSMCE3 Deficiency

The NSMCE3 gene (also known as NDNL2) encodes a subu-
nit of the SMC5/6 complex that is necessary for DNA dam-
age repair. Four children from two unrelated families with 
biallelic, pathogenic variants in NSMCE3 were described to 
have severe pulmonary disease following viral respiratory 
infections [28]. All identified children died in early child-
hood from complications of severe lung disease. Patients 
presented with failure to thrive, and 50% had infantile 
eczema. Patients were noted to have thymic hypoplasia, T 
lymphopenia, impaired mitogen and antigen-related prolif-
eration, and impaired-specific antibody responses. The DNA 
repair defect was in homologous repair, but VDJ recombina-
tion and B lymphocyte numbers were normal. Evidence of 
radiation sensitivity was also identified.

GINS1 Deficiency

The Go-Ichi-Ni-San complex subunit 1 (GINS1, aka PSF1) is  
necessary for DNA replication. Homozygous null mutations 
have been shown to be lethal for mice during embryogenesis.  
Five patients in four unrelated families were found to have 
compound heterozygous variants, with at least one hypo-
morphic mutation [29]. These patients presented with intrau-
terine growth retardation, viral infections, and malignancy. 
Immunophenotyping was notable for very low NK cell  
counts, neutropenia, and variable lymphocyte counts. Neu-
trophil counts were found to increase with bacterial infec-
tions and G-CSF treatment.

Humoral Immunodeficiencies

Humoral immunodeficiencies have primary defects in the B 
cell lineage. These defects can cause issues with B cell develop-
ment and secondary abnormalities in immunoglobulin produc-
tion. Associated autoimmunity is common in these diseases as  
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are mild impairments in T and NK cell populations. The  
most common symptomatic humoral immunodeficiency is 
common variable immunodeficiency (CVID) which involves 
low IgG, low IgM or IgA, and impaired antibody production 
to specific antigens. Many of these patients have defects in  
production or maintenance of switched memory B cells.

FNIP1 Deficiency

Six patients from five unrelated families were identified with 
homozygous or compound-heterozygous mutations in folli-
culin interacting protein 1 (FNIP1) [30, 31]. Some patients 
had complete absence of B cells and subsequent agamma-
globulinemia. Patients presented clinically with recurrent 
sinopulmonary and gastrointestinal infections. In addition to 
infection-related complications like bronchiectasis, patients 
had Wolff Parkinson White syndrome, hypertrophic cardio-
myopathy, myopathy, developmental delay, and neutropenia.

IRF2BP2 Deficiency

A father and his two children with CVID diagnoses were 
identified to have a heterozygous mutation in IRF2BP2 
[32]. IRF2BP2 encodes a transcriptional co-pressor of the 
NFAT family. Homozygous LOF mutations in IRF2BP2 
are not viable in mice, and at this time it is not clear what 
role IRF2BP2 plays in the immune response. Heterozygous 
patients in the study presented in late adolescence with 
recurrent sinus infections, low IgG and IgM levels, absent 
IgA, and decreased switched memory B cell populations. 
One patient subsequently developed CVID-associated 
colitis.

NFE2L2 Autosomal Dominant

NFE2L2 encodes a transcription factor, NRF2. Four patients 
from unrelated families were found to have different auto-
somal dominant mutations that lead to loss of function of 
NRF2 [33]. Affected patients presented with recurrent lung, 
sinus, and skin infections, developmental delay, failure to 
thrive, and weakness. Laboratory studies were notable for 
hypogammaglobulinemia with reduced memory B cells, low 
homocysteine, and increased G6PD activity.

ATP6AP1 Deficiency

ATP6AP1 encodes a subunit of V-ATPase, which is necessary 
for acidification of both intracellular organelles and the extra-
cellular space. Pathogenic variants in ATP6AP1 are associated 
with disorders of glycosylation and lead to involvement of 
multiple organ systems.  X-linked, pathogenic, hemizygous, 
variants in this gene have been identified in multiple unrelated 
families to cause an associated humoral immunodeficiency 

[34–37]. Patients present with recurrent invasive infections, 
developmental delay, and hepatopathy. In infants, cutis laxa 
has also been described. The mutation is associated with mild 
to severe hypogammaglobinemia, leukopenia, and low copper. 
Fatality due to liver failure has been reported.

ARHGEF1 Deficiency

ARHGEF1 functions to activate guanosine triphosphate 
RhoA in the signaling of G protein-coupled receptors. In 
B cell-like diffuse large B cell lymphomas, homozygous 
somatic mutations in ARHGEF1 are associated with an ina-
bility to signal with sphingosine-1-phosphate. Two related 
patients were identified with compound heterozygous ger-
mline mutations in ARHGEF1 [38]. These patients presented 
with recurrent pneumonia and subsequent bronchiectasis. 
Both were found to have hypogammaglobinemia, absent spe-
cific antibody production, low total and switched memory 
B cell counts, and low CD8 + effector memory cells. One 
patient developed autoimmune thrombocytopenia and one 
developed bronchial mucoepidermoid carcinoma.

SH3KBP1 X‑linked Deficiency

SH3KBP1, also known as CIN85, encodes a Cbl-interacting 
protein that forms a complex with SLP65. Two male sib-
lings were identified with pathogenic germline mutations in 
SH3KBP1, located on the X chromosome [39]. One sibling 
died at age 15 from septic shock and had a history of recur-
rent pneumonia, otitis media, and sinusitis with very low 
immunoglobulin levels. The other brother had a history of 
recurrent infections until age 4 but no history of infections 
between 4 years of age and 12 years of age. He was found 
to have low serum IgM, low IgG4, and a non-protective 
response to unconjugated polysaccharide pneumococcal 
vaccination.

SEC61A1 Deficiency

SEC61A1 encodes for a subunit of the heterotrimeric Sec61 
complex that forms a pore in the endoplasmic reticulum. 
Its function is necessary for the ability of the plasma cell 
to regulate endoplasmic reticulum stress. Ten people in one 
extended family and three people in an additional unrelated 
family, all with recurrent bacterial infections, were identified 
to have mutations in SEC61A1 [40]. Affected patients had 
decreased serum IgG, IgM, and IgA levels and an impaired 
specific antibody response. The first family had a heterozy-
gous missense mutation, while the second had a nonsense 
mutation leading to haploinsufficiency. Immunophenotyping  
showed normal T, B, and NK cell populations (including 
switched memory B cells); however, plasma cell development 
was impaired.
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PIK3CG Deficiency

PIK3CG encodes for a subunit of PI3Kγ, which is critical 
to regulating inflammation. Two unrelated patients have 
been identified with compound heterozygous mutations in 
PIK3CG [41, 42]. One patient presented in adolescence with 
a hemophagocytic lymphohistiocytosis (HLH)–like pres-
entation. She had low T cell populations, but B cells and 
immunoglobulin levels were normal. The second patient pre-
sented with cryptogenic organizing pneumonia, hypogam-
maglobulinemia, specific antibody defects, lymphadenopa-
thy, splenomegaly, and autoimmune cytopenias. She has 
subsequently developed enterocolitis.

CTNNBL1 Deficiency

CTNNBL1 encodes β-catenin-like protein 1, which binds 
to activation-induced cytidine deaminase (AID) to induce 
somatic hypermutations. One patient was identified with 
a homozygous mutation in CTNNBL1 [43]. The patient 
presented at age two with recurrent sinopulmonary and 
HSV infections, autoimmune cytopenias, and progressive 
hypogammaglobulinemia. She was found to have low T, B, 
and NK cell counts with absent switched memory B cells.

APRIL (TNFSF13) Deficiency

TNFSF13 encodes a proliferation-inducing ligand (APRIL) 
which works alongside B cell activating factor (BAFF) in 
B cell maturation and maintenance. One patient, born to 
consanguineous parents, was found to have a homozygous 
mutation in TNFSF13 that was associated with hypogam-
maglobulinemia [44]. His history was notable for unremark-
able infections in childhood. He was monitored without IgG 
replacement for 10 years; replacement was started following 
mild infection. He had subsequent development of alopecia 
areata. Immunophenotyping showed normal T and NK cells 
with decreased switched memory B cells.

Disorders of Immune Dysregulation 
and Autoimmunity

Advances in DNA sequencing technologies have expanded 
the historical definition of what constitutes a primary 
immunodeficiency. Instead of presenting with a more 
classic picture of severe or recurrent infections, molecular 
defects impacting immunologic tolerance, T cell signal-
ing, and responses to cellular/pathogen debris can lead 

to immune disorders that present with more prominent 
features of autoimmunity and immune dysregulation [45].

Disorders of Regulatory T cells

Since the initial identification that immune dysregulation, 
polyendocrinopathy, enteropathy, with X-linked inherit-
ance (IPEX) syndrome was caused by pathogenic variants 
in FOXP3 leading to a Treg cell defect, many other disorders 
have been described as the result Treg deficiency or dysfunc-
tion [46].

CD122 Deficiency

The interleukin-2 receptor subunit beta (CD122) is an 
important part of both the high-affinity IL-2 receptor 
(formed by CD25, CD122, and CD132) and the intermediate 
IL-2 receptor (formed by CD122 and CD132). While patho-
genetic variants in both CD25 and CD132 have been well 
described, autosomal recessive mutations in CD122 were 
independently described in five separate kindreds [47, 48]. 
Patients presented with early-onset autoimmunity, including 
enteropathy, skin abnormalities, and autoimmune hemolytic 
anemia, similar to patients with IPEX syndrome, but addi-
tionally showed increased susceptibility to cytomegalovirus 
(CMV) and Epstein-Barr virus (EBV). This increased herpes 
virus susceptibility is thought to be secondary to the expres-
sion of the intermediate IL-2 receptor that binds both IL-2 
and IL-15 on CD8 + T cells and NK cells. Subsequently, 
patients with CD122 deficiency had increased amounts of 
immature NK cells with decreased CD122 expression.

Bach2 Deficiency

The BTB and CNC homolog 2 (BACH2) super-enhancer 
transcription factor is expressed in both T and B lympho-
cytes and is crucial for the differentiation and maturation 
of these cells as well as for the development of Treg cells 
[49]. Genetic variations within BACH2 have been previously 
associated with many immune-mediated diseases including 
multiple sclerosis, rheumatoid arthritis, chronic pancreatitis, 
asthma, inflammatory bowel disease, and type 1 diabetes. 
More recently, autosomal dominant, missense mutations 
within BACH2 were described in three individuals from 
two separate families with early-onset autoimmunity and 
immunodeficiency [50]. Patients presented with autoimmune 
lymphocytic colitis and sinopulmonary infections and devel-
oped a progressive T cell lymphopenia. Immunophenotyping 
was notable for impaired memory B cell development, vari-
able hypogammaglobulinemia, and decreased expression of 
Foxp3 within Tregs as a result of Bach2 haploinsufficiency.
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DEF6 Deficiency

DEF6 is a unique guanine nucleotide exchange factor that 
acts downstream of the TCR to activate small GTPases and 
promote  Ca2+ signaling, NFAT1 activation, and T cell adhe-
sion. Recently, biallelic variants in DEF6 were described 
in seven individuals from three separate families with 
early-onset autoimmunity and recurrent infections [51, 52]. 
Patients presented with a variable phenotype of enteropathy, 
autoimmune cytopenias, lymphoproliferation, and increased 
susceptibility to EBV infection/lymphoma. Immunologic 
evaluation was notable for mild T and B cell lymphopenias 
with an expansion of Foxp3 + CD25 − Treg cells and signifi-
cantly decreased expression of CTLA4 on both stimulated 
and unstimulated-memory Treg cells. The authors go on to 
demonstrate that memory Treg cells from DEF6-deficient 
individuals showed impaired trafficking and expression of 
the checkpoint inhibitor CTLA4 that could be contributing 
to the autoimmune phenotype.

Defective T cell Signaling Resulting in Systemic 
Autoimmunity

Cellular signaling downstream of the TCR and a variety 
of cytokine receptors is necessary for normal T and B cell 
development. It is also required for initiating a coordinated 
immunologic response and returning to a state of homeo-
stasis once a threat has been eliminated. This often involves 
a delicate balance of activation and inhibition mechanisms 
that when altered can lead to unchecked inflammation and 
subsequent autoimmunity.

SOCS1 Haploinsufficiency

Suppressor of cytokine signaling 1 (SOCS1) is an impor-
tant negative regulator of type 1 and type 2 interferon (IFN) 
signaling through its inhibition of Janus kinase (JAK) activ-
ity and subsequent downregulation of STAT1 and STAT2. 
Dominant mutations in SOCS1 have recently been described 
in several patients presenting with variable, early-onset, mul-
tisystemic autoimmunity including cytopenias, systemic 
lupus erythematosus, glomerulonephritis, psoriasis, arthri-
tis, thyroiditis, hepatitis, and lymphoproliferation [53, 54]. 
Patient immunophenotyping was notable for T cell lympho-
penias, decreased switched memory B cells, increased CD21 
low B cells, and hypogammaglobulinemia with increases in 
STAT1 phosphorylation and expression of type I and type II 
interferon (IFN)-stimulated genes. One patient with SOC1 
haploinsufficiency was reported to develop SARS-CoV-
2-triggered autoimmunity, which was thought to be related 
to increases in type 1 and type 2 interferon signaling [55].

ZAP 70 Mixed LOF and GOF

ZAP 70 is necessary in TCR signaling and homozygous 
LOF mutations cause a SCID with notable decreases in 
CD8 + T cells. A sibling pair was identified that had com-
pound heterozygous mutations, one mutation that caused 
reduced function, and one that caused gain of function of 
ZAP 70 [56]. These siblings had severe autoimmunity that 
began in early infancy including bullous pemphigoid, coli-
tis, and autoantibody to factor VIII triggered hemophilia. 
Symptoms were resolved in both patients following HSCT.

Immunodysregulatory Disorders Associated 
with Hemophagocytic Lymphohistiocytosis

Defects in cytotoxic CD8 + T cells, NK cells, or inflamma-
some regulation can result in severe systemic inflammation, 
macrophage activation, and subsequent hemophagocytosis. 
Many primary immunodeficiencies have been identified 
where HLH is either the predominant feature or a described 
complication, often in the context of infection [57].

Hermansky‑Pudlak Syndrome Type 10

Biallelic defects in AP3D1, which encodes the delta subunit 
of the adaptor protein 3 (AP3) complex involved in lyso-
some trafficking, were recently identified in a single patient  
as an additional cause of Hermansky-Pudlak syndrome 
(HPS), classified as HPS type 10 [58]. The clinical presen-
tation was similar to HPS type 2 with oculocutaneous albi-
nism, mild facial dysmorphism, microcephaly, hip dysplasia, 
chronic neutropenia, persistent hepatosplenomegaly, reduced 
cytotoxic lymphocyte degranulation, and susceptibility to 
airway infections. Additionally, the index patient developed 
early-onset neurologic symptoms including microcephaly, 
severe neurodevelopmental delay, generalized seizures, and 
hearing impairment not seen in HPS2. The authors dem-
onstrate that a deficiency of the delta subunit destabilizes 
the AP3 complex and was associated with degradation of 
all other subunits. The patient ultimately died after turning  
3 years old from septic pneumonia.

TIM3 Deficiency

T cell immunoglobulin and mucin domain-containing 
protein-3 (TIM3) encoded by the hepatitis A virus cel-
lular receptor 2 (HAVCR2) gene is an inhibitory receptor 
expressed on T cells, B cells, dendritic cells, and mac-
rophages and is thought to be important for inducing T cell 
exhaustion. Biallelic pathogenic variants in HAVCR2 have 
now been identified as a cause of subcutaneous pannicu-
litis–like T cell lymphoma (SPTCL) and associated HLH 
[59–62]. Affected patients are more likely to manifest with 
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HLH and require HSCT compared to those with other vari-
ants of SPTCL and have also been reported to have recur-
rent, clonally unrelated lymphoma [60, 61].

MCM10 Deficiency

Biallelic LOF variants in MCM10, which is important for 
cell replication, were described in one patient who pre-
sented with very low NK cell counts, fever, and CMV 
infection [63]. His course was consistent with HLH with 
elevated ferritin and low fibrinogen levels. He underwent 
HSCT but died from CMV complications. A separate 
family was identified that had three intrauterine fatalities 
related to restrictive cardiomyopathy [64]. These fetuses 
were also found to have compound heterozygous LOF 
mutations in MCM10.

HEM1 Deficiency

Hematopoietic protein-1 (HEM1) is a member of the 
WASP-family verprolin-homologous protein (WAVE) 
regulatory complex that stimulates F-actin polymeriza-
tion in response to activation of several immune receptors 
and is important for activation, migration, and synapse 
formation. Recently, biallelic LOF variants in NCKAP1L, 
the gene that encodes for HEM1, were shown to be associ-
ated with a novel primary immunodeficiency associated 
with lymphoproliferation, hyperinflammation, and fea-
tures of HLH [65–67]. Affected patients manifested with 
sinopulmonary infections and skin infections coupled 
with cytoskeleton abnormalities, autoantibody produc-
tion, increases in exhausted memory T cell populations, 
abnormal T cell activation, and an overproduction of Th1 
cytokines.

Immunodeficiencies Associated 
with Hypereosinophilia

JAK1 Gain of Function

Four patients from two different families have been iden-
tified to have germline GOF mutations in the inhibitory, 
pseudokinase domain of Janus kinase 1 (JAK1) [68, 69]. 
Increased basal phosphorylation of STAT proteins and active 
target gene transcription in both stimulated and unstimulated 
patient T and B cells was seen in vitro. Unlike biallelic, 
JAK1 LOF mutations that are associated with increased sus-
ceptibility to atypical mycobacterial infections, patients with 
autosomal dominant, JAK1 GOF present with severe atopic 
dermatitis, profound hypereosinophilia with associated 
eosinophilic gastrointestinal disease, hepatosplenomegaly, 
and failure to thrive. Patients were successfully treated with 
JAK inhibitors.

STAT5b GOF

STAT5B GOF mutations have been previously described in 
patients with leukemia and lymphomas [70, 71]. Recently, 
somatic mutations in STAT5B have been identified to cause 
a hypereosinophilic syndrome. Two patients with non-clonal 
eosinophilia, atopic dermatitis, urticaria-like rash, and diar-
rhea who were found to have STAT5B GOF mutations were 
recently reported [70]. Functional T cell studies in these 
patients confirmed a marked increase in STAT5b respon-
siveness to a variety of cytokines. Affected patients also had 
minimally increased baseline activity compared with cells 
from their parents and unrelated controls.

Immunodeficiencies with Early‑Onset Enteritis/
Enteropathy

Autoimmune and inflammatory gastrointestinal disease is a 
common manifestation in patients with underlying PIDDs. 
Although the overall incidence of traditional, polygenic 
inflammatory bowel disease (IBD) appears to be increasing 
among younger children, early manifestation of enteritis and/
or enteropathy should raise one’s suspicion of an underlying 
monogenic immunodeficiency [72].

TGF‑β1 Deficiency

Transforming growth factor beta 1 (TGF-β1) is a mem-
ber of the TGF-β family of proteins that controls embryo-
genesis, development, and homeostasis. Recently, bial-
lelic LOF variants in the TGFB1 gene were described in 
three individuals with very-early-onset IBD and neuro-
logic abnormalities [73]. Patients presented in the first 
few months of life with bloody diarrhea, failure to thrive, 
microcephaly, encephalopathy, seizures, and recurrent 
viral infections, and two of the three affected individuals 
died before the age of four. Immunologic evaluation was 
notable for decreased T cell proliferation to antigens, anti-
CD3, and anti-CD28.

RIPK1 Deficiency

Receptor-interacting serine/threonine kinase 1 (RIPK1) is an 
important regulator of inflammation and cell death responses 
downstream of tumor necrosis factor (TNF)  receptor 1. 
Biallelic LOF variants in this key signaling molecule have 
been described in patients presenting with very-early-onset 
IBD, lymphopenia, and arthritis [73, 74]. Patients also have 
recurrent viral, bacterial, and fungal infections secondary 
to impaired innate and adaptive immunity. Immunopheno-
typing was notable for impaired activation of MAP kinase 
and NFκB pathways, increased inflammasome activity, and 
impaired TNF-α-mediated cell death.
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ALPI Deficiency

Intestinal alkaline phosphatase (ALPI) is a metalloenzyme 
that catalyzes phosphate hydrolysis of bacterial lipopolysac-
charide (LPS) and is important for maintaining homeostasis 
by reducing Toll-like receptor (TLR) 4 activity. Recently, 
biallelic LOF mutations were described in two unrelated 
patients presenting with early-onset, severe IBD with pan-
colitis and ulcerations [75]. Affected individuals had unde-
tectable ALPI activity in their stool and required bowel 
resections after having poor responses to anti-TNF therapy.

TRIM22 Deficiency

Tripartite motif-containing 22 (TRIM22) is a RING finger 
E3 ubiquitin ligase that has been shown to have antiviral 
activity and activate NF-κB signaling. Biallelic LOF vari-
ants in TRIM22 have been described in eight patients with 
early-onset IBD characterized by granulomatous colitis 
and severe perianal disease [76, 77]. Described variants 
were shown to disrupt NOD2-dependent IFN-β and NF-κB 
signaling.

CD55 Deficiency

CD55 or CHAPLE disease is an autosomal recessive dis-
ease caused by mutations of the complement regulator CD55 
gene leading to a loss of protein expression (78, 79). CD55 
deficiency is associated with hyperactivation of comple-
ment, angiopathic thrombosis, and severe protein-losing 
enteropathy (PLE). There have been 11 patients reported 
with abdominal pain and diarrhea caused by early-onset 
PLE with primary intestinal lymphangiectasia. Other mani-
festations of this genetic mutation can include edema due 
to hypoproteinemia, malabsorption, bowel inflammation, 
recurrent infections, and angiopathic thromboembolic dis-
ease [78, 79].

Autoinflammatory Syndromes

There has been an incredible expansion in our knowledge 
about autoinflammatory disorders which has been in con-
junction with our ability to find genetic causes of these 
diseases. A number of these diseases are associated with 
arthritis/arthralgias.

Type I Interferonopathies

Type I IFNs are widely expressed cytokines that are impor-
tant for antiviral immunity and cancer immunosurveillance. 
Several inborn errors of immunity have now been described 
that are characterized by constitutive activation of the type I 

INF pathway, resulting in an autoinflammatory and autoim-
mune phenotype [80].

USP18 Deficiency

Biallelic LOF mutations in ubiquitin-specific peptidase 18 
(USP18) have been described in six patients that were born 
with a pseudo-TORCH syndrome [81, 82]. USP18 acts as 
an important negative regulator of type I IFN signaling by 
blocking the interaction between JAK1 and the type I IFN 
receptor 2 and by enzymatically removing the ubiquitin-
like protein ISG15. USP18-deficient fibroblasts showed 
enhanced induction of IFN-stimulated gene transcripts after 
IFN stimulation in vitro. Patients presented perinatally with 
intracranial hemorrhage, calcifications, brain malformations, 
liver dysfunction, thrombocytopenia, and a septic-shock like 
picture with respiratory failure and seizures. While most 
infants did not survive beyond the perinatal period, one was 
able to be successfully treated with JAK inhibition therapy 
and was last reported to be in remission at 2 years of age 
[82].

STAT2 GOF (Phenocopy of USP18)

While LOF mutations in STAT2 are known to cause an inborn 
error of immunity predisposing to severe viral infections, a 
homozygous GOF mutation in STAT2 was recently described in 
a single infant born to consanguineous parents [83]. The patient 
presented with an early-onset, fatal, severe inflammatory pic-
ture, similar to USP18 deficiency. Interestingly, the described 
variant exerted a GOF effect through a loss of STAT2’s abil-
ity to appropriately traffic USP18 to IFNAR2, resulting in 
impaired, negative regulation of type I INF signaling.

OAS1 GOF

Five patients from three different families who presented with 
infantile-onset pulmonary alveolar proteinosis and hypogam-
maglobulinemia were identified to have heterozygous GOF 
mutations in the IFN-induced antiviral protein 2′–5′ oligoad-
enylate synthetase 1 (OAS1) [84]. All children developed 
symptoms after respiratory tract infections. While the exact 
mechanism of the defect has not yet been elicited, the authors 
speculate that the defect leads to an exaggerated response to 
viral infections leading to alveolar macrophage dysfunction and 
impaired lung surfactant catabolism. HSCT was associated with 
improvement of pulmonary alveolar proteinosis in two patients.

LSM11 and RNU7‑1 Deficiency

Since Aicardi-Goutières syndrome (AGS) was initially 
described in 1984, as a “progressive disorder of the cen-
tral nervous system with bilateral spasticity and dystonia, 
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acquired microcephaly, and a rapid course toward profound 
deterioration and death,” pathogenic variants in several 
genes that lead to upregulation of type I INFs have been 
described to cause an AGS-like phenotype [85]. Recently, 
biallelic LOF variants in both LSM11 and RNU7-1 were 
identified as novel genetic causes of an AGS interferonop-
athy [86]. The authors demonstrate that LOF of either of 
these two components of the replication-dependent histone 
pre-mRNA–processing complex results in a disturbance 
of histone mRNA expression and protein status in affected 
fibroblasts in vitro that lead to aberrant interferon signal-
ing by the double-stranded DNA sensor cyclic GMP–AMP 
synthase (cGAS).

CDC42

The cell division control protein 42 homolog (CDC42) 
gene encodes a Rho family GTPase that is important for 
a wide variety of cellular pathways including: cell polar-
ity and migration, adhesion, actin polarization, cytoskeletal 
structure, and cell-cycle progression. Several patients have 
now been described with heterozygous variants in CDC42 
that have displayed a broad clinical phenotype, which is 
somewhat related to the location of the variant within the 
gene [87–98]. Pathogenic variants in the switch II domain 
of the gene generally result in Takenouchi-Kosaki syndrome, 
which is characterized by neurodevelopmental delay, dys-
morphic facies, macrothrombocytopenia, musculoskeletal 
anomalies, lymphedema, and frequent infections [87, 88, 
90–92]. Variants that affect the association with CDC42/
RAC-interacting binding motifs can have profound effects on 
development resembling RASopathies [89]. More recently, 
pathogenic variants in the C-terminus region of the gene 
were reported to cause a severe, autoinflammatory syndrome 
characterized by neonatal onset of pancytopenia, autoinflam-
mation, rash, and episodes of hemophagocytic lymphohis-
tiocytosis (NOCARH syndrome) secondary to aberrant sub-
cellular localization of CDC42, enhanced NF-κB signaling, 
dyshematopoiesis, and NK cell dysfunction [94–97]. In 
these patients, IL-1 blockade with anakinra, IFN-γ inhibition 
with emapalumab, and HSCT have been successful.

Inflammasome Defects

The inflammasome is a multimeric protein complex that 
initiates inflammation through the activation of caspase-1 
and subsequent release of IL-1β and IL-18 in response to 
microbial or endogenous danger signals [99]. Although 
inflammasome activation is an important part of innate 
immunity, there are now several monogenic defects relating 
to the inflammasome that lead to aberrant autoinflammation.

NLRP1 Deficiency and GOF

NLRP1 was the first NOD-like receptor that was described 
but the most recent to be associated with human disease. 
It is the largest inflammasome sensor, and its activation is 
thought to be uniquely dependent on proteasomal degrada-
tion [100]. Pathogenic GOF variants in the PYD domain 
have been associated with palmoplantar carcinoma, famil-
ial keratosis lichenoides chronica, and corneal intraepithe-
lial dyskeratosis without significant systemic inflammation 
[101, 102]. In contrast, a more autoinflammatory phenotype 
with periodic fevers, arthritis, and dyskeratosis has been 
described in patients with pathogenic variants between the 
NACHT and LRR domains and in the FIIND domain, which 
is unique to NLRP1 [103]. Treatment involves IL-1 blockade 
to control the systemic inflammation and retinoic acid and 
vitamin A for the skin manifestations.

RIPK1 GOF

In addition to the autosomal recessive immune dysregulation 
and early-onset IBD that is associated with LOF variants 
in RIPK1, an autosomal dominant autoinflammatory disor-
der with periodic fevers, lymphoproliferation, arthralgias, 
and microcytic anemia has been described [104, 105]. The 
autoinflammatory phenotype that is seen in these patients 
is the result of missense mutations that prevent the caspase 
cleavage of RIPK1, an important regulative mechanism to 
inhibit necroptosis and maintain inflammatory homeosta-
sis. Five of the six described patients had a good treatment 
response to steroids and anti-IL-6R therapy but not IL-1 or 
TNF blockade.

Non‑inflammasome‑Related Defects

OTULIN Deficiency

OTULIN is a deubiquitinating enzyme that removes methio-
nine 1-linked polyubiquitin signals conjugated by the linear 
ubiquitin chain assembly complex (LUBAC) and plays an 
important role in negatively regulating TNF-related NF-κB 
signaling. Patients with biallelic LOF variants in OTULIN 
present with a severe, OTULIN-related autoinflammatory 
syndrome (ORAS) characterized by recurrent fevers, diar-
rhea, panniculitis, and arthritis [106–109]. OTULIN was 
also recently shown to be important for liver homeostasis, 
with progressive steatotic liver disease being reported in 
an OTULIN-deficient patient [110]. Affected patients have 
enhanced LUBAC induction of NF-κB activation leading to 
increases in proinflammatory cytokines. Both TNF inhibi-
tion and HSCT have been reported as possible treatment 
strategies [106–108].
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A20 Haploinsufficiency

An association between mutations in the gene TNFAIP3, 
encoding the NF-κB regulatory protein A20, and autoin-
flammatory disease has been described with symptoms that 
often start in early childhood [111]. The main clinical find-
ings associated with this diagnosis are recurrent oral, genital, 
or gastrointestinal ulcers. There have also been arthralgias, 
cutaneous lesions, episodic fever, ocular inflammation, and 
recurrent infections associated with the disease. Clinical 
phenotypes can vary between patients, even those within 
the same family. The inheritance pattern for this disorder is 
autosomal dominant.

Congenital Defects of Phagocyte Number 
or Function

Congenital Neutropenia

SMARCD2 Deficiency

Biallelic LOF variants in SMARCD2 (SWI/SNF-related, 
matrix-associated, actin-dependent regulator of chromatin, 
subfamily D, member 2) have recently been described in five 
individuals from unrelated families as a cause of abnormal 
neutrophil development and function similar to the pheno-
type of specific granule deficiency caused by LOF mutations 
in the transcription factor CCAAT-enhancer-binding protein 
ε (C/EBPε) [112, 113]. SMARCD2 has been shown to inter-
act with C/EBPε and is important for myeloid differentiation 
and granulopoiesis. Clinically, affected patients presented 
with delayed separation of the umbilical cord, severe bac-
terial infections, developmental aberrations (learning dif-
ficulties), misaligned teeth, brittle nails, and progressive 
myelodysplasia. SMARCD2-deficient neutrophils were 
found to have absent granule proteins, functional defects of 
chemotaxis, and impaired bacterial killing with a reduced 
neutrophil oxidative burst response to platelet-activating fac-
tor and N-formylmethionyl-leucyl-phenylalanine.

Shwachman‑Diamond Syndrome

Shwachman-Diamond syndrome is a congenital multisystem 
disorder characterized by exocrine pancreatic dysfunction, 
skeletal abnormalities, neutropenia, and associated bone 
marrow failure. Over the last few years, pathogenic muta-
tions in three additional genes important for ribosome bio-
genesis have been described to cause a Shwachman-Diamond  
phenotype. Biallelic LOF mutations in DNAJC21 and EFL1 
were reported to cause short stature with metaphyseal dys-
plasia, developmental delay, exocrine pancreatic dysfunc-
tion, and neutropenia with DNAJC21 deficiency presenting 

with more profound global bone marrow failure by 12 years 
of age [114–118]. Additionally, heterozygous mutations in 
SRP54, which codes for a key protein in the ribonucleopro-
tein complex that mediates the co-translational targeting and 
translocation of secretory and membrane proteins to the ER, 
have been described to cause a Shwachman-Diamond-like 
syndrome [119, 120]. Affected patients develop a profound 
neutropenia with a maturation arrest at the promyelocytic 
stage occurring within the first months of life and variable 
neurodevelopmental delay and exocrine pancreatic dysfunc-
tion. The clinical phenotype is thought to be the result of 
mutation-specific dominant negative effects [121].

HYOU1 Deficiency

Biallelic defects in hypoxia upregulated 1 (HYOU1), a chap-
erone protein that localizes to the endoplasmic reticulum and 
mitochondria and participates in cell stress responses, were 
recently reported as a cause of a novel immunometabolic syn-
drome [122]. The single patient presented with congenital neu-
tropenia, recurrent respiratory and herpes viral skin infections, 
stress-induced hypoglycemia, and relapsing Takayasu arteritis. 
Immunophenotyping demonstrated low B cells with a memory 
predominance but reduced switched memory cells. Responses 
to polysaccharides were absent; however, the patient was 
receiving concurrent low-dose immunosuppression.

Defects in Phagocyte Motility

WDR1 Deficiency

Biallelic LOF variants in WDR1, which encodes the protein 
actin interacting protein 1, were recently described to cause a 
novel immunodeficiency with mild neutropenia, poor wound 
healing, recurrent bacterial skin, and sinopulmonary infec-
tions as the result of defective regulation of the neutrophil 
cytoskeleton [123]. Patients also developed characteristic 
stomatitis and oral stenosis severe enough to warrant gas-
trostomy tube placement in some instances. An autoin-
flammatory syndrome with recurrent fevers and associated 
thrombocytopenia and T and B lymphocyte abnormalities 
secondary to aberrant actin regulation of the inflammasome 
has also been reported [124, 125]. WDR1-deficient neutro-
phils have a distinctive neutrophil herniation of the nuclear 
lobes and agranular regions within the cytosol with mark-
edly impaired chemotaxis and chemokinesis.

CEBPE GOF

In contrast to the autosomal recessive neutrophil specific gran-
ule deficiency that is seen with LOF mutations in the tran-
scription factor C/EBPε, homozygous gain of function vari-
ants affecting the DNA binding domain was recently shown 
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to be associated with non-canonical inflammasome activation 
caused by decreased association with transcriptional repressors 
in three individuals from one family [126]. This novel primary 
immunodeficiency, which the authors term CAIN syndrome (C/
EBPε-associated autoinflammation and immune impairment 
of neutrophils), presents clinically with recurrent, 4–5-day 
episodes of abdominal pain, fevers, and systemic inflamma-
tion with frequent upper respiratory tract and skin infections, 
lymphangitis, buccal ulcerations, and mild bleeding abnor-
malities. Affected patients had normal neutrophil and platelet 
morphology but significant alterations in the transcriptome of 
unstimulated granulocytes compared to controls and enhanced 
non-canonical, caspase-4/5-mediated inflammasome activation.

Defects of Phagocyte Function/Respiratory Burst

CYBC1 Deficiency

LOF mutations in CYBC1 were recently identified in eight 
individuals as an autosomal recessive cause of chronic gran-
ulomatous disease (CGD) [127]. Affected patients had an 
abnormal, PMA-induced neutrophil oxidative burst assay 
similar to CGD patients with NCF1 biallelic mutations and 
presented with the pathognomonic infections, IBD, and pro-
inflammatory responses all characteristic of CGD. CYBC1 
is thought to co-localize and interact with gp91phox in the 
endoplasmic reticulum where it likely acts as a chaperone 
for dimerization of  gp91phox and  p22phox.

Immunodeficiencies with Specific Pathogen 
Susceptibilities

While most primary immunodeficiencies present with a 
global increase in the frequency or severity of infections to a 
broad category of pathogens, some immunologic defects pre-
dispose the affected individual to a restricted number of path-
ogens or even a single microorganism. When this occurs, a 
tremendous amount of insight is often gained about either the 
virulence strategies utilized by the invading organism or the 
mechanisms implemented by the immune system to protect 
the host. Recently described PIDDs with specific pathogen 
susceptibilities discussed herein are summarized in Table 1.

Immunodeficiencies with EBV‑Associated 
Lymphoproliferation/Lymphoma

CD70 Deficiency

The CD70–CD27 axis is important for immune surveillance 
of B cells by promoting antigen specific T cell expansion and 
is critical for proper immune response against EBV. Patients 
with a deficiency in CD27, a T cell co-stimulatory molecule, 
have previously been identified to develop EBV-associated 
lymphoproliferative disorders. More recently, defects in 
CD70, the ligand for CD27, were described in six patients 
from 4 different families that had similar susceptibilities to 
EBV [128–130]. Patients present with recurrent EBV-driven 

Table 1  Recently described PIDDs with specific pathogen susceptibilities

Name of disease (gene) Inheritance OMIM # Susceptible organism/disease

CD70 deficiency (CD70) AR 602,840 EBV (lymphoproliferation, lymphoma)
CD137 deficiency (TNFRSF9) AR 602,250 EBV (lymphoproliferation, lymphoma)
FAAP24 deficiency (FAAP24) AR 610,884 EBV (lymphoproliferation, lymphoma)
RASGRP1 deficiency (RASGRP1) AR 603,962 EBV (lymphoproliferation, lymphoma)
TET2 deficiency (TET2) AR 619,126 EBV (lymphoproliferation, lymphoma)
RLTPR deficiency (CARMIL2) AR 610,859 EBV (lymphoproliferation, smooth muscle tumors)
TBX21 deficiency (TBX21) AR 604,895 Mycobacterium
IFNG deficiency (IFNG) AR 618,963 Mycobacterium
JAK1 deficiency (JAK1) AR 147,795 Mycobacterium
SPPL2a deficiency (SPPL2A) AR 608,238 Mycobacterium and Salmonella
TIRAP deficiency (TIRAP) AR 614,382 Staphylococcus aureus
IRF9 deficiency (IRF9) AR 147,574 Influenza (severe disease)
IFNAR1 deficiency (IFNAR1) AR 107,450 Vaccine related disease (yellow fever, measles)
IFNAR2 deficiency (IFNAR2) AR 602,376 Vaccine related disease (measles)
RNA polymerase III deficiency (POLR3A, 

POLR3C, POLR3F)
AD 614,258, 617,454, 

617,455
VZV

SNORA31 AD NA HSV1 (encephalitis)
ATG4A AD 300,663 HSV2 (Mollaret’s meningitis)
MAP1LC3B2 AD NA HSV2 (Mollaret’s meningitis)
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lymphoproliferation, EBV-positive lymphoma, and autoin-
flammatory features including uveitis, arthritis, and periodic 
fevers. Immunophenotyping was notable for decreased mem-
ory B cells and hypogammaglobulinemia. Patients also had 
sub-optimal responses to vaccination. While lymphocyte 
proliferation was intact to PHA, anti-CD3, and anti-CD28, 
affected CD8 + T cells demonstrated defective cytotoxicity 
against EBV-infected B cells in vitro.

CD137 Deficiency

The TNF receptor family member 4-1BB (CD137) is 
expressed on the surface of activated T cells and when 
bound, can preferentially promote the expansion, survival, 
and cytotoxicity of CD8 + T cells. Six patients from different 
families have been reported with biallelic, loss of function 
defects in CD137 [131, 132]. Clinically, they presented at 
a young age with recurrent sinopulmonary and herpes viral 
infections with the majority developing EBV-associated lym-
phoproliferation or lymphoma. Their immunologic evalua-
tion was consistent with a combined immunodeficiency with 
hypogammaglobulinemia, poor responses to T cell-depend-
ent and independent antigens, and impaired T cell prolifera-
tion. Defective T cells also showed decreased expression of 
IFNγ and perforin.

FAAP24 Deficiency

Fanconi anemia-associated protein 24 (FAAP24) is a part of 
the Fanconi anemia core complex and plays a crucial role in 
DNA repair through its role in the Fanconi anemia signaling 
pathway and the ATR/Chk1 signaling pathway. Homozygous 
LOF variants in FAAP24 were recently described in two sib-
lings with fatal EBV-associated lymphoproliferative disease 
[133]. Using immortalized patient T cells, the authors show 
impaired cell cycle activation after DNA damage as well as 
an impaired FANCD2 monoubiquitination as evidence that the 
mutation leads to a functional defect of FAAP24.

RASGRP1 Deficiency

RASGRP1 is a diacylglycerol-regulated guanidine exchange 
factor (GEF) for the small GTPase Ras that is highly 
expressed in T and NK cells. It is considered to be the main 
GEF responsible for activating the Ras-MAP kinase/ERK 
kinase pathway. Over the last few years, several patients with 
biallelic LOF mutations in RASGRP1 have been described 
to develop a CID with impaired cytoskeleton dynamics, 
and EBV-associated lymphoproliferation and lymphoma 
[134–138]. Patients are susceptible to severe viral (CMV, 
HPV), fungal, and bacterial infections and often have asso-
ciated-hepatosplenomegaly and autoimmune cytopenias. 
Their immunologic evaluation is significant for decreased 

percentages of naïve T cells, TCR clonality, NK cytotoxic 
function abnormalities, and impaired T and B cell activation, 
proliferation, and motility.

CARMIL2 Deficiency

Capping protein regulator and myosin 1 linker 2 (CAR-
MIL2) is essential for T cell CD28 cosignaling and can mod-
ulate signaling in B cells, NK cells, and some myeloid cells. 
It also orchestrates actin polymerization and is important 
for cytoskeletal organization, endocytosis, and cell migra-
tion. There have now been several reports of patients with 
biallelic LOF variants in CARMIL2 that present with char-
acteristic EBV + smooth muscle tumors, recurrent bacterial, 
fungal, and mycobacterial infections, persistent dermatitis, 
viral skin infections, and early-onset IBD [139–147]. Immu-
nophenotyping is notable for a significant reduction in Treg 
cells, reduced mucosal-associated invariant T cells, reduced 
memory B cells, poor responses to both T cell-dependent 
and independent antigens, and impaired activation of the 
canonical NF-κB pathway in a CD28-dependent manner.

TET2 Deficiency

Ten-eleven translocation methylcytosine dioxygenase 2 
(TET2) is an important epigenetic regulator through its role in 
DNA demethylation and interactions with histone-modifying 
enzymes and transcription factors. TET2 is highly expressed 
in hematopoietic progenitor cells, and somatic TET2 LOF 
mutations are often seen in hematopoietic disorders, mye-
loid and lymphoid malignancies, and clonal hematopoiesis 
of indeterminate potential. Recently, germline LOF muta-
tions were reported to cause an autosomal recessive primary 
immunodeficiency in three individuals with EBV-associated 
lymphoproliferative disease, recurrent sinopulmonary infec-
tions, and FTT [148]. Immunophenotyping was notable for an 
autoimmune lymphoproliferative syndrome–like phenotype 
with increased double-negative T cells, soluble CD25, soluble 
Fas ligand, and IL-10 and decreased Th1, Th17, and follicular 
helper T cells, and memory B cells. Affected individuals had 
variable hypogammaglobulinemia, and impaired Fas-depend-
ent apoptosis. Interestingly, all three patients had autologous T 
cell reconstitution after HSCT despite T lymphoid depleting 
conditioning and subsequently died of complications.

Immunodeficiencies with Other Severe Viral 
Infections

IRF9 Deficiency

Defects in IRF9 can put the host at risk of recurrent and severe 
viral infections including influenza [149, 150]. Hernandez  
et  al. described a 5-year-old female with a history of 
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recurrent viral infections. This included a severe influenza 
infection in addition to past respiratory syncytial virus, ade-
novirus, and parainfluenza virus infections. A pathogenic, 
homozygous variant in IRF9 was found on WES and con-
firmed with Sanger sequencing [150]. A family who had 
multiple members with increased susceptibility to severe 
viral infections who were found to be IRF9 deficient has 
also been reported [149].

IFNAR1 Deficiency

Live attenuated vaccines do not cause life threatening dis-
ease in immunocompetent hosts, but patients with certain 
inborn errors in immunity can experience vaccine-driven 
disease. Recently, mutations causing autosomal reces-
sive IFNAR1 deficiency were reported in children with 
live vaccine–related life-threatening infections [151]. In 
these patients, there is a decrease in INFAR1-dependent 
responses to IFN-α/β. One child was noted to have vaccine 
strain measles with symptoms starting under 2 weeks from 
when he was given the vaccine. Interestingly, that child 
had younger sibling who died 4 weeks after receiving the 
MMR vaccine, but genetic testing was not possible to con-
firm a specific diagnosis. Another child with this mutation 
was reported to have yellow fever vaccine–related disease 
including hepatic and renal dysfunction along with respira-
tory failure requiring intubation [151]. Both children recov-
ered from their vaccine-related infections and were noted 
to be in good health at the time that article was published.

IFNAR2 Deficiency

Like IFNAR1 deficiency, there have been reports of vaccine-
related disease in children with autosomal recessive INFAR2 
deficiency after receiving live vaccines [152, 153]. There is 
a decrease in INFAR2-dependent responses to IFN-α/β with 
this genetic mutation. One patient was reported to have a 
fatal encephalitis felt to be secondary to his MMR vaccina-
tion. There was evidence of sustained viral replication along 
with HHV6 in brain samples obtained as part of the diagnos-
tic work-up [152]. A second child with INFAR2 mutations 
was reported to have HLH 5 days after his MMR vaccine 
along with recurrent viral infections [153].

RNA Polymerase III Deficiency

Though varicella zoster virus (VZV) usually causes chicken 
pox with a primary infection, there are those with a pri-
mary immune defect in which that infection can cause life-
threatening symptoms of disease. Ogunjimi et al. reported 

four cases of acute severe VZV infections in children who 
were found to be heterozygous for rare missense mutations 
in POLR3A, POLR3C, or both [154]. Variations in POLR3F 
can cause similar disease and with all three of the possible 
genetic defects, there is abnormal recognition of the vari-
cella virus and a secondary decreased induction of IFN. The 
children in the previously mentioned report were all healthy 
prior to their VZV infection and had not experienced other 
recurrent viral infections [154].

SNORA31 Variations in SNORA31 have been recently 
reported to decrease cortical neuron-intrinsic (CNS-intrin-
sic) immunity to herpes simplex virus (HSV-1) and put 
the host at risk of herpes simplex encephalitis [155]. Five 
unrelated patients with a history of HSV-1 encephalitis were 
found to have SNORA31 variants thought to cause disease in 
an autosomal dominant pattern.

ATG4A and MAP1 LC3B2

Herpes simplex virus 2 (HSV2) can cause a recurrent form 
of viral meningitis, Mollaret’s meningitis, in patients with 
specific genetic variations. Hait et al. described two adult 
patients with recurrent HSV2 lymphocytic Mollaret’s menin-
gitis [156]. One patient was noted to have a rare monoallelic 
variant in the autophagy protein ATG4A and the second in 
the autophagy protein LC3B2 [156].

Immunodeficiencies with Mycobacterial 
Susceptibility

There are a group of immune defects that lead to an 
increased Mendelian susceptibility to mycobacterial disease 
(MSMD). These patients can be susceptible to even weakly 
virulent mycobacterial infections. While some of these dis-
eases have been described in the past, new genetic defects 
have been documented over the past several years. Recently, 
in the 2021 update of the IUIS Committee, LOF defects in 
both TBCX21 and IFNG have been described to cause auto-
somal recessive PIDDs with decreased IFN-γ production [2]. 
Additional diseases recently described can increase MSMD.

JAK1 Deficiency

The JAK1 is involved in a pathway which is critical in 
immune responses, and its dysregulation can cause cancer 
or disorders of the immune system [157]. JAK 1 deficiency 
is a LOF defect, which results in an autosomal recessive dis-
ease that is notable for decreased IFN-γ production. Patients 
with JAK1 LOF have shown an increased susceptibility to 
mycobacterial disease, viruses, and early-onset urothelial 
carcinoma [158, 159].
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SPPL2a Deficiency

A recently described disorder, which is associated with an 
inborn error in IFN-γ immunity, is SPPL2a deficiency. This 
diagnosis confers an increased susceptibility to mycobacte-
rial and Salmonella infections [160]. It has been determined 
that SPPL2a-deficient memory Th1 cells, when stimulated 
with mycobacterial antigens in vitro, will not produce IFN-γ 
[160]. In one study, three patients with this disorder were 
described to have a significant defect of mycobacterium-
specific IFN-γ production by specific CD4 + memory T 
cells. All three children were diagnosed with mycobacterial 
infections and subsequently found to have LOF mutations 
in SPPL2A [160].

Immunodeficiencies with Susceptibility to Staphylococ-
cus aureus.

TIRAP Deficiency

TIRAP, which encodes a TIR-domain-containing adaptor of 
TLR2 and TLR4, can play a critical role in host defense. In 
patients with TIRAP deficiency, an autosomal recessive dis-
order, there is an impaired cellular response to specific TLR 
(including TLR2 and TLR4) stimulation [161, 162]. Though 
in humans, TIRAP can be redundant for protective immunity 
against many pathogens, patients with this disorder can be 
predisposed to severe staphylococcal infections. In a fam-
ily with this defect, only one of the eight individuals with 
TIRAP deficiency had a serious staphylococcal infection 
noted [161]. This could be secondary to mixed penetrance 
of the disease, virulence of the staphylococcal strain, total 
bacterial load, or a combination of these factors (161).

Conclusion

This review provides an update on the more recently 
described inborn errors of immunity. The rise in the number 
of identifiable genes is secondary to our increasing ability to 
perform genetic testing on patients with known or suspected 
disease. As we continue to improve our genetic testing tech-
niques, and they become more generally available, we will 
likely continue to see an increase in the identifiable causes 
of PIDD.
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