Skip to main content

Advertisement

Log in

Bee Venom Immunotherapy: Current Status and Future Directions

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Bee venom immunotherapy is the main treatment option for bee sting allergy. Its major limitations are the high percentage of allergic side effects and long duration, which are driving the development of novel therapeutic modalities. Three general approaches have been evaluated including the use of hypoallergenic allergen derivatives, adjunctive therapy, and alternative delivery routes. This article reviews preclinical and clinical evidence on the therapeutic potential of these new therapies. Among hypoallergenic derivatives, hybrid allergens showed a markedly reduced IgE reactivity in mouse models. Whether they will offer therapeutic benefit over extract, it is still not known since clinical trials have not been carried out yet. T cell epitope peptides have proven effective in small clinical trials. Major histocompatibility complex class II restriction was circumvented by using long overlapping or promiscuous T cell epitope peptides. However, the T cell–mediated late-phase adverse events have been reported with both short and longer peptides. Application of mimotopes could potentially overcome both T cell– and IgE-mediated adverse events. During this evolution of vaccine, there has been a gain in safety. The efficacy was further improved with the use of Toll-like receptor-activating adjuvants and delivery systems. In murine models, the association of allergen Api m 1 with cytosine-guanosine rich oligonucleotides stimulated strong T-helper type-1 response, whereas its encapsulation into microbubbles protected mice against allergen challenge. An intralymphatic administration of low-dose vaccine has shown the potential to decrease treatment from 5 years to only 12 weeks. Bigger clinical trials are needed to follow up on these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BVIT:

Bee venom immunotherapy

CpG:

Cytosine-guanosine rich oligonucleotides

HBV:

Honeybee venom

HLA:

Human leukocyte antigen

Ig:

Immunoglobulin

IL:

Interleukin

IFN:

Interferon

LSP:

Long synthetic peptide

MHC:

Major histocompatibility complex

PBMC:

Peripheral blood mononuclear cell

PLGA-MS:

Poly lactide-co-glycolide acid microspheres

PolyI:C:

Polyriboinosinic polyribocytidylic acid

SCIT:

Subcutaneous immunotherapy

SLIT:

Sublingual immunotherapy

TH1:

Type 1 helper T cell

TLR:

Toll-like receptor

Treg:

Regulatory T cell

3D structure:

Three-dimensional structure

References

  1. Clark S, Camargo CA Jr (2007) Epidemiology of anaphylaxis. Immunol Allergy Clin N Am 27(2):145–163. https://doi.org/10.1016/j.iac.2007.03.002

    Article  Google Scholar 

  2. Watanabe AS, Fonseca LA, Galvao CE, Kalil J, Castro FF (2010) Specific immunotherapy using Hymenoptera venom: systematic review. Sao Paulo Med J 128(1):30–37. https://doi.org/10.1590/S1516-31802010000100007

    Article  PubMed  Google Scholar 

  3. Hockenhull J, Elremeli M, Cherry MG, Mahon J, Lai M, Darroch J, Oyee J, Boland A, Dickson R, Dundar Y, Boyle R (2012) A systematic review of the clinical effectiveness and cost-effectiveness of Pharmalgen® for the treatment of bee and wasp venom allergy. Health Technol Assess 16(12). https://doi.org/10.3310/hta16120

  4. Dhami S, Zaman H, Varga EM, Sturm GJ, Muraro A, Akdis CA, Antolín-Amérigo D, Bilò MB, Bokanovic D, Calderon MA, Cichocka-Jarosz E, Oude Elberink JNG, Gawlik R, Jakob T, Kosnik M, Lange J, Mingomataj E, Mitsias DI, Mosbech H, Ollert M, Pfaar O, Pitsios C, Pravettoni V, Roberts G, Ruëff F, Sin BA, Asaria M, Netuveli G, Sheikh A (2017) Allergen immunotherapy for insect venom allergy: a systematic review and meta-analysis. Allergy 72(3):342–365. https://doi.org/10.1111/all.13077

    Article  CAS  PubMed  Google Scholar 

  5. Dhami S, Panesar SS, Roberts G, Muraro A, Worm M, Bilo MB, Cardona V, Dubois AE, DunnGalvin A, Eigenmann P, Fernandez-Rivas M, Halken S, Lack G, Niggemann B, Rueff F, Santos AF, Vlieg-Boerstra B, Zolkipli ZQ, Sheikh A (2014) Management of anaphylaxis: a systematic review. Allergy 69(2):168–175. https://doi.org/10.1111/all.12318

    Article  CAS  PubMed  Google Scholar 

  6. Boyle RJ, Elremeli M, Hockenhull J, Cherry MG, Bulsara MK, Daniels M, Oude Elberink JNG (2012) Venom immunotherapy for preventing allergic reactions to insect stings. Cochrane Database Syst Rev 10. https://doi.org/10.1002/14651858.CD008838.pub2

  7. Eržen R, Košnik M, Šilar M, Korošec P (2012) Basophil response and the induction of a tolerance in venom immunotherapy: a long-term sting challenge study. Allergy 67(6):822–830. https://doi.org/10.1111/j.1398-9995.2012.02817.x

    Article  CAS  PubMed  Google Scholar 

  8. Varga EM, Francis JN, Zach MS, Klunker S, Aberer W, Durham SR (2009) Time course of serum inhibitory activity for facilitated allergen-IgE binding during bee venom immunotherapy in children. Clin Exp Allergy 39(9):1353–1357. https://doi.org/10.1111/j.1365-2222.2009.03303.x

    Article  CAS  PubMed  Google Scholar 

  9. Meiler F, Zumkehr J, Klunker S, Ruckert B, Akdis CA, Akdis M (2008) In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J Exp Med 205(12):2887–2898. https://doi.org/10.1084/jem.20080193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akdis CA, Blesken T, Akdis M, Wuthrich B, Blaser K (1998) Role of interleukin 10 in specific immunotherapy. J Clin Invest 102(1):98–106. https://doi.org/10.1172/JCI2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jutel M, Pichler WJ, Skrbic D, Urwyler A, Dahinden C, Muller UR (1995) Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-gamma secretion in specific allergen-stimulated T cell cultures. J Immunol 154(8):4187–4194

    CAS  PubMed  Google Scholar 

  12. Bellinghausen I, Metz G, Enk AH, Christmann S, Knop J, Saloga J (1997) Insect venom immunotherapy induces interleukin-10 production and a Th2-to-Th1 shift, and changes surface marker expression in venom-allergic subjects. Eur J Immunol 27(5):1131–1139. https://doi.org/10.1002/eji.1830270513

    Article  CAS  PubMed  Google Scholar 

  13. Satoguina JS, Weyand E, Larbi J, Hoerauf A (2005) T regulatory-1 cells induce IgG4 production by B cells: role of IL-10. J Immunol 174(8):4718–4726

    Article  CAS  PubMed  Google Scholar 

  14. Meiler F, Klunker S, Zimmermann M, Akdis CA, Akdis M (2008) Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and toll-like receptors. Allergy 63(11):1455–1463. https://doi.org/10.1111/j.1398-9995.2008.01774.x

    Article  CAS  PubMed  Google Scholar 

  15. Boonpiyathad T, Meyer N, Moniuszko M, Sokolowska M, Eljaszewicz A, Wirz OF, Tomasiak-Lozowska MM, Bodzenta-Lukaszyk A, Ruxrungtham K, van de Veen W (2017) High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers. Allergy 72(3):407–415. https://doi.org/10.1111/all.12966

    Article  CAS  PubMed  Google Scholar 

  16. Fiedler C, Miehe U, Treudler R, Kiess W, Prenzel F (2017) Long-term follow-up of children after venom immunotherapy: low adherence to anaphylaxis guidelines. Int Arch Allergy Immunol 172(3):167–172. https://doi.org/10.1159/000458707

    Article  CAS  PubMed  Google Scholar 

  17. Müller UR, Johansen N, Petersen AB, Fromberg-Nielsen J, Haeberli G (2009) Hymenoptera venom allergy: analysis of double positivity to honey bee and Vespula venom by estimation of IgE antibodies to species-specific major allergens Api m1 and Ves v5. Allergy 64(4):543–548. https://doi.org/10.1111/j.1398-9995.2008.01794.x

    Article  CAS  PubMed  Google Scholar 

  18. Lerch E, Muller UR (1998) Long-term protection after stopping venom immunotherapy: results of re-stings in 200 patients. J Allergy Clin Immunol 101(5):606–612. https://doi.org/10.1016/S0091-6749(98)70167-8

    Article  CAS  PubMed  Google Scholar 

  19. Frick M, Fischer J, Helbling A, Ruëff F, Wieczorek D, Ollert M, Pfützner W, Müller S, Huss-Marp J, Dorn B, Biedermann T, Lidholm J, Ruecker G, Bantleon F, Miehe M, Spillner E, Jakob T (2016) Predominant Api m 10 sensitization as risk factor for treatment failure in honey bee venom immunotherapy. J Allergy Clin Immunol 138(6):1663–1671.e1669. https://doi.org/10.1016/j.jaci.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  20. Blank S, Seismann H, Michel Y, McIntyre M, Cifuentes L, Braren I, Grunwald T, Darsow U, Ring J, Bredehorst R, Ollert M, Spillner E (2011) Api m 10, a genuine A. mellifera venom allergen, is clinically relevant but underrepresented in therapeutic extracts. Allergy 66(10):1322–1329. https://doi.org/10.1111/j.1398-9995.2011.02667.x

    Article  CAS  PubMed  Google Scholar 

  21. Mistrello Giovanni, Roncarolo Daniela, Zanoni Dario, Falagiani Paolo, 2008 inventor; Lofarma SpA, assignee. Allergens and allergoids from bee venom. US patent US8637037B2. December 16, 2008

  22. Akdis CA, Blesken T, Wymann D, Akdis M, Blaser K (1998) Differential regulation of human T cell cytokine patterns and IgE and IgG4 responses by conformational antigen variants. Eur J Immunol 28(3):914–925. https://doi.org/10.1002/(SICI)1521-4141(199803)28:03<914::AID-IMMU914>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  23. Buhot C, Chenal A, Sanson A, Pouvelle-Moratille S, Gelb MH, Ménez A, Gillet D, Maillère B (2004) Alteration of the tertiary structure of the major bee venom allergen Api m 1 by multiple mutations is concomitant with low IgE reactivity. Protein Sci 13(11):2970–2978. https://doi.org/10.1110/ps.04885404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kussebi F, Karamloo F, Rhyner C, Schmid-Grendelmeier P, Salagianni M, Mannhart C, Akdis M, Soldatova L, Markovic-Housley Z, Von Beust BR, Kundig T, Kemeny DM, Blaser K, Crameri R, Akdis CA (2005) A major allergen gene-fusion protein for potential usage in allergen-specific immunotherapy. J Allergy Clin Immunol 115(2):323–329. https://doi.org/10.1016/j.jaci.2004.11.041

    Article  CAS  PubMed  Google Scholar 

  25. Karamloo F, Schmid-Grendelmeier P, Kussebi F, Akdis M, Salagianni M, von Beust BR, Reimers A, Zumkehr J, Soldatova L, Housley-Markovic Z, Müller U, Kündig T, Kemeny DM, Spangfort MD, Blaser K, Akdis CA (2005) Prevention of allergy by a recombinant multi-allergen vaccine with reduced IgE binding and preserved T cell epitopes. Eur J Immunol 35(11):3268–3276. https://doi.org/10.1002/eji.200425522

    Article  CAS  PubMed  Google Scholar 

  26. Carballido JM, Carballido-Perrig N, Kägi MK, Meloen RH, Wüthrich B, Heusser CH, Blaser K (1993) T cell epitope specificity in human allergic and nonallergic subjects to bee venom phospholipase A2. J Immunol 150(8):3582–3591

    CAS  PubMed  Google Scholar 

  27. Muller U, Akdis CA, Fricker M, Akdis M, Blesken T, Bettens F, Blaser K (1998) Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J Allergy Clin Immunol 101(6 Pt 1):747–754. https://doi.org/10.1016/S0091-6749(98)70402-6

    Article  CAS  PubMed  Google Scholar 

  28. Fellrath J-M, Kettner A, Dufour N, Frigerio C, Schneeberger D, Leimgruber A, Corradin G, Spertini F (2003) Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a phase I trial. J Allergy Clin Immunol 111(4):854–861. https://doi.org/10.1067/mai.2003.1337

    Article  CAS  PubMed  Google Scholar 

  29. Texier C, Pouvelle S, Busson M, Herve M, Charron D, Menez A, Maillere B (2000) HLA-DR restricted peptide candidates for bee venom immunotherapy. J Immunol 164(6):3177–3184. https://doi.org/10.4049/jimmunol.164.6.3177

    Article  CAS  PubMed  Google Scholar 

  30. Tarzi M, Klunker S, Texier C, Verhoef A, Stapel SO, Akdis CA, Maillere B, Kay AB, Larche M (2006) Induction of interleukin-10 and suppressor of cytokine signalling-3 gene expression following peptide immunotherapy. Clin Exp Allergy 36(4):465–474. https://doi.org/10.1111/j.1365-2222.2006.02469.x

    Article  CAS  PubMed  Google Scholar 

  31. Zahirovic A, Koren A, Kopac P, Strukelj B, Korosec P, Lunder M (2018) Identification of bee venom Api m 1 IgE epitopes and characterization of corresponding mimotopes. J Allergy Clin Immunol 143(2):791–794.e5. https://doi.org/10.1016/j.jaci.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  32. Johansen P, Senti G, Martinez Gomez JM, Storni T, Beust BR, Wuthrich B, Bot A, Kundig TM (2005) Toll-like receptor ligands as adjuvants in allergen-specific immunotherapy. Clin Exp Allergy 35(12):1591–1598. https://doi.org/10.1111/j.1365-2222.2005.02384.x

    Article  CAS  PubMed  Google Scholar 

  33. Trindade RA, Kiyohara PK, de Araujo PS, Bueno da Costa MH (2012) PLGA microspheres containing bee venom proteins for preventive immunotherapy. Int J Pharm 423(1):124–133. https://doi.org/10.1016/j.ijpharm.2011.02.027

    Article  CAS  PubMed  Google Scholar 

  34. Corthésy B, Lassus A, Terrettaz J, Tranquart F, Bioley G (2016) Efficacy of a therapeutic treatment using gas-filled microbubble-associated phospholipase A2 in a mouse model of honeybee venom allergy. Allergy 71(7):957–966. https://doi.org/10.1111/all.12859

    Article  CAS  PubMed  Google Scholar 

  35. Kiselmann C, Dobler D, Schmidts T, Eicher AC, Mobs C, Pfutzner W, Runkel F (2018) Development of a skin-friendly microemulsion for dermal allergen-specific immunotherapy. Int J Pharm 550(1–2):463–469. https://doi.org/10.1016/j.ijpharm.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  36. Schuppe M, Kiselmann C, Dobler D, Wacker A, Schmidt O, Runkel F, Schmidts T, Pfutzner W, Mobs C (2018) Epidermal tolerance induction in a preclinical animal model of Api m 1-sensitized mice. Allergy 73:187–188

    Article  Google Scholar 

  37. Severino MG, Cortellini G, Bonadonna P, Francescato E, Panzini I, Macchia D, Campi P, Spadolini I, Canonica WG, Passalacqua G (2008) Sublingual immunotherapy for large local reactions caused by honeybee sting: a double-blind, placebo-controlled trial. J Allergy Clin Immunol 122(1):44–48. https://doi.org/10.1016/j.jaci.2008.03.031

    Article  CAS  PubMed  Google Scholar 

  38. Martinez-Gomez JM, Johansen P, Erdmann I, Senti G, Crameri R, Kundig TM (2009) Intralymphatic injections as a new administration route for allergen-specific immunotherapy. Int Arch Allergy Immunol 150(1):59–65. https://doi.org/10.1159/000210381

    Article  CAS  PubMed  Google Scholar 

  39. Marsh DG, Norman PS, Roebber M, Lichtenstein LM (1981) Studies on allergoids from naturally occurring allergens. III. Preparation of ragweed pollen allergoids by aldehyde modification in two steps. J Allergy Clin Immunol 68(6):449–459. https://doi.org/10.1016/0091-6749(81)90199-8

    Article  CAS  PubMed  Google Scholar 

  40. Norman PS, Lichtenstein LM, Marsh DG (1981) Studies on allergoids from naturally occurring allergens. IV. Efficacy and safety of long-term allergoid treatment of ragweed hay fever. J Allergy Clin Immunol 68(6):460–470. https://doi.org/10.1016/0091-6749(81)90200-1

    Article  CAS  PubMed  Google Scholar 

  41. Johansen P, Senti G, Gomez JMM, Wuthrich B, Bot A, Kundig TM (2005) Heat denaturation, a simple method to improve the immunotherapeutic potential of allergens. Eur J Immunol 35(12):3591–3598. https://doi.org/10.1002/eji.200535076

    Article  CAS  PubMed  Google Scholar 

  42. Marsh DG, Lichtenstein LM, Campbell DH (1970) Studies on “allergoids” prepared from naturally occurring allergens. I. Assay of allergenicity and antigenicity of formalinized rye group I component. Immunology 18(5):705–722

  43. Lund L, Henmar H, Wurtzen PA, Lund G, Hjortskov N, Larsen JN (2007) Comparison of allergenicity and immunogenicity of an intact allergen vaccine and commercially available allergoid products for birch pollen immunotherapy. Clin Exp Allergy 37(4):564–571. https://doi.org/10.1111/j.1365-2222.2007.02687.x

    Article  CAS  PubMed  Google Scholar 

  44. Henmar H, Lund G, Lund L, Petersen A, Würtzen PA (2008) Allergenicity, immunogenicity and dose-relationship of three intact allergen vaccines and four allergoid vaccines for subcutaneous grass pollen immunotherapy. Clin Exp Immunol 153(3):316–323. https://doi.org/10.1111/j.1365-2249.2008.03710.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mosges R, Ritter B, Kayoko G, Allekotte S (2010) Carbamylated monomeric allergoids as a therapeutic option for sublingual immunotherapy of dust mite- and grass pollen-induced allergic rhinoconjunctivitis: a systematic review of published trials with a meta-analysis of treatment using Lais(R) tablets. Acta Dermatovenerol Alp Pannonica Adriat 19(3):3–10

    CAS  PubMed  Google Scholar 

  46. Lombardi C, Gargioni S, Melchiorre A, Tiri A, Falagiani P, Canonica GW, Passalacqua G (2001) Safety of sublingual immunotherapy with monomeric allergoid in adults: multicenter post-marketing surveillance study. Allergy 56(10):989–992. https://doi.org/10.1034/j.1398-9995.2001.00181.x

    Article  CAS  PubMed  Google Scholar 

  47. Mistrello G, Brenna O, Roncarolo D, Zanoni D, Gentili M, Falagiani P (1996) Monomeric chemically modified allergens: immunologic and physicochemical characterization. Allergy 51(1):8–15. https://doi.org/10.1111/j.1398-9995.1996.tb04543.x

    Article  CAS  PubMed  Google Scholar 

  48. Tscheppe A, Breiteneder H (2017) Recombinant allergens in structural biology, diagnosis, and immunotherapy. Int Arch Allergy Immunol 172(4):187–202. https://doi.org/10.1159/000464104

    Article  CAS  PubMed  Google Scholar 

  49. Valenta R, Linhart B, Swoboda I, Niederberger V (2011) Recombinant allergens for allergen-specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens. Allergy 66(6):775–783. https://doi.org/10.1111/j.1398-9995.2011.02565.x

    Article  CAS  PubMed  Google Scholar 

  50. Klimek L, Schendzielorz P, Pinol R, Pfaar O (2012) Specific subcutaneous immunotherapy with recombinant grass pollen allergens: first randomized dose-ranging safety study. Clin Exp Allergy 42(6):936–945. https://doi.org/10.1111/j.1365-2222.2012.03971.x

    Article  CAS  PubMed  Google Scholar 

  51. Pauli G, Larsen TH, Rak S, Horak F, Pastorello E, Valenta R, Purohit A, Arvidsson M, Kavina A, Schroeder JW, Mothes N, Spitzauer S, Montagut A, Galvain S, Melac M, André C, Poulsen LK, Malling H-J (2008) Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis. J Allergy Clin Immunol 122(5):951–960. https://doi.org/10.1016/j.jaci.2008.09.017

    Article  CAS  PubMed  Google Scholar 

  52. Spillner E, Blank S, Jakob T (2014) Hymenoptera allergens: from venom to “venome”. Front Immunol 5(77). https://doi.org/10.3389/fimmu.2014.00077

  53. Muller UR (2002) Recombinant Hymenoptera venom allergens. Allergy 57(7):570–576. https://doi.org/10.1034/j.1398-9995.2002.02157.x

    Article  CAS  PubMed  Google Scholar 

  54. Bilo MB, Antonicelli L, Bonifazi F (2012) Honeybee venom immunotherapy: certainties and pitfalls. Immunotherapy 4(11):1153–1166. https://doi.org/10.2217/imt.12.113

    Article  CAS  PubMed  Google Scholar 

  55. Blank S, Michel Y, Seismann H, Plum M, Greunke K, Grunwald T, Bredehorst R, Ollert M, Braren I, Spillner E (2011) Evaluation of different glycoforms of honeybee venom major allergen phospholipase A2 (Api m 1) produced in insect cells. Protein Pept Lett 18(4):415–422. https://doi.org/10.2174/092986611794653923

    Article  CAS  PubMed  Google Scholar 

  56. Vachova M, Panzner P, Kopac P, Stojkovic UB, Korosec P (2018) Routine clinical utility of honeybee venom allergen components. J Allergy Clin Immunol Pract. https://doi.org/10.1016/j.jaip.2018.08.012

    PubMed  Google Scholar 

  57. Sobotka AK, Franklin RM, Adkinson NF, Jr., Valentine M, Baer H, Lichtenstein LM (1976) Allergy to insect stings. II. Phospholipase A: the major allergen in honeybee venom. J Allergy Clin Immunol 57(1):29–40. https://doi.org/10.1016/0091-6749(76)90076-2

    Article  CAS  PubMed  Google Scholar 

  58. Scott DL, Otwinowski Z, Gelb MH, Sigler PB (1990) Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue. Science 250(4987):1563–1566. https://doi.org/10.1126/science.2274788

    Article  CAS  PubMed  Google Scholar 

  59. Markovic-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Muller U, Schirmer T (2000) Crystal structure of hyaluronidase, a major allergen of bee venom. Structure 8(10):1025–1035. https://doi.org/10.1016/S0969-2126(00)00511-6

    Article  CAS  PubMed  Google Scholar 

  60. Terwilliger TC, Eisenberg D (1982) The structure of melittin. I Structure determination and partial refinement. J Biol Chem 257(11):6010–6015

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738. https://doi.org/10.1038/nprot.2010.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Forster E, Dudler T, Gmachl M, Aberer W, Urbanek R, Suter M (1995) Natural and recombinant enzymatically active or inactive bee venom phospholipase A2 has the same potency to release histamine from basophils in patients with Hymenoptera allergy. J Allergy Clin Immunol 95(6):1229–1235. https://doi.org/10.1016/S0091-6749(95)70080-3

    Article  CAS  PubMed  Google Scholar 

  64. Schneider T, Lang AB, Carballido JM, Santamaria Babi LF, Dudler T, Kagi MK, Blaser K, Suter M (1994) Human monoclonal or polyclonal antibodies recognize predominantly discontinuous epitopes on bee venom phospholipase A2. J Allergy Clin Immunol 94:61–70. https://doi.org/10.1016/0091-6749(94)90072-8

    Article  CAS  PubMed  Google Scholar 

  65. Kammerer R, Kettner A, Chvatchko Y, Dufour N, Tiercy JM, Corradin G, Spertini F (1997) Delineation of PLA(2) epitopes using short or long overlapping synthetic peptides: interest for specific immunotherapy. Clin Exp Allergy 27(9):1016–1026. https://doi.org/10.1111/j.1365-2222.1997.tb01253.x

    Article  CAS  PubMed  Google Scholar 

  66. Dhillon M, Roberts C, Nunn T, Kuo M (1992) Mapping human T cell epitopes on phospholipase A2: the major bee-venom allergen. J Allergy Clin Immunol 90(1):42–51. https://doi.org/10.1016/S0091-6749(06)80009-6

    Article  CAS  PubMed  Google Scholar 

  67. Carra JH, Welcher BC, Schokman RD, David CS, Bavari S (2003) Mutational effects on protein folding stability and antigenicity: the case of streptococcal pyrogenic exotoxin a. Clin Immunol 108(1):60–68. https://doi.org/10.1016/S1521-6616(03)00058-5

    Article  CAS  PubMed  Google Scholar 

  68. Köhler J, Blank S, Müller S, Bantleon F, Frick M, Huss-Marp J, Lidholm J, Spillner E, Jakob T (2014) Component resolution reveals additional major allergens in patients with honeybee venom allergy. J Allergy Clin Immunol 133(5):1383–1389.e1386. https://doi.org/10.1016/j.jaci.2013.10.060

    Article  CAS  PubMed  Google Scholar 

  69. Hofmann SC, Pfender N, Weckesser S, Huss-Marp J, Jakob T (2011) Added value of IgE detection to rApi m 1 and rVes v 5 in patients with Hymenoptera venom allergy. J Allergy Clin Immunol 127(1):265–267. https://doi.org/10.1016/j.jaci.2010.06.042

    Article  CAS  PubMed  Google Scholar 

  70. Linhart B, Mothes-Luksch N, Vrtala S, Kneidinger M, Valent P, Valenta R (2008) A hypoallergenic hybrid molecule with increased immunogenicity consisting of derivatives of the major grass pollen allergens, Phl p 2 and Phl p 6. Biol Chem 389(7):925–933. https://doi.org/10.1515/BC.2008.105

    Article  CAS  PubMed  Google Scholar 

  71. Denepoux S, Eibensteiner PB, Steinberger P, Vrtala S, Visco V, Weyer A, Kraft D, Banchereau J, Valenta R, Lebecque S (2000) Molecular characterization of human IgG monoclonal antibodies specific for the major birch pollen allergen Bet v 1. Anti-allergen IgG can enhance the anaphylactic reaction. FEBS Lett 465(1):39–46. https://doi.org/10.1016/S0014-5793(99)01703-2

    Article  CAS  PubMed  Google Scholar 

  72. Lubkowski J, Hennecke F, Pluckthun A, Wlodawer A (1998) The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p. Nat Struct Mol Biol 5(2):140–147

    Article  CAS  Google Scholar 

  73. Prickett SR, Rolland JM, O'Hehir RE (2015) Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clin Exp Allergy 45(6):1015–1026. https://doi.org/10.1111/cea.12554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Patel D, Couroux P, Hickey P, Salapatek AM, Laidler P, Larche M, Hafner RP (2013) Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: a randomized, placebo-controlled study. J Allergy Clin Immunol 131(1):103–109 e101-107. https://doi.org/10.1016/j.jaci.2012.07.028

    Article  CAS  PubMed  Google Scholar 

  75. Candia M, Kratzer B, Pickl WF (2016) On peptides and altered peptide ligands: from origin, mode of action and design to clinical application (immunotherapy). Int Arch Allergy Immunol 170(4):211–233. https://doi.org/10.1159/000448756

    Article  CAS  PubMed  Google Scholar 

  76. Faith A, Akdis CA, Akdis M, Joss A, Wymann D, Blaser K (1999) An altered peptide ligand specifically inhibits Th2 cytokine synthesis by abrogating TCR signaling. J Immunol 162(3):1836–1842

    CAS  PubMed  Google Scholar 

  77. Kammerer R, Chvatchko Y, Kettner A, Dufour N, Corradin G, Spertini F (1997) Modulation of T-cell response to phospholipase A2 and phospholipase A2-derived peptides by conventional bee venom immunotherapy. J Allergy Clin Immunol 100(1):96–103. https://doi.org/10.1016/S0091-6749(97)70200-8

    Article  CAS  PubMed  Google Scholar 

  78. Von Garnier C, Astori M, Kettner A, Dufour N, Heusser C, Corradin G, Spertini F (2000) Allergen-derived long peptide immunotherapy down-regulates specific IgE response and protects from anaphylaxis. Eur J Immunol 30(6):1638–1645. https://doi.org/10.1002/1521-4141(200006)30:6<1638::AID-IMMU1638>3.0.CO;2-R

    Article  Google Scholar 

  79. Astori M, von Garnier C, Kettner A, Dufour N, Corradin G, Spertini F (2000) Inducing tolerance by intranasal Administration of Long Peptides in naive and primed CBA/J mice. J Immunol 165(6):3497–3505. https://doi.org/10.4049/jimmunol.165.6.3497

    Article  CAS  PubMed  Google Scholar 

  80. Texier C, Pouvelle-Moratille S, Busson M, Charron D, Menez A, Maillere B (2001) Complementarity and redundancy of the binding specificity of HLA-DRB1, -DRB3, -DRB4 and -DRB5 molecules. Eur J Immunol 31(6):1837–1846. https://doi.org/10.1002/1521-4141(200106)31:6<1837::AID-IMMU1837>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  81. Moldaver D, Larché M (2011) Immunotherapy with peptides. Allergy 66(6):784–791. https://doi.org/10.1111/j.1398-9995.2011.02610.x

    Article  CAS  PubMed  Google Scholar 

  82. Barry Kay A, Larché M (2004) Allergen immunotherapy with cat allergen peptides. Semin Immunopathol 25(3–4):391–399. https://doi.org/10.1007/s00281-003-0146-y

    Article  Google Scholar 

  83. Spertini F, DellaCorte G, Kettner A, de Blay F, Jacobsen L, Jutel M, Worm M, Charlon V, Reymond C (2016) Efficacy of 2 months of allergen-specific immunotherapy with Bet v 1–derived contiguous overlapping peptides in patients with allergic rhinoconjunctivitis: results of a phase IIb study. J Allergy Clin Immunol 138(1):162–168. https://doi.org/10.1016/j.jaci.2016.02.044

    Article  CAS  PubMed  Google Scholar 

  84. Luzar J, Štrukelj B, Lunder M (2016) Phage display peptide libraries in molecular allergology: from epitope mapping to mimotope-based immunotherapy. Allergy 71(11):1526–1532. https://doi.org/10.1111/all.12965

    Article  CAS  PubMed  Google Scholar 

  85. Hancock DC, O'Reilly NJ (2005) Synthetic peptides as antigens for antibody production. In: R. B (ed) immunochemical protocols. Methods Mol Biol: Humana Press; 295:13–26

    Chapter  Google Scholar 

  86. Di Felice G, Colombo P (2017) Nanoparticle-allergen complexes for allergen immunotherapy. Int J Nanomedicine Volume 12:4493–4504. https://doi.org/10.2147/ijn.s134630

    Article  CAS  Google Scholar 

  87. Chesné J, Schmidt-Weber CB, Esser von-Bieren J (2016) The use of adjuvants for enhancing allergen immunotherapy efficacy. Immunol Allergy Clin N Am 36(1):125–145. https://doi.org/10.1016/j.iac.2015.08.009

    Article  PubMed  Google Scholar 

  88. Scholl I, Boltz-Nitulescu G, Jensen-Jarolim E (2005) Review of novel particulate antigen delivery systems with special focus on treatment of type I allergy. J Control Release 104(1):1–27. https://doi.org/10.1016/j.jconrel.2004.12.020

    Article  CAS  PubMed  Google Scholar 

  89. Johansen P, von Moos S, Mohanan D, Kundig TM, Senti G (2012) New routes for allergen immunotherapy. Hum Vaccin Immunother 8(10):1525–1533. https://doi.org/10.4161/hv.21948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lopes CM, Coelho PB, Oliveira R (2015) Novel delivery systems for anti-allergic agents: allergic disease and innovative treatments. Curr Drug Deliv 12(4):382–396. https://doi.org/10.2174/1567201812666150421111222

    Article  CAS  PubMed  Google Scholar 

  91. Kang ST, Yeh CK (2012) Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Chang Gung Med J 35(2):125–139

    PubMed  Google Scholar 

  92. Bioley G, Lassus A, Terrettaz J, Tranquart F, Corthésy B (2016) Prophylactic immunization of mice with phospholipase A2-loaded gas-filled microbubbles is protective against Th2-mediated honeybee venom allergy. Clin Exp Allergy 46(1):153–162. https://doi.org/10.1111/cea.12555

    Article  CAS  PubMed  Google Scholar 

  93. Gómez JMM, Fischer S, Csaba N, Kündig TM, Merkle HP, Gander B, Johansen P (2007) A protective allergy vaccine based on CpG- and protamine-containing PLGA microparticles. Pharm Res 24(10):1927–1935. https://doi.org/10.1007/s11095-007-9318-0

    Article  CAS  Google Scholar 

  94. Zahirovic A, Lunder M (2018) Microbial delivery vehicles for allergens and allergen-derived peptides in immunotherapy of allergic diseases. Front Microbiol 9:1449. https://doi.org/10.3389/fmicb.2018.01449

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sidhu SS (2000) Phage display in pharmaceutical biotechnology. Curr Opin Biotechnol 11(6):610–616. https://doi.org/10.1016/S0958-1669(00)00152-X

    Article  CAS  PubMed  Google Scholar 

  96. Luzar J, Molek P, Šilar M, Korošec P, Košnik M, Štrukelj B, Lunder M (2016) Identification and characterization of major cat allergen Fel d 1 mimotopes on filamentous phage carriers. Mol Immunol 71:176–183. https://doi.org/10.1016/j.molimm.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  97. Henry KA, Arbabi-Ghahroudi M, Scott JK (2015) Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 6:755. https://doi.org/10.3389/fmicb.2015.00755

    Article  PubMed  PubMed Central  Google Scholar 

  98. Van Houten NE, Zwick MB, Menendez A, Scott JK (2006) Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide. Vaccine 24(19):4188–4200. https://doi.org/10.1016/j.vaccine.2006.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Van Houten NE, Henry KA, Smith GP, Scott JK (2010) Engineering filamentous phage carriers to improve focusing of antibody responses against peptides. Vaccine 28(10):2174–2185. https://doi.org/10.1016/j.vaccine.2009.12.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pelfrene E, Willebrand E, Cavaleiro Sanches A, Sebris Z, Cavaleri M (2016) Bacteriophage therapy: a regulatory perspective. J Antimicrob Chemother 71(8):2071–2074. https://doi.org/10.1093/jac/dkw083

    Article  PubMed  Google Scholar 

  101. Huys I, Pirnay J-P, Lavigne R, Jennes S, De Vos D, Casteels M, Verbeken G (2013) Paving a regulatory pathway for phage therapy. EMBO Rep 14(11):951–954. https://doi.org/10.1038/embor.2013.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nilsson AS (2014) Phage therapy—constraints and possibilities. Ups J Med Sci 119(2):192–198. https://doi.org/10.3109/03009734.2014.902878

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jensen-Jarolim E (2015) Aluminium in allergies and allergen immunotherapy. World Allergy Organ J 8(1):7. https://doi.org/10.1186/s40413-015-0060-5

    Article  PubMed  PubMed Central  Google Scholar 

  104. Senti G, Johansen P, Haug S, Bull C, Gottschaller C, Müller P, Pfister T, Maurer P, Bachmann MF, Graf N, Kündig TM (2009) Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial. Clin Exp Allergy 39(4):562–570. https://doi.org/10.1111/j.1365-2222.2008.03191.x

    Article  CAS  PubMed  Google Scholar 

  105. Klimek L, Bachmann MF, Senti G, Kundig TM (2014) Immunotherapy of type-1 allergies with virus-like particles and CpG-motifs. Expert Rev Clin Immunol 10(8):1059–1067. https://doi.org/10.1586/1744666X.2014.924854

    Article  CAS  PubMed  Google Scholar 

  106. Soriano Gomis V, Gonzalez Delgado P, Niveiro Hernandez E (2008) Failure of omalizumab treatment after recurrent systemic reactions to bee-venom immunotherapy. J Investig Allergol Clin Immunol 18(3):225–226

    CAS  PubMed  Google Scholar 

  107. Ricciardi L (2016) Omalizumab: a useful tool for inducing tolerance to bee venom immunotherapy. Int J Immunopathol Pharmacol 29(4):726–728. https://doi.org/10.1177/0394632016670920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kontou-Fili K, Filis CI (2009) Prolonged high-dose omalizumab is required to control reactions to venom immunotherapy in mastocytosis. Allergy 64(9):1384–1385. https://doi.org/10.1111/j.1398-9995.2009.02045.x

    Article  CAS  PubMed  Google Scholar 

  109. Galera C, Soohun N, Zankar N, Caimmi S, Gallen C, Demoly P (2009) Severe anaphylaxis to bee venom immunotherapy: efficacy of pretreatment and concurrent treatment with omalizumab. J Investig Allergol Clin Immunol 19(3):225–229

    CAS  PubMed  Google Scholar 

  110. Da Silva EN, Randall KL (2013) Omalizumab mitigates anaphylaxis during ultrarush honey bee venom immunotherapy in monoclonal mast cell activation syndrome. J Allergy Clin Immunol Pract 1(6):687–688. https://doi.org/10.1016/j.jaip.2013.07.004

    Article  PubMed  Google Scholar 

  111. Stretz E, Oppel EM, Rawer HC, Chatelain R, Mastnik S, Przybilla B, Rueff F (2017) Overcoming severe adverse reactions to venom immunotherapy using anti-IgE antibodies in combination with a high maintenance dose. Clin Exp Allergy 47(12):1631–1639. https://doi.org/10.1111/cea.12997

    Article  CAS  PubMed  Google Scholar 

  112. Rueff F, Bilo MB, Jutel M, Mosbech H, Muller U, Przybilla B (2009) Sublingual immunotherapy with venom is not recommended for patients with Hymenoptera venom allergy. J Allergy Clin Immunol 123(1):272–273; author reply 273. https://doi.org/10.1016/j.jaci.2008.10.028

    Article  PubMed  Google Scholar 

  113. Patriarca G, Nucera E, Roncallo C, Aruanno A, Lombardo C, Decinti M, Pascolini L, Milani M, Buonomo A, Schiavino D (2009) Sublingual immunotherapy with venom for patients with Hymenoptera venom allergy. J Allergy Clin Immunol 124(2):385; author reply 385-386. https://doi.org/10.1016/j.jaci.2009.03.025

    Article  PubMed  Google Scholar 

  114. Calderon MA, Penagos M, Sheikh A, Canonica GW, Durham S (2011) Sublingual immunotherapy for treating allergic conjunctivitis. Cochrane Database Syst Rev 7:CD007685. https://doi.org/10.1002/14651858.CD007685.pub2

    Article  Google Scholar 

  115. Calderón MA, Simons FER, Malling HJ, Lockey RF, Moingeon P, Demoly P (2012) Sublingual allergen immunotherapy: mode of action and its relationship with the safety profile. Allergy 67(3):302–311. https://doi.org/10.1111/j.1398-9995.2011.02761.x

    Article  CAS  PubMed  Google Scholar 

  116. Senna G, Caminati M, Canonica GW (2013) Safety and tolerability of sublingual immunotherapy in clinical trials and real life. Curr Opin Allergy Clin Immunol 13(6):656–662. https://doi.org/10.1097/ACI.0000000000000007

    Article  CAS  PubMed  Google Scholar 

  117. Leader BA, Rotella M, Stillman L, DelGaudio JM, Patel ZM, Wise SK (2016) Immunotherapy compliance: comparison of subcutaneous versus sublingual immunotherapy. Int Forum Allergy Rhinol 6(5):460–464. https://doi.org/10.1002/alr.21699

    Article  PubMed  Google Scholar 

  118. Eberle P, Schreder H, Shah-Hosseini K, Mosges R (2013) Medication persistence in children and young people on long-term, grass pollen-specific immunotherapy - measured by prescription renewal rates. Allergologie 36(1):9–18. https://doi.org/10.5414/ALX01536

    Article  Google Scholar 

  119. Senti G, Kundig TM (2015) Intralymphatic immunotherapy. World Allergy Organ J 8(1):9. https://doi.org/10.1186/s40413-014-0047-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kundig T, Hengartner H (1997) Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol Rev 156:199–209. https://doi.org/10.1111/j.1600-065X.1997.tb00969.x

    Article  CAS  PubMed  Google Scholar 

  121. Witten M, Malling HJ, Blom L, Poulsen BC, Poulsen LK (2013) Is intralymphatic immunotherapy ready for clinical use in patients with grass pollen allergy? J Allergy Clin Immunol 132(5):1248–1252.e5. https://doi.org/10.1016/j.jaci.2013.07.033

    Article  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Slovenian Research Agency through research program P4-0127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abida Zahirović.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahirović, A., Luzar, J., Molek, P. et al. Bee Venom Immunotherapy: Current Status and Future Directions. Clinic Rev Allerg Immunol 58, 326–341 (2020). https://doi.org/10.1007/s12016-019-08752-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-019-08752-x

Keywords

Navigation