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Abstract
Activated neutrophils release neutrophil extracellular traps (NETs) in response to a variety of stimuli. NETosis is driven by
protein-arginine deiminase type 4, with the release of intracellular granule components that function by capturing and destroying
microbes, including viral, fungal, bacterial, and protozoal pathogens. The positive effects of pathogen control are countered by
pro-inflammatory effects as demonstrated in a variety of diseases. Components of NETS are non-specific, and other than
controlling microbes, they cause injury to surrounding tissue by themselves or by increasing the pro-inflammatory response.
NETs can play a role in enhancement of the inflammation seen in autoimmune diseases including psoriasis, rheumatoid arthritis,
and systemic lupus erythematosis. In addition, autoinflammatory diseases such as gout have been associated with NETosis.
Inhibition of NETs may decrease the severity of many diseases improving survival. Herein, we describe NETosis in different
diseases focusing on the detrimental effect of NETs and outline possible therapeutics that can be used to mitigate netosis. There is
a need for more studies and clinical trials on these and other compounds that could prevent or destroy NETs, thereby decreasing
damage to patients.
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Introduction

Neutrophil extracellular traps (NETs) were discovered in
1996 [1] and further detailed by Brinkmann et al. who termed
the process NETosis [2–4]. Neutrophils are short-lived
granulocytes that are the initial defense against invading path-
ogens. They achieve this through phagocytosis, degranula-
tion, production of reactive oxygen species (ROS), and pro-
duction of chemokines and cytokines to recruit other immune
cells maximizing the host’s immune response [5–7].
Neutrophils enhance their antimicrobial properties by releas-
ing NETs, composed of extracellular chromatin decorated
with histones and numerous granular proteins [3, 8] and were
identified as part of innate immune response which can either
be beneficial or pathological [2, 8, 9]. NET formation starts
with the activation of neutrophils through the recognition of

stimuli and activation of NADPH oxidase (NOX) complex
through protein kinase C (PKC)-Raf/MERK/ERK [9–11]
which in turn activate myeloperoxidase (MPO), neutrophil
elastase (NE), and protein-arginine deiminase type 4 (PAD4)
[12, 13]. PAD4 catalyzes citrullination of histones and pro-
motes chromatin decondensation [14–16], while the ROS spe-
cies promote NETosis by inducing gradual separation and loss
of the nuclear membrane with the release of chromatin outside
the cell through membrane pores. Cellular lysis with a final
release of DNA, citrullinated histones (citH3), and other intra-
cellular granules form the extracellular traps [10]. NETosis is
induced in response to stimuli promoting pathogen clearance
by trapping, and either killing through microbial toxicity or
immobilizing microbes facilitating phagocytosis by other neu-
trophils and phagocytes [3, 15, 17, 18].

Due to the non-specific effects of the released enzymatic
proteins, NETs may lead to uncontrolled inflammatory re-
sponse causing tissue pathology. There is direct cell damage,
recruitment of other pro-inflammatory cells and proteins, and
formation of immune complexes that induce autoantibody
production leading to tissue damage [19, 20]. NETs can cap-
ture metastatic tumors aggravating cancerous condition [21],
and in diabetic cases, they lead to a delay in wound healing
[22, 23]. Neutrophil can also form interactions with platelets
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mediated by P-selectin [24]. This leads to induction of
platelet-derived high-mobility group protein B1 (HMGB1)
[25] which stimulates NETs [24, 26] causing occlusion in
the vasculature by promoting thrombosis and obstruction
causing organ damage. Although NETs have been shown to
promote inflammation, a study done by Christine et al. shows
that an accumulation of NET aggregates can reduce inflam-
mation in a mouse model of gout through the degeneration of
cytokines and chemokines [27]. This means that there is still
much about NETs we are not aware of, and thus the need for
more studies to understand their specific mechanism and how
to harness their benefits while limiting their negative effects.

There are certain compounds that have been identified in
some studies to either inhibit or disrupt NETosis, but there is
no available therapeutic that has been researched extensively
or approved for human use. We propose that the limited ther-
apeutics have been due to the different effects of NETs in
different disease conditions; thus, identifying a stand-alone
compound might be a challenge. In this review, we briefly
mention NETosis in different diseases and try to reconcile
different aspects of NET biology highlighting possible com-
pounds that can be considered therapeutic. New approaches in
therapeutic design and efficacy testing will have to be devel-
oped to find a truly efficacious treatment.

Effects Of NETs

Here is a brief discussion on the different researched effects of
NETs.

Antimicrobial

NETs have been shown to have positive effects in controlling
bacterial infections. They possess antimicrobial properties
with components including histones, cathepsin G, NE,
MPO, lactoferrin, antimicrobial peptide-LL37, pentraxin 3,
gelatinase, proteinase 3, and peptidoglycan-binding proteins
that are bactericidal [2, 28, 29]. NETs limit growth or kill
bacterial as reviewed by Vidal Delgado-Rizo et al. which in-
clude Shigella flexneri, Pseudomonas aeruginosa,
Escherichia coli, Shigella sonnei, Salmonella enteritidis,
Salmonella typhimurium , Klebsiella pneumoniae ,
Pseudomonas aeruginosa , Staphylococcus albus ,
Staphylococcus aureus, and Propionibacterium [8, 30].

In viral infections including influenza, HIV, and respiratory
syncytial virus, there is an excessive neutrophil recruitment
[31, 32]. These viruses stimulate NETosis through TLR 4, 7
and/or 8 with the release of ROS species and the NETs trap,
contain, and eliminate viruses [32–34] or inhibit viral replica-
tion through the blockade of the PKC pathway. Histones are
also important for viral aggregation and neutralization leading
to a significant decrease in viral replication [35, 36].

Fungi like Aspergillus nidulans, Candida albicans,
Aspergillus fumigatus, and Cryptococcus spp. induce
NETosis through the recognition of β-glucan on hyphae by
components of the extracellular matrix or activation of NOX
[17, 37, 38]. NETs have been shown to be important in trap-
ping and clearing large pathogens in vivo, thus being critical
for antifungal defense [17, 39, 40].

In parasitic conditions including Plasmodium falciparum
and Toxoplasma gondii, there is activation of platelets, mono-
cytes, and neutrophils. NET formation, which is dependent on
MEK–ERK pathway, limits the dissemination of the parasites
by trapping and killing them [41, 42]. Histones reduce the
replication of the Leishmania spp. [43] and together with other
NETs-associated compounds, such as NE, MPO, and collage-
nase, were shown to kill these pathogens [41–44].

Most studies on NETs have been done in mice and in vitro,
but there is still a gap in knowledge on the exact mechanism of
NETs in vivo. This necessitates the need for more studies to
clearly evaluate their effects in in vivo and in humans.

NETs as Biomarkers

The ability to detect NETs may be used as a prognostic tool
for patients with conditions presenting with a higher rate of
NET formation, facilitating clinicians to provide personalized
treatment. For NETs to be used as screening tools, there has to
be studies to standardize and define normal from abnormal
levels. This could involve measurement of NET-associated
products in the blood cfDNA, citH3, NE, and MPO. In colo-
rectal and breast cancer patients, cfDNA has been quantified
in serum samples via a simple nucleic acid–staining assay
[45–48]. This can be used to classify the cancer; however,
measuring circulating MPO/cfDNA conjugates and citH3
may be more specific for NET analysis than evaluation of
cfDNA alone [49]. CitH3 is highly specific to NETosis mak-
ing it a possible tool for understanding variances between
NET levels [50]. Thalin observed that high plasma content
of citH3 was a significant indicator of short-term mortality
in some cancer patients [51], and some observational studies
inform on the significance of NETs in progression of colorec-
tal cancer [40]. Further human studies are needed to defini-
tively quantify different levels of NETs and associate them
with poor cancer/disease outcomes.

Negative Effects of NETs

Although NETs may protect the host against microbes, exces-
sive NETosis can be detrimental to the host. Recent discover-
ies in in vitro experiments and animal models demonstrated
the crucial role of NETs in the pathogenesis of some metabol-
ic, autoimmune, and autoinflammatory diseases and certain
septic conditions increasing morbidity and mortality.
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Sepsis

Large amounts of circulating NETs demonstrated in septic
patients are associated with poor outcome and multiple organ
failure [50, 52, 53]. This could be due to increased NETosis,
apoptosis, and necrosis or decreased clearance of extruded
products with studies suggesting that cfDNA exacerbate in-
flammation by inducing TNF-α mRNA [54, 55]. Histones
also function as damage-associated molecular patterns and
can induce organ damage by promoting pro-inflammatory cy-
tokine release causing endothelial dysfunction by inducing
cytotoxicity and increasing ROS production [53, 56, 57].

Autoimmunity

NETs have been indicated in pathologic alterations in autoim-
mune and autoinflammatory diseases [58, 59]. Here, we dis-
cuss in brief a few of these diseases.

Psoriasis is a chronic immune-mediated disease character-
ized by demarcated erythematous plaques on the skin. Some
patients may also suffer from psoriatic arthritis with joint pains
and deformities [60–63]. Studies show that neutrophils are
recruited to psoriasis lesions where they cluster to form
spongiform pustules and Munro’s microabscesses and pro-
duce pro-inflammatory cytokines including IL-6, IL-8, and
IL-17s [60, 64]. IL-17 in keratinocytes increases the expres-
sion of LL37, a cathelicidin-derived antimicrobial peptide,
and defensins which mediate NET formation in dermatologi-
cal conditions [30, 65]. These inflammatory compounds have
been shown to promote NETosis and pathology in the absence
of infection [59] in these patients.

Systemic lupus erythematosus (SLE) is an autoimmune
disease characterized by immune complexes and high levels
of IFN-α with the activation of autoreactive B cells [66, 67].
There is a possible production of autoantibodies against
nucleic acids released by neutrophils undergoing NETosis
[19, 68] with the generated immune complexes representing
a source of self-antigens that enhance the autoimmune and
inflammatory process. This in turn results in more injury and
inflammation [20, 69].

Rheumatoid arthritis (RA) is a systemic autoimmune dis-
ease characterized by persistent synovial inflammation that
leads to cartilage and bone injury in the joints [70]. The syno-
vial fluid at the synovial cavity of RA patients becomes infil-
trated with neutrophils that readily form NETs [71, 72].
Studies have demonstrated that circulating neutrophils of
RA patients are more easily stimulated to NETosis than those
from healthy subjects [73, 74], and as in other autoimmune
conditions, NETs act as a source of extracellular autoantigens
leading to excessive innate and adaptive immune responses in
the joints and subsequent tissue injury [73, 75].

Type 1 diabetes mellitus (T1DM) is an autoimmune disease
characterized by the destruction of β pancreatic cells leading

to hyperglycemia [76]. This causes production of autoantigens
that are recognized by immune cells with production of auto-
antibodies [30, 58]. T1DM patients are at a risk of developing
neutropenia, and neutrophils can be found within infiltrates in
pancreatic islets where elevated TNF-α induces formation of
NETs [77]. Cytokines produced in this process lead to neutro-
phil recruitment to sites of inflammation, providing negative
feedback and contributing to pathogenesis in autoimmune di-
abetes [58, 77].

Small vessel vasculitis (SVV) is a systemic disease of un-
known etiology where the patients exhibit blood vessel in-
flammation, with necrotizing inflammation in small blood
vessels potentially leading to organ damage [78–80]. These
patients have been shown to have anti-neutrophil cytoplasmic
antibodies (ANCAs) [7, 81]. Proteins released during
NETosis are the main cause of ANCA production by activat-
ing the complement system resulting in endothelial damage
[81, 82]. These studies have shown that α-PR3 and α-MPO
ANCAs induce NETosis during active disease perpetuating a
feedback loop [81].

Autoinflammatory Diseases

Gout is an autoinflammatory disease characterized by the de-
position of monosodium urate (MSU) crystals in the joints,
stimulating immune responses by attracting leukocytes and
inducing NETs that promote inflammation [27, 72, 83–85].

Inflammatory bowel diseases (IBDs) are disease affecting
the gastrointestinal tract characterized by chronic uncontrolled
inflammation. The two major forms of IBD include ulcerative
colitis (UC) and Crohn’s disease (CD), which have different
etiologies, pathogenesis, and diagnostic features with the dif-
ferences not fully understood. CD clinically manifests as gas-
trointestinal disorders but is a systemic disease involving in-
flammation of the ileum and colon [86–88]. NET formation in
CD has not been well-studied although studies indicate that
ROS production is enhanced, which could promote NETosis
[30, 89–91]. UC is also characterized by inflammation of the
gastrointestinal tract mostly restricted to the colon with NETs
observed in the colon accompanied by exacerbated inflamma-
tion [64]. There are a few studies looking into the mechanism
of NETs in these conditions, but there are more studies needed
to better inform on development of effective treatment
options.

Metabolic Diseases

Metabolic diseases have been associated with chronic low-
grade inflammation with activation of the innate immune re-
sponse and recruitment of mononuclear and polymorphonu-
clear leukocytes increasing cellular dysfunction [92, 93]. This
microenvironment favors NETosis linking it to immune
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deregulation and hyperglycemia, oxidative stress, inflamma-
tion, and further complications of metabolic diseases.

Type 2 diabetes is a chronic metabolic condition character-
ized by glucose level build-up in the bloodstream, hypergly-
cemia, and cells unresponsive to insulin. Studies have shown
that hyperglycemia predisposes neutrophils to release NETs.
NET-related bioproducts (NE, MPO, and cfDNA) are in-
creased compared with non-diabetic subjects and also posi-
tively correlate with increased glycated hemoglobin (HbA1c)
levels [23, 77]. This suggests that the chronic pro-
inflammatory conditions present during hyperglycemia pro-
mote NETosis in both the type 1 and type 2 diabetes [22,
94]; thus, NET formation is enhanced in hyperglycemic con-
ditions independent of diabetes type and origin.

Obesity is a metabolic condition characterized by an excess
of adipose tissue deposition, as a result of energy imbalance
due to increased energy intake versus expenditure. Obesity is
frequently associated with other chronic complications includ-
ing cardiovascular disease and diabetes [95, 96]. Studies have
shown an association between obesity and chronic inflamma-
tion with enhanced neutrophil activity, increased superoxide
radicals, and NET formation [97, 98].Moorthy et al. show that
the neutrophils of mice fed with high-fat diet are more prone
to spontaneous NET formation, compared with neutrophils
derived frommice fed with low-fat diet [99]. The same is seen
in mice fed with high-fat diet and infected with inlfuenza
compared with the mice fed with low-fat diet [100]. There is
an increase in obesity globally, necessitating more studies into
this condition and the link to the other metabolic conditions.
This will inform on management of conditions caused or ex-
acerbated by obesity and how NETs play a role in this.

Potential Anti-NET Therapeutics

Although NETs can be beneficial, the detrimental effect of
NETs can cause excessive tissue damage and pathology.
There are studies evaluating the possible effects of certain
compounds against NETs as illustrated in Table 1, and more
studies need to be considered to mitigate the negative effects
of NETosis.

Anti-Inflammatory/Immunomodulatory and NETs

Acetylsalicylic acid (Aspirin) is a non-steroidal drug with an
antithrombotic and an anti-inflammatory effect used in the
management of inflammatory symptoms. It functions through
the irreversible acetylation of cyclooxygenase enzyme
(COX), and suppresses prostaglandin generation [101, 224].
It is used as an antiplatelet agent for prevention of arterial
thromboses as it inhibits thromboxane A2 [225, 226].
Thromboxane A2 is a vasoconstrictor that activates new plate-
lets increasing platelet aggregation, an important function

during tissue injury, inflammation, and healing([227]).
Platelets are the primary effector cells of hemostasis [227],
but recent evidence indicates that they play a direct role in
innate immunity by interacting with pathogens or recognize
pathogen-associated molecular patterns (PAMPs) [228, 229].
They facilitate innate immunity and activate NETosis via
platelet-neutrophil interaction [51, 230]. Platelet activation
through TLR2 and TLR4 leads to the expression of P-
selectin which binds to neutrophil receptor (PSGL-1) inducing
NETosis as demonstrated in mice [24, 26, 102]. NETosis is
also mediated by the binding of αMβ2 (MAC-1) on neutro-
phils to glycoprotein 1bα (GP1bα) on platelets generating
NETs in liver and lungs during endotoxemia and in septic
conditions [231, 232]. In addition to LPS, platelets can be
activated by thrombin and arachidonic acid to form NETs
[103, 230]. Upon activation, platelets secrete soluble media-
tors including high-mobility group box-1 (HMBG-1) [25],
platelet factor 4 (PF4), and CCL5 (RANTES) that induce
NETosis via the neutrophil G protein coupled receptors
[104]. The interactions between platelets and neutrophils me-
diate NETosis, and inhibition of this interaction using anti-
platelet therapy has the potential to inhibit NET formation
[105, 106]. In a study conducted on endotoxin-triggered acute
lung injury, pretreatment of mice with aspirin showed a de-
creased intravascular NET formation and reduced degree of
lung injury [103, 106]. In another study on effects of NETs on
transplantation inmice, they discovered that platelet activation
was also inhibited by aspirin [107]. Lapponi et al. conducted
another study where they treated neutrophils with a steroidal
immunomodulatory drug (dexamethasone) or aspirin, and dis-
covered that dexamethasone had no effect, while aspirin
prevented NET formation [108]. They demonstrated that as-
pirin functions by inhibiting NF-κB, an inflammatory tran-
scriptional regulator, that promotes NETosis. These results
show that aspirin could be a useful therapy in the management
of pathologic NETosis induced by platelets, but we have to
keep in mind the side effects of aspirin. Aspirin is a blood
thinner and predisposes patients to stomach ulcers, so more
studies are needed to find out which conditions could benefit
from treatment with aspirin, without the excessive side effects.

Cyclosporine A is an immunosuppressant drug widely used
in post-allogeneic organ transplant to reduce the activity of the
patient’s immune system, and therefore the risk of organ re-
jection [109, 110]. It causes reversible inhibition of immuno-
competent lymphocytes and has been used to manage fungal
infections, rheumatoid arthritis, asthma, dermatologic drug,
and immunosuppressive agent [110, 111]. The mechanism
of action of cyclosporine A involves binding to cytophilin,
resulting in the downregulation of NFAT (nuclear factor of
activated T cells) transcription factor and inhibiting the cal-
cineurin pathway subsequently inhibiting NET formation
[111, 112]. Gupta et al. analyzed the role of cyclosporine A,
ascomycin (a macrolide with strong immunosuppressant
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properties), and rapamycin (a cell anti-proliferative and immu-
nosuppressive agent), on both extra and intracellular calcium
pools and their modulation in NETosis. Their data indicated
that a combination of ascomycin and cyclosporine A reduced
NETosis, but the same effect was not evident following treat-
ment with rapamycin [113]. This opens up the possibility to
therapeutically suppress or modulate NETosis using cyclo-
sporine A or a combination therapy with ascomycin. There
were no other studies we could find in this area, and this could
be due to the fact that cyclosporine A and immunosuppressive
drugs may impair normal host immune responses to microbes
[114, 115], predisposing patients to frequent infections.
Therefore, there is a need for more studies into how these
drugs could be formulated to manage NETosis safely.

Chlor-amidine (Cl-amidine) is a compound designed to
irreversibly inhibit protein-arginine deiminase (PAD) through
covalent modification at the active site of the enzymes [116].
As described above, PAD4 is an enzyme involved in
NETosis; thus, inhibition of PAD4 is a possible therapeutic
target. Avin et al. run a study to evaluate the effect of inhibi-
tion of PAD4 in NETosis using an antagomiR-155, a pleio-
tropic microRNA important in the regulation of immune re-
sponses, demonstrating a decreased induction of PAD4
mRNA and subsequent reduced NETs in response to PMA
challenge [13]. In a mouse model of lupus, systemic treatment
with the PAD4 inhibitor (BB-Cl-amidine) showed protection
of the mice from developing NET-mediated vascular damage,
endothelial dysfunction, and kidney injury. The study indicat-
ed that PAD4 inhibition markedly downregulates the expres-
sion of type I interferon-regulated genes and reduces protein-
uria and immune complex deposition in the kidneys, while
also protecting against skin disease [117]. Another study
found that PAD4-deficient mice (both diabetic and non-
diabetic) possess faster wound healing and re-epithelization
processes than their wild-type counterparts. This effect was
independent of wound infection suggesting that NETosis
could hinder wound healing by limiting keratinocyte migra-
tion and re-epithelization [118]. It is therefore possible to tar-
get inhibition of PAD4 to inhibit NET formation; however, it
is important to note that PAD4 may have other important
functions in immunity which may be impaired [119, 120]. In
one study, they reported mixed results of pharmacological
PAD4 inhibition using Cl-amidine in human neutrophils,
where NETosis induced by smoking was blocked by
inhibiting of PAD4, but NETosis induced by cholesterol crys-
tals was not blocked [121]. With these results, developing a
suitable targeted therapy for PAD4 may be challenging thus
the need for more carefully considered human studies on the
function of PAD4 before using its inhibition as a strategy for
management of NETosis.

PGE2—Prostaglandins (PGs) are members of the eicosa-
noid family synthesized from arachidonic acid via COX en-
zymes and produced by nearly all cells within the body. PGE2

is the most abundant prostaglandin in the human body and has
been shown to influence both inflammatory and in some cases
anti-inflammatory effects [122, 123]. Shishikura et al. evalu-
ated the effects of PGE2, agonists and antagonists of its re-
ceptors, and modulators of the cAMP-PKA pathway on the
formation of NETs in vitro (in isolated neutrophils) and
in vivo in a mouse model. They also discovered that PGE2
inhibited PMA-induced NET formation in vitro through EP2
and EP4. Exogenous PGE2 treatment limited NETosis of neu-
trophils collected from normal human volunteers and naive
mice in an exchange protein activated by cAMP- and protein
kinase A-dependent manner demonstrating a physiologic in-
hibition of NETosis. Incubation with a cell-permeable cAMP
analogue, dibutyryl cAMP, or various inhibitors of a cAMP-
degrading enzyme, rolipram (PDE4 inhibitor), and butaprost,
(EP2 receptor agonist) also suppressed NET formation [124].
Interestingly, Domingo et al. conducted a study in murine
bone marrow transplant mice (BMT) where neutrophils over-
express COX-2 and overproduce PGE2, leading to defective
intracellular bacterial killing. They wanted to determine
whether NETosis was defective after transplant and whether
this was regulated by PGE2 signaling. Treatment of BMT
neutrophils with rapamycin resulted in reduced NET forma-
tion relative to control cells while the EP2 receptor antagonist
(PF-04418948) or the EP4 antagonist (AE3-208), Gαs-
coupled receptors, restored NET formation suggesting that
blocking PGE2-EP2 or EP4 signaling pathway restores
NETosis [125]. These findings will contribute to the develop-
ment of novel treatments for NETosis-related diseases al-
though more studies need to be done to evaluate the effect
of using PGE2 as a therapeutic. Although PGE2 is beneficial
in management of SLE and other IFN-α-dependent, Th1-
driven diseases [126], it could pose a challenge in conditions
like arthritis [233, 234] associated with pain. PGE2 is known
to contribute to pain as part of the inflammatory response, thus
the need for more studies to evaluate its effects in different
diseases compared with its benefits.

PA-dPEG24 is a peptide inhibitor of complement C1
(PIC1) whichmitigates peroxidase activity ofMPO, hemoglo-
bin, and myoglobin through a reversible process [235].
Defective complement action caused by dysregulation and
acute and chronic tissue damage or transplants can lead to host
cell attack contributing to inflammatory conditions [236, 237].
This is more so in the kidney which has been shown to be
particularly sensitive to complement-mediated damage [127,
128]. It is known that complement effectors including C5a and
membrane attack complex (sC5b-9) interact with and can
st imula te human neutrophi ls to genera te NETs.
Subsequently, products of NETosis can activate complements
causing a destructive loop [129]. Therapeutic complement
inhibition is successfully used in paroxysmal nocturnal hemo-
globinuria showing a promise in its use in other clinical con-
ditions [130, 131]. An article by Hair et al. demonstrated that
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PIC1 showed dose-dependent antioxidant activity, acting via
the single electron transport (SET) and hydrogen atom transfer
(HAT) mechanisms interfering with oxidation of cysteine res-
idues. They showed that PA-dPEG24 achieved complete in-
hibition with complement effector levels equivalent to back-
ground. PA-dPEG24was also able to dose-dependently inhib-
it NET formation by human neutrophils, stimulated by PMA,
MPO, or immune complex activated human sera [235]. Their
results suggest that PA-dPEG24 inhibition of NETs occurs by
blocking the MPO pathway of NET formation. This provides
proof that peptides can potentially be developed to inhibit
complement-induced NETosis and be used to manage condi-
tions worsened by NETs, although since complements are
important in immune response, this needs to be researched
further.

Antibiotics have been used in the management of bacterial
infections and also have immunomodulating effects by
influencing the properties of numerous immune cells, includ-
ing neutrophils [132, 133]. Bystrzycka et al. conducted a study
to investigate the effects of azithromycin and chloramphenicol
on degranulation, apoptosis, respiratory burst, and the release
of NETs by neutrophils. Their study indicated that pretreat-
ment of neutrophils with azithromycin and chloramphenicol
decreases the release of NETs, with azithromycin showing a
concentration-dependent effect on the respiratory burst in
Bystrzycka et al.’s study [134]. Another article by Manda-
Handzlik et al. looked into the effects of cefotaxime and
gentamicin on NETs and discovered that gentamicin inhibits
NET release by human neutrophils, while cefotaxime had no
impact on this process [133]. The information that antibiotics
can modulate NET release can be useful in the management of
infectious diseases or patients suffering fromNET-related dis-
eases. Since different antibiotics have different effects, there is
need for more studies on their mode of action. This will inform
on a possible compound for use in the management of NETs
without interfering with their antimicrobial function.

Anti-Thrombosis and NETs

Thrombomodulin is a protein cofactor expressed on endothe-
lial cell surfaces that modifies the substrate specificity of
thrombin by an allosteric mechanism [238]. Thrombin-
thrombomodulin complex activates protein C, initiating an
essential anticoagulant pathway [238–240]. Thrombosis is
the formation of a blood clot within a blood vessel caused
by cytokines and other inflammatory mediators produced dur-
ing an injury, obesity, and in some cases drugs, e.g., estrogen
pills [241]. Large amounts of circulating cfDNA, present in
NETs, can influence thrombus formation by impairing fibri-
nolysis creating a scaffold for the binding of red blood cells,
platelets, fibrin, and coagulation factors [129]. Besides
cfDNA, other NET components also exert procoagulant prop-
erties with extracellular histones inducing platelet activation,

aggregation, and thrombin generation [81, 229, 242].
Immuno-thrombosis-induced coagulopathy may contribute
to hypercoagulability which increases occurrence of multiple
organ dysfunction and mortality [135–137]. Helms et al. did a
study where they looked into the use of a recombinant human
thrombomodulin (rhTM) and found out that it can limit
procoagulant responses. rhTM was also shown to fully inhibit
NETosis in neutrophils cultured with platelets and in the pres-
ence of LPS [138]. There is not much research in effect of
rhTM, but this provides a starting point for further research
into its potential use to inhibit NETs.

Activated protein C (APC) is a multifunctional serine pro-
tease produced in blood by vitamin K–activating protein C.
APC has anticoagulant, cytoprotective, and anti-inflammatory
activities [139, 140]. Protein C has been shown to be an im-
portant prognostic indicator in patients with sepsis. During
sepsis, there is a reduction in the conversion of protein C to
its active form due to the downregulation of thrombomodulin
by inflammatory cytokines [141]. The antithrombotic effects
of activated protein C is mediated by its ability to inhibit the
formation of clotting factors Va and VIlla and disrupting ex-
tracellular histones [142, 243]. Healy et al. demonstrated that
APC cleaves and detoxifies extracellular histones and pre-
vents activated platelets from inducing NETosis. The pretreat-
ment of neutrophils with APC before inducing NETosis
inhibited platelet adhesion to NETs. They also used antibodies
against the neutrophil receptors endothelial protein C receptor
(EPCR), protease-activated receptor 3 (PAR3), and
macrophage-1 antigen (Mac-1) which blocked APC inhibition
of NETosis [244]. Another study demonstrated that the block-
ade of protein C activation lead to exacerbated sublethal LPS
challenge to turn lethal, which was reversed by treatment with
antibodies to histones [56, 245]. These findings suggest that
the anti-inflammatory function of APCmay include inhibition
of NETosis. Drotrecogin alfa is a recombinant human activat-
ed protein C produced by Xigris approved for use in septic
patients [143, 144, 246]. Studies should be done to evaluate if
this and other similar compounds would be effective in min-
imizing NETosis in sepsis and other conditions with minimal
side effects.

Heparin is a medication and naturally occurring glycos-
aminoglycan used as an anticoagulant (blood thinner).
Specifically, it is used in the treatment of heart attacks and
unstable angina, and also antagonizes the effects of histones
[247, 248]. High levels of circulating histones have been pos-
itively correlated with disease severity in many disease condi-
tions as they activate NF-κB pathway inducing the secretion
of cytokines that amplify inflammation leading to organ dam-
age [145–147]. Heparin has been shown to significantly sup-
press histone-induced disease [148, 149]. Studies have been
done to evaluate the effect of unfractionated heparin, low mo-
lecular weight heparin, e.g., parnaparin and non-anticoagulant
heparin [148, 150, 151]. These studies demonstrate that
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heparin was able to protect mice from organ damage and death
by antagonizing circulating histones attenuating tissue dam-
age. Administration of heparin, especially the non-
anticoagulant heparin, is a novel and promising approach that
may be further developed to treat patients with high levels of
circulating histones potentially inhibiting NETosis without
increasing the risk of bleeding.

Anti-high-mobility group box 1 (HMGB1) is an abundant
protein that regulates chromosome architecture and also func-
tions as a damage-associated molecular pattern molecule
[249–251]. It plays a beneficial role in microbial eradication
through its pro-inflammatory actions and modulation of neu-
trophil chemotaxis [252–256]. Platelets are the major source
of HMGB1 within the thrombi and present it to neutrophils
promoting NETosis [152–154, 257]. Vogel et al. determined
that platelet-derived HMGB1 is a critical mediator of throm-
bosis from their study using generated transgenic mice with
platelet-specific deletion of HMGB1 [25]. These effects were
mediated via TLR4-and MyD88-dependent recruitment of
platelet guanylyl cyclase (GC) toward the plasma membrane,
followed byMyD88/GC complex formation and activation of
the cGMP-dependent protein kinase I [25, 155]. Mice lacking
HMGB1 in platelets exhibited increased bleeding times as
well as reduced thrombus formation, platelet aggregation, in-
flammation, and organ damage during experimental trauma/
hemorrhagic shock [25, 156]. Exposure of neutrophils to
HMGB1 resulted in enhanced formation of NETs in vitro
through TLR4-dependent processes contributing to inflamma-
tory processes and tissue injury [157–160, 257]. Studies show
that the use of anti-HMGB1 antibodies may diminish NET
formation, as seen in a reduction of histone 3 and free DNA
in the BAL fluid of LPS-treated mice that received neutraliz-
ing antibodies to HMGB1 [159, 161]. However, decreased
levels of cytokines in the lungs after administration of anti-
HMGB1 antibodies to LPS-treated mice may not necessarily
be a direct result of diminished NET formation but could
reflect the effects of HMGB1 on other pro-inflammatory path-
ways [162, 163]. This is a promising area necessitating more
research into how anti-HMGB1 interrupts NETosis, and pos-
sibly use it as a treatment option.

C1 esterase inhibitor (C1INH) is an acute phase protein
found in blood and a serine protease inhibitor that targets the
complement pathway, coagulation pathway (factor XIIa), and
the contact system protease kallikrein. It is an endogenous
inhibitor of C1 protein in the complement system [164, 258,
259]. C1-INH concentrates are approved for use in the man-
agement of hereditary angioedema (HAE), an autosomal-
dominant disease caused by C1-INH deficiency due to a mu-
tation in the C1-inhibitor gene [165, 166]. Studies have been
done to evaluate whether CI-INH may protect from lung in-
jury in vivo possibly explaining the underlying mechanisms
mediating protection. These studies demonstrated that appli-
cation of C1INH alleviates bleomycin-induced lung injury via

direct interaction with extracellular histones [167, 168].
In vitro, C1INH was found to bind all histone types with the
interaction being independent of its protease inhibitory activ-
ity, but dependent on its glycosylation status [169]. In vivo,
histone-C1INH complexes were detected in bronchoalveolar
lavage fluid from patients with acute respiratory distress syn-
drome and multiple models of lung injury [170]. The reactive-
center-cleaved C1INH attenuated pulmonary damage evoked
by intravenous histones indicating that C1INH administration
may provide a new therapeutic option for disorders associated
with histone release [171]. Wygrecka and his colleagues test-
ed C1INH for its ability to bind and neutralize histones and
determined that C1INH can bind purified histones in vitro
reducing epithelial cell death by blocking histone interactions
with cell surface proteins [167]. In another study, there was
evidence for active binding of the exogenous C1INH to extra-
cellular and citrullinated histones released during NETosis
suggesting an endogenous mechanism by which histones are
potentially neutralized [172]. This mechanism could be
exploited for therapeutic management of excessive NETosis
in other conditions, but studies need to be done to evaluate the
effectiveness of these and other compounds with similar
effects.

NADPH/ROS Inhibitors and NETs

Metformin, a widely prescribed blood glucose–normalizing
antidiabetic drug, suppresses immune responses. It mainly
achieves this through the induction of AMP-activated protein
kinase. AMPK is an enzyme that plays a role in cellular ener-
gy homeostasis, by activating glucose and fatty acid uptake
and oxidation when cellular energy is low. Induction of
AMPK subsequently inhibits the mammalian target of
rapamycin (mTORC1), a pathway that regulates mammalian
metabolism and physiology, by inhibiting mitochondrial ROS
production [173]. This results in its direct effect on the cellular
functions of various pro-inflammatory immune cells. Due to
the ROS inhibitory effect of metformin, studies are underway
to evaluate it as a drug for regulating autoimmune diseases,
treating chronic autoimmune diseases and gero-protection
[174, 175]. Menegazzo et al. investigated the effect of metfor-
min against NETosis and discovered that compared with a
placebo, it significantly reduced the concentrations of NETs
in vitro. They showed a reduction in elastase, proteinase-3,
histones, and cfDNA, whereas glucose control with insulin
exerted no significant effect [176]. Metformin was shown to
prevent membrane translocation of PKC-βII and activation of
NOX in neutrophils altering pathologic changes in nuclear
dynamics and DNA release [177, 178]. This resulted in a
blunted NETosis in response to PMA and calcium influx.
This provides information for a possible use of metformin
on the PKC-NOX pathway as an anti-NETosis therapy.
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Chloroquine/hydroxychloroquine is an antimalarial drug
used to treat malaria and has effects on amoeba (a protozoa)
and some viruses [179, 180]. Studies are currently underway
to evaluate its effects on the novel corona-2 virus (COVID19)
that is currently causing a pandemic [181, 182].
Hydroxychloroquine (HDQ) is a slightly less potent derivative
of chloroquine that is used in the treatment of malaria and as
an immunosuppressive drug for management autoimmune
conditions including SLE and RA [183, 260]. It exerts its
immunosuppressive effect through inhibition of cytokine pro-
duction with modulation of co-stimulatory molecules and also
inhibits leukocyte phagocytosis [261, 262]. HDQ interferes
with the stimulatory effect of platelet aggregation even in the
presence of a thrombin agonist [263]. MMPs are matrix me-
talloproteinases which are enzymes involved in extracellular
matrix remodeling, and TIMPs are counter regulatory tissue
inhibitors of MMPs [184, 264] that have been extensively
studied in SLE [185, 265]. Research has shown that HDQ
modulated MMPs-TIMPs interaction assisting in maintaining
homeostasis of the extracellular matrix [266, 267] and may
thus play a role in reducingNETs. In another study that looked
at tumor-derived extracellular vesicle (EV), transportable ves-
icles important in the exchange of biological molecules be-
tween cells and induce formation of NETs [268, 269], HDQ
was shown to inhibit neutrophil uptake of tumor-derived EVs,
thus reducing NETosis [47, 186–188]. However, the precise
mechanism of inhibiting the uptake is largely unknown.

Due to the associated complications of NETs in autoim-
mune conditions and cancer metastasis, it is important for
future research efforts to focus on further investigation of
these drugs and other new specific targets for prevention or
control of the detrimental effects of NETs formation.

Diphenyleneiodonium chloride (DPI) is as a hypoglycemic
agent able to block gluconeogenesis and respiration by
inhibiting many enzymes; NADPH oxidase, nitric oxide syn-
thase, xanthine oxidase, NADPH cytochrome P450 oxidore-
ductase and cholinesterase [189, 190]. DPI works by binding
the heme group of NADPH oxidase, inhibiting of NADPH
oxidase and thus inhibits ROS production [191]. Ostafin
et al. evaluated the effect of DPI on ROS production in the
context of NETs and discovered that addition of DPI to the
sample led to a reduction of extracellular DNA release with
the strongest inhibition noticed after adding 10 μM DPI.
These findings confirmed that DPI is able to block NET cre-
ation. However, the addition of DPI together with PMA or the
addition of inhibitor initially and then washing it out before
stimulation resulted in different levels of NET formation
[192]. These findings necessitate more studies to look into
the mechanism of action of DPI under different conditions
and in different diseases as a potential therapeutic for NETs.

N-acetylcysteine (NAC), also known as Acetylcysteine, is a
medication used to treat acetaminophen overdose [193] and to
loosen thick mucus in individuals with cystic fibrosis or

chronic obstructive pulmonary disease [194]. It also functions
as an antioxidant which helps mitigate symptoms for a variety
of diseases exacerbated by ROS species [195, 196].
Zawrotniak and his team evaluated the effect of NAC,
ketoprofen, and ethamsylate on NETosis and observed a re-
duction of ROS production in a dose-dependent manner. NAC
inhibited netosis, but in the presence of hydrogen peroxide,
this neutrophil ability was restored indicating that NAC influ-
ences NET formation by modulating ROS productivity [197].
The administration of ethamsylate led to a significant reduc-
tion in NET formation, but this effect was not restored by
hydrogen peroxide suggesting an additional side effect of this
drug. Ketoprofen seemed to promote ROS-independent NET
release, simultaneously inhibiting ROS production [197].
Brianna et al. used an acute pulmonary thrombosis model
in vivo where NAC reduced thrombus formation to a similar
extent as the irreversible platelet inhibitor aspirin [198].
In vitro analysis of platelet activation revealed that NAC re-
duced thrombin-induced platelet-leukocyte aggregate forma-
tion in mice model of mutated Janus kinase 2, a common
mutation found in patients with chronic hematologic malig-
nancies (CHM), and reduced NET formation in primary hu-
man neutrophils from patients with CHM as well as healthy
controls [198]. These results strongly suggest that the thera-
peutic strategies applied in many neutrophil-mediated dis-
eases should take into account the NET-associated effects
and that studies should look at the effect of these compounds
in other diseases.

Nucleases and NETs

Recombinant human DNase, marketed as Pulmozyme
(Dornase alfa) by Genentech, is a highly purified solution of
recombinant human deoxyribonuclease I (rhDNase). This is
an enzyme which selectively cleaves DNA and has been used
to hydrolyze the DNA present in sputum/mucus of cystic fi-
brosis patients and reduces viscosity in the lungs promoting
clearance of secretions [199]. Nucleases perform various func-
tions like acquiring nucleotide nutrients, allowing or
preventing uptake of foreign DNA, controlling biofilm forma-
tion/dispersal/architecture, aiding some pathogens in invading
host by tissue damage, degrading DNA matrixes, and
immunomodulating the host immune response [200–202].
Studies have demonstrated the destructive effect of DNase
on DNA-nucleoprotein, and immune complexes, providing a
rational way to interfere with the disease processes in SLE and
lupus nephritis [203]. Numerous other studies have evaluated
the effect of rhDNase on NETs, with results showing a reduc-
tion of NETosis with reduced neutrophil infiltration reducing
the inflammatory response [204–206]. Albadawi et al. con-
ducted a study where they observed reduced detection of ex-
tracellular traps in post-ischemic muscle but did not alter skel-
etal muscle fiber injury, levels of pro-inflammatory
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molecules, or ATP level. RhDNase treatment enhanced post-
ischemic hindlimb perfusion, decreased infiltrating inflamma-
tory cells, and reduced the expression of thrombin-
antithrombin III [207]. In addition, DNase I decreases tumor
volume in rats when injected intramuscularly or intraperitone-
ally in conjunction with other proteases (papain, trypsin, and
chymotrypsin) [208]; however, it is not known whether these
effects are due primarily to NET inhibition, thus the need for
more studies. Findings from a different study, showed that
early and concurrent treatment with DNase I and antibiotics
resulted in improved survival, reduced bacteremia, and organ
dysfunction in septic conditions [209]) suggesting a possible
combination therapy to control NETosis. Additionally, DNase
I injection may have off-target effects that need to be consid-
ered in its use for control of NETs or they may fail to function
as expected in vitro [210].

Staphylokinase i s an exoprote in produced by
Staphylococcus aureus, which activates host plasminogen
[211]. It induces extracellular release of alpha-defensins from
polymorphonuclear cells promoting a complex formation be-
tween alpha-defensins and staphylokinase. The effect of this
interaction is an almost complete inhibition of the bactericidal
effect of alpha-defensins [211]. Thammavongsa et al. reported
that S. aureus escapes these defenses by converting NETs to
deoxyadenosine, which triggers the caspase-3-mediated death
of immune cells [212].Thus, the pathogenesis of S. aureus
infections has evolved to anticipate host defenses and to re-
purpose them for the destruction of the immune system [213,
214]. Secretory nucleases also provide means of survival to
other bacteria like iron-reducing Shewanella and such func-
tions help them adapt and survive proficiently [200]. Other
than their pro-pathogen roles in survival, nucleases can be
used directly as therapeutics due to their biological functions
and medical applications in diagnosis, immunoprophylaxis,
and autoimmune therapy. In the future, these enzymes can
impact human medicine positively by opening new avenues
for therapeutics which have otherwise reached saturation due
to multi-drug resistance.

Notable Compounds

Probiotics are live microorganisms promoted with claims that
they provide health benefits when consumed, generally by
improving or restoring the gut flora [215, 216]. Probiotics
are considered generally safe for consumption but may cause
unwanted side effects and bacteria-host interactions in rare
cases. Alterations in the gut microbiota, as well as the pres-
ence of local and systemic markers of inflammation, are
strongly associated with the manifestation of a spectrum of
intestinal disorders [217]. Linda et al. investigated the effects
of a nonpathogenic, enteropathogenic, and probiotic bacteria
on the dynamics of NET formation using murine bone
marrow–derived neutrophi ls and the neutrophi l -

differentiated human myeloid cell line DHL-60. They demon-
strate that the probiotic Lactobacillus rhamnosus strain GG
(LGG) inhibits both PMA and S. aureus induced NETs by
inhibiting PKC pathway and dampening ROS production
disrupting NETosis supporting its antioxidative capacity
[218]. Given the presence of NETs in inflamed intestine
[91], it is possible that some of the beneficial effects of LGG
are attributable to its action on local neutrophils. Probiotics
have been shown to protect against bacterial-induced cytotox-
icity, but more studies need to be done to highlights the dy-
namic interaction between beneficial bacteria and neutrophils
to inform on the usefulness of probiotics as gut-protective and
immunomodulatory compounds.

Vitamin D is a group of fat-soluble secosteroids important
for increasing intestinal absorption minerals including calci-
um, magnesium, and phosphate. Vitamin D has other multiple
biological effects including activating the innate immune sys-
tem while dampening the adaptive immune systems
[219–222]. In humans, vitamin D3 (cholecalciferol) and vita-
min D2 (ergocalciferol) are the most important [223]. There
are suggestions indicating the benefits of vitamins D on vari-
ous conditions, but evidence is lacking on whether supple-
mentation of vitamin D helps to reduce the risk of these dis-
eases including asthma, tuberculosis, irritable bowel disease,
depression, and other conditions [270, 271]. In the case of
NETosis, Handono et al. evaluated the effect of hypo-
vitamin D on NETs in SLE patients [272]. They demonstrated
a significant decrease in early apoptosis with a moderate pos-
itive correlation between NE externalizations with early apo-
ptosis. They concluded that vitamin D could reduce endothe-
lial damage by decreasing NETosis activity [272]. This result
may reveal the possibility of vitamin D as supplementary ther-
apy for SLE patients and other patients with hypo-vitamin D
to prevent NETosis and endothelial damage.

Tools and Models to Investigate the Impact
of Proposed Treatments on NETosis

Investigation of the impact of one or more of the therapeutics
discussed above in modification of NET formation will vary
depending upon the disease and drug of interest. Where there
are animal models of a target disease (e.g., rheumatoid arthritis
or psoriasis) administration of the therapeutic drug can be
done in a placebo-controlled study evaluating different doses.
Tools available include histological identification of NETs
and comparison of NETs formed in placebo versus drug-
treated animals manually or using available computer pro-
grams. One example from our own work involves using a
bovine model of respiratory syncytial virus and examination
of the role of ibuprofen, a cox-inhibitor which decreases pro-
inflammatory prostaglandin production and thromboxane 2
[273]. Our theory is that ibuprofen would reduce NETosis
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by decreasing neutrophil-activating cytokines and platelet ac-
tivation. In our study, lungs are harvested at necropsy, fixed
and stained with antibodies against citrullinated histones and
neutrophil elastase, to delineate the presence of neutrophil
NETs. Another model is the use of neutrophils incubated
in vitro with the drug to be tested and staining to determine
if there is an effect on NETosis under different drug doses.

Conclusion

NETs have been implicated in many disease processes, and
although they have a positive effect by clearing pathogens,
they are also destructive due to the release of enzymes and
other proteins that cause tissue injury. Control of NETs is
quickly becoming a target for therapeutics in the management
of various disease, but it is clear to see that the different com-
pounds that inhibit or clear NETs may have other unwanted
effects on the immune system. This makes it challenging to
conclude that one compound works better that the other and
thus the need for more research. There is a possibility that the
management of NETs may require using a combination ther-
apy that incorporate conventional treatments such fluid thera-
py, antibiotics, antivirals, and NET-targeted drugs. To poten-
tially optimize treatment efficacy and outcome in clinical pa-
tients, it is important we run more studies to evaluate the mode
of action of these compounds to pick the actual effective com-
ponent of these drugs, while evaluating the effect in the overall
immune system to ensure there are no other detrimental
effects.
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