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Abstract
The plasma contact system is the initiator of the intrinsic pathway of coagulation and the main producer of the inflamma-
tory peptide bradykinin. When plasma is exposed to a negatively charged surface the two enzymes factor XII (FXII) and 
plasma prekallikrein (PK) bind to the surface alongside the co-factor high molecular weight kininogen (HK), where PK is 
non-covalently bound to. Here, FXII and PK undergo a reciprocal activation feedback loop that leads to full contact system 
activity in a matter of seconds. Although naturally occurring negatively charged surfaces have shown to be involved in the 
role of the contact system in thrombosis, such surfaces are elusive in the pathogenesis of bradykinin-driven hereditary angio-
edema (HAE). In this review, we will explore the molecular mechanisms behind contact system activation, their assembly 
on the endothelial surface, and their role in the HAE pathophysiology.
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Abbreviations
aPTT  Activated partial thromboplastin time
ANGPT1-HAE  HAE with angiopoietin mutation
BK  Bradykinin
C1-INH  C1 esterase inhibitor
C1-INH-HAE  HAE with C1-INH deficiency
cHK  Cleaved HK
EGF  Epidermal growth factor
FXII  Coagulation Factor XII (Hageman 

factor)
FXI  Coagulation Factor XI (Rosenthal 

factor)
FXII-HAE  HAE with Factor XII mutation
HSP-90  Shock protein-90
HAE  Hereditary angioedema 
HK  High molecular weight kininogen

KNG1-HAE  HAE with kininogen 1 mutation
LK  Low molecular weight kininogen
MYOF-HAE  HAE with myoferlin mutation
nC1-INH-HAE  HAE with normal C1-INH
PK  Prekallikrein (Fletcher factor)
PKa  Plasma kallikrein
PLG-HAE:  HAE with plasminogen mutation
TF  tissue factor (tissue thromboplastin)
tPA  Tissue plasminogen activator
TNFα  Tumor necrosis factor alfa
uPA  Urokinase plasminogen activator
U-HAE  HAE with unknown mutation and 

unknown cause

Introduction

The plasma contact system is an enzymatic system 
involved in the formation of the inflammatory peptide 
bradykinin (BK) and blood coagulation in the vascu-
lar system. At its core, the system is composed of the 
two enzymes factor XII (FXII) and plasma prekallikrein 
(PK). Together with the non-enzymatic co-factor high 
molecular weight kininogen (HK), this system is often 
referred to as the kallikrein-kinin system (KKS).

 * Allen P. Kaplan 
 kaplana@musc.edu

 Coen Maas 
 cmaas4@umcutrecht.nl

1 CDL Research, University Medical Centre Utrecht, Utrecht 
University, Utrecht, the Netherlands

2 BioCryst Pharmaceuticals, Inc., Durham, NC, USA
3 Department of Medicine, Medical University of South 

Carolina, Charleston, SC, USA

/ Published online: 6 May 2021

Clinical Reviews in Allergy & Immunology (2021) 60:348–356

1 3

http://orcid.org/0000-0003-1179-374X
http://orcid.org/0000-0003-3752-6922
http://orcid.org/0000-0003-4593-0976
http://orcid.org/0000-0002-6566-4743
http://crossmark.crossref.org/dialog/?doi=10.1007/s12016-021-08837-6&domain=pdf


Major Constituents of the Plasma Contact System

Factor XII

Factor XII (FXII) is an 80-kDa serine protease which circu-
lates at approximately 30 μg/mL (37 nM). It consists of six 
domains: Fibronectin type II, EGF-like 1, Fibronectin type 
I, EGF-like 2, Kringle, and the catalytic peptidase domain, 
which are kept in conformation via 20 disulfide bonds. 
FXII is heavily glycosylated with two N-linked and seven 
O-linked glycosylation sites; the latter affected in mutant 
FXII in many patients with nC1-INH-HAE, i.e., HAE with 
normal C1 esterase inhibitor (C1-INH). Between the Kringle 
and the protease domain, a region rich in proline residues is 
found. This proline-rich region is unique to FXII and con-
tains all but one of the O-linked glycosylation sites. Changes 
in its glycosylation increase the sensitivity of FXII for acti-
vation by the negatively charged polymer dextran sulfate [1]. 
After production by the liver, FXII is secreted into the blood 
plasma. There is growing evidence for a separate pool of 
leukocyte-expressed FXII that contributes to wound healing 
and angiogenesis [2], but its contribution to HAE remains 
to be identified.

Plasma Prekallikrein/Kallikrein

Plasma prekallikrein (PK) is an 88-kDa serine protease and 
consists of four apple domains together with a catalytic 
peptidase domain, containing 18 disulfide bonds and only 
5 N-linked glycosylation sites. Those apple domains are 
found in only one other plasma protein, namely, coagula-
tion Factor XI (FXI). Plasma prekallikrein is predominantly 
produced and secreted by the liver (50 μg/mL in plasma; 
581 nM), but PK production has also been found, to a minor 
extent, in cells of the epithelial kidneys, adrenal gland, and 
placenta [3–5]. While PK is produced as a monomeric 
enzyme, in plasma 75–80% is found to be in complex to its 
non-enzymatic co-factor high molecular weight kininogen 
(HK) [6, 7]. Although PK shares a high homology with FXI, 
FXI circulates primarily as a disulfide-linked homodimer, 
while PK is a monomer.

Kininogens

The transcription of the KNG1 gene leads to various forms 
of kininogen as a result of alternative splicing at exon 10 
[8]. The largest (120 kDa) splice variant is annotated as HK 
and is predominantly produced and secreted by the liver 
(70 μg/mL in plasma; 636 nM). It consists of three cystatin 
kininogen-type domains and three histidine-rich repeats. 
The first two “cystatin” regions actually can function as a 

protease inhibitor, for example, inhibition of the cysteine-
protease, papain, or some cathepsins. Furthermore, HK con-
tains four N-linked and eight O-linked glycosylation sites. In 
plasma, HK is found to be in complex with 75–80% PK [6, 
7] and 95% of FXI [9, 10]. However, it does not circulate in 
complex with FXII. While HK lacks an enzymatic domain, 
it is essential to bring PK and FXI to activating surfaces. 
Furthermore, it is the parent molecule from which the BK 
peptide is liberated. A smaller variant (64 kDa), annotated 
as low molecular weight kininogen (LK), lacks the three 
histidine-rich repeats and all but one of the O-linked gly-
cosylation sites. Moreover, LK does not bind to negatively 
charged surfaces, PK or FXI as it misses the essential light 
chain for these interactions [10, 11]. In plasma, cleavage of 
HK by active plasma kallikrein (PKa) leads to the release of 
BK (nine amino acids; RPPGFSPFR) [12]. In tissues, cleav-
age LK by tissue kallikreins leads to the release of kallidin 
(lysyl-BK; contains one additional N-terminal lysine; 10 
amino acids; KRPPGFSPFR), which can be cleaved into 
BK via aminopeptidase P. Nonetheless, LK is considered to 
be irrelevant for the formation of BK by the plasma contact 
system. Plasma concentrations of FXII, PK, and HK have 
shown to be partially dependent on estrogen-levels [13].

Surfaces

When plasma contacts an activating surface, the contact sys-
tem will assemble on it. Where FXII is able to directly bind 
to these surfaces, PK requires HK for binding. The binding 
of FXII to anionic surfaces is a key to initiating the con-
tact activation. The predominant binding site for kaolin (a 
diagnostic reagent that triggers FXII activation in the aPTT 
in-vitro assay) and polyphosphate nanoparticles (complexed 
to calcium) is the EGF-1 domain [14].

Surface binding stimulates FXII auto-activation; a pro-
cess in which low-level proteolytic activity (1:56,000 the 
activity of activated FXII (FXIIa)) is amplified through sur-
face concentration, conformational changes [15] and enzy-
matic crosstalk in which molecules of FXIIa cleave more 
FXII zymogen to activate it. Although activating surfaces 
have been pinpointed in the context of thrombosis and aller-
gic reactions (reviewed in [16, 17]), these are still elusive in 
the pathogenesis of HAE.

After auto-activation, FXIIa will activate PK, which 
reciprocally activates more FXII (Fig. 1). Activated PK 
will also cleave HK, thereby liberating BK from HK. This 
aggressive reciprocal activation feedback loop between 
FXII(a) and PK(a) allows for complete activation of the con-
tact system in a matter of minutes [18]. Activated FXII exists 
in at least two distinct forms: αFXIIa (80 kDa) and βFXIIa 
(28 kDa; first described as FXIIf) [19, 20]. αFXIIa retains 
the capacity to bind to activating surfaces and activate 
both PK and FXI. In contrast, βFXIIa loses its capacity for 
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binding, but readily activates PK in fluid-phase, but not FXI 
[21]. The trace coagulant activity ascribed to βFXIIa, i.e., 
FXIIf [19], estimated as 2–4% of αFXIIa [21], is due to trace 
activation of FXI or indirect Factor IX (FIX) activation by 
PKa. βFXIIa is a downstream cleavage product (because of 
PKa-mediated cleavage behind arginine 334) and comprises 
the catalytic domain together with a disulfide-linked peptide 
(335–343 or 335–353) which are formed sequentially, but 
rapidly, so a mixture is typically present [22]. This peptide 
is essential to the catalytic function of FXIIa, as removal of 
this remnant of the original heavy chain pushes the catalytic 
domain into a zymogen-like state [23].

A critical step in FXII activation is the displacement of 
the Fibronectin type II domain. In solution, this domain 
protects a cleavage site that is critical to FXII activation. 
Surface binding exposes this cleavage site [14]. Recently, a 
family was identified in which a mutation caused constitu-
tive exposure of the activating cleavage site, resulting is a 
clinical picture of cold-induced urticarial syndrome [24].

During the 1970s and 1980s, the outlines of the BK-
forming cascade were developed. The activated forms of 
FXII were described [19, 21], PK was shown to exist [19], 
then PK was purified and its mechanism of activation deline-
ated [25]. Cleavage of kininogen by PKa was known in the 
1960s but there was a debate (particularly regarding human 
plasma) as to how many kininogens were present although 
most authors favored two forms differing by size [26]. Ulti-
mately two were distinguished structurally and function-
ally, facilitated by the discovery of plasma deficient in total 
kininogen [27] or just the high molecular weight form [28]. 
C1-esterase inhibitor (C1-INH) was found to inhibit purified 

PKa [29], and both forms of FXIIa [30, 31] as well as FXIa 
[30]. Although C1-INH is the dominant physiological inhib-
itor of these enzymes, it is not a very strong inhibitor (at a 
kinetic level). Rare mutations in α1-antitrypsin convert it 
into a much more powerful contact system inhibitor than 
C1-INH [32, 33], and mutagenesis studies show that recom-
binant variants of this mutant α1-antitrypsin can be used to 
attenuate bradykinin-dependent inflammation in vivo [34].

The BK Forming Cascade

The BK-forming cascade, as depicted in Fig. 1, was initially 
considered solely a fluid-phase, protein-interactive phe-
nomenon. However, the observation that HK demonstrates 
zinc-dependent binding to the surface of platelets [35] and 
endothelial cells [36] leads to the concept that all of major 
constituents needed to produce BK in plasma interact with 
vascular endothelial cells, via proteins expressed on the cell 
membrane. These were identified as globulated C1q recep-
tor (gC1qR) [37], cytokeratin 1 [38], and urokinase plas-
minogen activator receptor (uPAR) [39]. They exist as two 
bimolecular complexes, namely, gC1qR-cytokeratin 1 and 
cytokeratin-1-uPAR [40]. gC1qR and uPAR do not interact 
directly. Those bimolecular complexes bind either HK or 
FXII, but not both [41]. Although comparative studies of 
binding employing the complexes have not been done, we 
have surmised that gC1qR-cytokeratin 1 binds primarily HK 
[42–44], while cytokeratin-1-uPAR binds primarily FXII 
[45]. Individually, gC1qR binds HK and FXII, cytokera-
tin-1 binds primarily HK, and uPAR binds primarily FXII 

Fig. 1  The mechanism of 
bradykinin formation in types 
I and II HAE and sites of 
inhibition by C1-INH. The steps 
include autoactivation of FXII, 
conversion of prekallikrein (PK) 
to kallikrein (PKa), the PKa 
“feedback” for rapid activation 
of FXII, and cleavage of HK to 
liberate BK. Further cleavage 
of FXIIa by PKa yields FXIIf 
(βFXIIa) which loses its ability 
to activate FXII but gains the 
ability to activate C1r and to a 
lesser degree C1s, thereby fur-
ther depleting C4 and cleaving 
(activating) C2 during attacks of 
swelling
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[42, 45], but can also bind cleaved HK (cHK) and to a very 
limited extend to native HK [39].

Since many of the individual proteins bind both constitu-
ents of the complexes, it is possible that some HK and FXII 
bind to both biomolecular complexes, but with different 
ratios. Plasma kallikrein is brought to these complexes by 
virtue of its attachment to HK. A diagram depicting key 
reactions along the endothelial cell surface is shown in 
Fig. 2. The crystal structure of gC1qR to which either FXII 
or domain 5 of HK is bound has been resolved [46]. In this 
study, it was elucidated that FXII binds to gC1qR through 
its fibronectin type II domain in a  Zn2+-dependent manner. 
As this domain regulates zymogen activation, we propose 
that gC1qR binding primes FXII for activation [14]. At the 
same time, each gC1qR trimer contains one binding site for 
HK (domain 5). As a result, it can assemble both HK and 
FXII simultaneously [46]. This sets the stage for cell-surface 
based contact system activation.

Activation of FXII occurs minimally upon binding to 
endothelial cells [47–49] based on the cell’s “surface” char-
acteristics. Thus, the binding to macromolecules described 
above is not the same as binding to negatively charged inor-
ganic molecules such as polyphosphate, nucleic acids, and 
endotoxin [50, 51]. Yet, binding of the PK-HK complex 
to endothelial cells at normal body temperature of 37 °C 
leads to production of PKa in the absence of FXII. Here, in 
a FXII-independent manner, heat shock protein-90 (HSP-
90), a non-protease stress protein, is secreted from vascular 
endothelial cells and interacts with the complex of PK-HK, 
resulting in PKa production [52]. In contrast to the acti-
vated FXII pathway, this optional circuit does not produce 
PKa unless the PK is bound to HK. Interestingly, a similar 
observation has been reported for prolyl carboxypeptidase 
(produced locally by endothelial cells), which activates only 

the PK-HK complex, but not PK alone [53]. HSP-90 secre-
tion can be stimulated by interaction of endothelial cells with 
estrogen, interleukin 1, or TNFα [54].

Inferences Relevant to HAE

These observations raise issues regarding the initiation of an 
HAE attack. While FXII is always present, could the acti-
vation of endothelial cells as described above, function as 
an initiator of BK formation followed by PKa activation of 
FXII? or do surface events as we observe for plasma reac-
tions, and serve as the first step? [55]. Certainly, BK inter-
action with its B2 receptor on endothelial cell is the criti-
cal final step to cause an increase in vascular permeability 
resulting in angioedema [56].

Plasma Constituents Involved in HAE 
Pathophysiology

Coagulation Factors

Blood coagulation is typically divided into the intrinsic and 
extrinsic coagulation cascades. These differ in the first few 
steps with factor X (FX) as a division point [57]. “Extrinsic” 
means initiation by a biologic substance other than a plasma 
protein, which in this instance is tissue thromboplastin (TF-
tissue factor). This is a cellular product that interacts with 
factor VII to yield the TF-factor VIIa complex [58], which 
in turn functions as an activator of FX. The intrinsic coagu-
lation cascade involves contact with a negatively charged 
macromolecular surfaces, such as vascular endothelial layers 
in vivo, or glass test tube silicates, kaolin, or celite which 
all bind FXII in vitro [59]. All the proteins that attach to 
that surface are considered part of the contact system which 
in modern terms include FXII, FXI, PK, and HK. Thus, it 
refers to the same constituents as the BK forming cascade 
(the KKS), but for the addition of FXI. Once FXIIa forms, 
there is conversion of FXI to FXIa, then FIX to FIXa (the 
first calcium-dependent step) and activation of FX by FIXa 
with thrombin-activated factor VIII as a cofactor.

This review of HAE-C1-INH has activation of FXII as 
a crucial point. However, FXII cannot be activated nor-
mally in the absence of PK or the absence of HK [60]. It 
has been known since the 1950s that FXII-deficient plasma 
will not clot using in vitro assays such as in the activated 
partial thromboplastin time assay (aPTT). Fletcher factor 
(PK)–deficient plasma was shown to be identical to PK-
deficient plasma [61] and has an unusual coagulation aPTT 
profile. It is markedly abnormal when incubated with the 
surface material for 2 min prior to re-calcification. But as 
the time of incubation with the surface increases, prior to 
re-calcification, the aPTT shortens and approaches nor-
mal. Thus, it is plausible that the plasma autocorrects on 

Fig. 2  Assembly of the contact system on the surface of endothe-
lial cells. Abbreviations: FXII; factor XII, PK; plasma prekallikrein, 
HK; high molecular weight kininogen, uPAR; urokinase plasminogen 
activator receptor, CK1; cytokeratin 1, gC1qR; receptor for globular 
heads of C1q
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prolonged incubation with a surface. This appears to be 
due to the absence of the PKa feedback activation of FXII 
which quantitatively accounts for most FXII activation when 
a aPTT is performed [62]. In the absence of PK, further FXII 
activation [63] can occur only by auto-activation initiated 
by the trace activity known to be present in zymogen FXII 
[64]. Some years later, HK-deficient plasma was discovered, 
and its aPTT was found close to being as abnormal as FXII 
deficient plasma, but it does not autocorrect. The explanation 
is multifactorial. First, conversion of PK to PKa is slower 
in the absence of HK so that the rate of PKa activation of 
FXII is also diminished. Second, FXI activation on a surface 
is highly dependent on HK, so clotting does not proceed in 
HK-deficient plasma [27, 28]. Thus, PKa and HK can be 
considered clotting factors.

Fibrinolysis

Fibrinolysis is also FXII-dependent [62], and the rate 
of plasmin formation in FXII-deficient plasma paral-
lels what we see when aPTT is performed. It is markedly 
depressed in plasma deficient in either FXII or HK and it 
is abnormal, but autocorrects when PK-deficient plasma 
is tested. While tissue plasminogen activator (tPA) and 
urokinase (uPA) are potent, well-characterized plasmi-
nogen activators in the vascular tissues, no comparable 
factor is circulating in the human plasma. FXIIa itself 
[65], PKa [66], and FXIa [67] have all been reported to 
directly convert plasminogen to plasmin; however, the 
main pathway may be PKa activation of a small amount 
of pro-urokinase present in the plasma and the urokinase 
produced, converts plasminogen to plasmin [68].

Complement

A key link between the BK-forming pathway and comple-
ment activation that is also relevant to the pathogenesis of 
HAE-C1-INH is the ability of factor βFXIIa (FXIIf) to acti-
vate C1r and to a lesser degree C1s (both comprises the 
esterase complex of C1) [69, 70] (Fig. 1). The consequence 
is activation of C4 and then C2. This may be the explana-
tion for the changes in C4 and C2 that occur during attacks 
of angioedema in such patients, and what makes low C4 
a hallmark of C1-INH deficiency. In short, factor βFXIIa 
continues BK formation, but loses the ability to clot (through 
FXI activation) and gains the ability to activate the classical 
complement pathway.

Indeed, the key plasma abnormality characteristics of 
types I and II HAE are low C4 level in about 95% of patients, 
abnormal function (activity) of C1-INH, and the instability 
of patients’ plasma even in the absence of an initiating (acti-
vating) surface. This is evidenced in the laboratory when BK 

in patients’ plasma is gradually produced upon prolonged 
incubation at 37 °C.

The Paradox of FXII Activation Without Pro‑thrombotic 
Tendency in HAE

One paradox noted early on is that although FXII, PK, and 
HK all interact to optimally generate FXIIa in order to con-
vert FXI to FXIa, a deficiency in any one of these three pro-
teins does not lead to bleeding. Furthermore, a deficiency of 
FXI, the next protein in the sequence, does cause spontane-
ous bleeding, particularly when plasma levels are very low, 
and is therefore considered a form of hemophilia [71]. One 
thesis to explain this anomaly is that thrombin (Factor IIa) 
can directly activate FXI and bypass these three proteins [72], 
but plasma experiments cast doubt on this explanation [73]. 
While in vitro clotting (the aPTT) is markedly abnormal for 
FXII and HK deficiencies, the original FXII-deficient patient 
(Mr. Hageman) died of a pulmonary embolus—therefore he 
clotted! A defective FXII-dependent fibrinolysis (described 
above) might be a plausible explanation. In HAE, all these 
factors are activated; however, in vivo thrombosis is not seen. 
Nevertheless, there is evidence for activation of the entire 
coagulation cascade concurrently with increased fibrinolysis 
as well. Thus, prothrombin fragment 1–2 levels are elevated 
during HAE attacks [74] implying a conversion to thrombin, 
the final enzyme of the coagulation cascade, which explains 
the strikingly elevated D-dimer levels [75, 76]. This reflects 
thrombin action on fibrinogen to form fibrin and digestion of 
crossed-linked fibrin clots by plasmin. Further, while such 
activation is ongoing [75], D-dimer blood levels also appear 
to reflect disease activity and may explain why provision of 
C1-INH could dampen HAE disease activity [77].

We offer two possible explanations to this contradict-
ing phenomenon. Firstly, since BK interaction with the kinin 
B2 receptor on endothelial cells may result in release of TF, 
thereby producing thrombin via the extrinsic coagulation cas-
cade. This involves factors VII, X, prothrombin, cofactor fac-
tor V, and fibrinogen (PMID 27826093). Secondly, endothelial 
cells can also release tissue plasminogen activator (tPA) and/or 
uPA to convert plasminogen to plasmin, which could account 
for the above abnormalities. The location where this coagula-
tion/fibrinolysis cycle takes place is critical. If it takes place in 
the extravascular space, this is not accompanied by thrombotic 
events. On the other hand, if it takes place in the intravascu-
lar compartment, the rate and concentration of thrombin in the 
presence of inhibitors such as antithrombin (III) might prevent 
thrombotic events.

A second, very interesting recent observation is that PKa 
can bypass FXI (or act along with it) to activate FIX and allow 
the intrinsic coagulation pathway to proceed downstream. This 
hypothesis is strengthened by recent identification of role for 
PKa as a clotting factor during contact activation by anionic 
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surfaces. It is able to activate Factor IX, independent of FXI. 
This helps to explain why the bleeding phenotype of FXI defi-
ciency is relatively mild [78]: PKa can substitute for FXIa. In 
addition, it was recently reported that vesicles from red blood 
cells, which are generated during ex vivo storage, present a cur-
rently unidentified protein-based activator of FXII and PK [79]. 
Also, in this setting, it was found that PKa can act as a direct FIX 
activator. These two studies are in good correspondence with 
earlier studies that implicated a FXI-independent way to acti-
vate FIX after contact activation by long-chain polyphosphate 
polymers, derived from bacteria [80]. These combined studies 
(schematically represented in Fig. 3) suggest that in addition to 
its key contribution to BK production, PKa has the ability to act 
as a “backup” clotting factor. It should be mentioned that FIXa is 
a particularly remarkable enzyme: after being activated, it has an 
extremely low activity in solution, making it both undetectable 
and insensitive to inactivation by antithrombin [81]. This unique 
feature means it is able to escape inactivation in the circulation, 
which may be relevant in the chain of events leading to vascu-
lar endothelial hyperpremeability. FIXa activity increases over 
1.000.000-fold when it meets anionic phospholipid surfaces at 
sites of injury without a need for an additional activation step to 
rapidly initiate coagulation. In conditions with excessive PKa 
activity, such as HAE, it is possible that these combined mecha-
nisms contribute to systemically and sustained elevated levels of 
coagulation parameters [76, 82].

Conclusion

Activation of the plasma contact system can lead to the 
activation of the intrinsic pathway of coagulation and the 
formation of the inflammatory peptide bradykinin. While 

the contact system is immaterial for normal hemostasis, 
in vivo models show a central role for FXII in thrombo-
sis. Inhibition or knocking out FXII can prevent throm-
bosis in these models, but whether this can be translated 
to humans is not yet clear. In comparison, the role of the 
contact system as the producer of bradykinin in heredi-
tary angioedema has been proven in both in vivo models 
and patients. Nonetheless, coagulation, fibrinolysis, and 
bradykinin production seems to be intertwined in HAE, 
where D-Dimer levels correlate with disease activity. 
In this review we explored the molecular mechanism of 
contact system assembly and activation on the endothe-
lial surface. Furthermore, we discuss the possibility that 
bradykinin production may indirectly lead to the activa-
tion of the intrinsic pathway of coagulation via activa-
tion of the bradykinin receptor of by activation of FIX 
by PKa. Furthermore, we discuss the possibility that 
bradykinin production can be facilitated/augmented by 
secretion of endothelial cell products such as HSP-90 
or prolylcarboxypeptidase and that activation of FIX by 
PKa (bypassing FXI) is yet another contact activation-
dependent pathway leading to thrombin formation.

Collectively, these mechanisms may explain the com-
plicated blood clotting pathogenesis of bradykinin driven 
diseases such as seen in HAE.
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Fig. 3  Plasma kallikrein (PKa) 
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plasma kallikrein, HK high 
molecular-weight kininogen, 
FXI Factor XI, FXIa activated 
FXI, FIX Factor IX, FIXa 
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