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Abstract Systemic sclerosis is a multifactorial and heteroge-
neous disease. Genetic and environmental factors are known
to interplay in the onset and progression of systemic sclerosis.
Sex plays an important and determinant role in the develop-
ment of such a disorder. Systemic sclerosis shows a significant
female preponderance. However, the reason for this female
preponderance is incompletely understood. Hormonal status,
genetic and epigenetic differences, and lifestyle have been
considered in order to explain female preponderance in sys-
temic sclerosis. Sex chromosomes play a determinant role in
contributing to systemic sclerosis onset and progression, as
well as in its sex-biased prevalence. It is known, in fact, that X
chromosome contains many sex- and immuno-related genes,
thus contributing to immuno tolerance and sex hormone sta-
tus. This review focuses mainly on the recent progress
on epigenetic mechanisms—exclusively linked to the X
chromosome—which would contribute to the develop-
ment of systemic sclerosis. Furthermore, we report also
some hypotheses (dealing with skewed X chromosome
inactivation, X gene reactivation, acquired monosomy)
that have been proposed in order to justify the female prepon-
derance in autoimmune diseases. However, despite the
intensive efforts in elucidating the mechanisms involved
in the pathogenesis of systemic sclerosis, many ques-
tions remain still unanswered.
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Introduction

With a prevalence of 4 per 10,000 and a sex ratio (F/M)
ranging from 5:1 to 12:1 [1,2], systemic sclerosis (SSc) is a
rare and severe autoimmune disorder characterized by pro-
gressive fibrosis, vascular damage, and immune abnormalities
[3–5]. SSc is a multifactorial disease, and genetic and envi-
ronmental factors are known to interplay in the onset and
progression of SSc [6]. Breaking of epigenetic homeostasis
by environmental agents causes alterations in gene expression
that would contribute to the development of SSc.

Sex plays an important and determinant role in the devel-
opment of such a disease. SSc, as many other autoimmune
diseases, shows a significant female preponderance. However,
the reason for this female preponderance is incompletely
understood.

Different factors may be involved in this sexual dimorphism,
such as sex and reproductive hormones [7,8], fetal
microchimerism [9,10], and different environmental exposure
[11].

This review focuses mainly on the mechanisms—exclu-
sively linked to the X chromosome—which contribute to the
development of systemic sclerosis. For a detailed discussion
on other mechanisms involved in the susceptibility to autoim-
mune diseases, including SSc, we suggest the reading of other
excellent reviews [2,12,13].

The first part of this review deals with epigenetic regulation
changes, such as X chromosome inactivation and loss of
epigenetic control, which could contribute to the susceptibility
of SSc. Then, a section is dedicated to the sex hormones,
which could be potentially responsible for the sex-dependent
discrepancy of disease. Sex hormones are known to influence
genes on sex chromosome, thus exerting an effect on autoim-
munity. Finally, a brief description on X-linked single
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nucleotide polymorphisms associated with the susceptibility
to SSc is given.

The Female Preponderance in Systemic Sclerosis

SSc shows a significant female preponderance [14]. However,
as shown in Table 1, sex ratio (F/M) for this disease ranges
from 4 to 11. The female preponderance, such as other SSc
clinical features, varies in different geographical areas and
ethnicities [31], thus reflecting the possibility that genetic
factors may underlie these differential phenotypic aspects.
Another important factor to be considered is the population
age. In fact, a female population in childbearing age is known
to increase the F/M ratio [32]. Moreover, different criteria for
definition and classification of SSc may make sex ratios
imprecise and biased [23,33].

It is noteworthy that female preponderance reflects the
different incidence of the disease between the sexes, and not
severity. Male SSc patients have a more severe prognosis
compared to female ones [15,34]. In conclusion, we cannot
exclude that high rate of mortality in male population could
influences the sex ratio of SSc.

X Chromosome and Dosage Compensation

The X chromosome contains 1,098 genes, 70% ofwhich have
been associated to various diseases, whereas Y chromosome
encodes only a small number of genes, about 100 genes, most
of which are different from the ones encoded by the X chro-
mosome [35].

In order to achieve a dosage compensation in females, one
copy of X chromosome is randomly inactivated by transcrip-
tional silencing during early development [36,37]. More than
70 % of genes on the X chromosome are silenced. In females,
the effect of dosage compensation is the occurrence of a
mosaic expression of maternally or paternally derived X chro-
mosome in different cell populations.

The mechanisms involved in this inactivation have not
been fully clarified. DNA methylation, histone acetylation,
methylation, and phosphorylation, as well as microRNAs,
contribute to the initiation and maintenance of X chromosome
inactivation [38–40].

Briefly, X chromosome inactivation begins at position
Xq13.3, in the X Inactivation Center, a complex locus pro-
ducing a large untranslated RNA, the X-inactive Specific
transcript (XIST) and its antisense (TSIX) [37]. The XIST
gene is expressed in the chosen inactivated X chromosome,
and its RNA transcript binds to chromatin in order to inacti-
vate it [41]. As proposed by Lyon [42], long interspersed
repeat elements in the X chromosome may serve as specific
signals for gene inactivation. However, this model is not
sufficient to explain the mechanisms underlying gene inacti-
vation, since these elements seem not to be essential for Xist
localization [43]. Long terminal repeats and inverted repeat
sequence represent additional regulatory sequence which may
be involved in XCI [44,45].

Subsequently, several epigenetic modifications which con-
tribute to the X chromosome inactivation and maintaining
take place [46]. Following its recruitment by Xist, the
polycomb complexes cause some histone changes on the X
chromosome [47]. DNA methylation is required for stable
maintenance of XCI only in embryo.

Table 1 Representative summa-
ry of sex ratios (F/M) in systemic
sclerosis reported in the last
10 years and chronologically
ordered

Studies with cases number lower
than 100 are not included. When-
ever possible, sex ratios relative to
limited cutaneous (lSSc) and dif-
fuse cutaneous (dSSc) disease
subsets are shown. Sex ratio values
are rounded to the nearest unit

a American College of Rheuma-
tology (ACR) criteria for the clas-
sification of systemic sclerosis
(SSc) [28]; b LeRoy et al. criteria
[29]; c Leroy and Medsger re-
vised criteria [30]; d other criteria
aMixed ethnicity

Geographical
area

Classification
criteria

SSc
population size

Overall
sex ratio (F/M)

lcSSC
relative
sex ratio

dcSSC
relative
sex ratio

Ref.

USAa a, b 706 5/1 – – [15]

Northern Francea a, c 104 11/1 11/1 10/1 [16]

South western Greece a, c 109 9/1 – – [17]

South Australia a, b 353 5/1 – – [18]

Germany a, b, d 1,483 5/1 7/1 3/1 [19]

Spain a, b, c 204 9/1 13/1 5/1 [20]

Italy a, c 118 10/1 – – [21]

Spain a, c 916 7/1 8/1 5/1 [22]

Southern Sweden a, d 302 6/1 – – [23]

France a, b, c 193 7/1 – – [24]

USAa a, d 2,017 4/1 (black)

5/1 (white)

– – [25]

Singaporea a, d 200 6/1 7/1 4/1 [26]

Canadaa – 959 7/1 – – [27]
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For the presence of one copy of X chromosome, males are
more exposed to deleterious mutations on the X chromosome
[48]. Therefore, having two copies of X chromosome, as in
females, may be advantageous. Furthermore, a drastic skewing
of X chromosome inactivation could facilitate, in females, the
silencing of a harmful mutation. However, as discussed in the
next section, the presence of an altered X chromosome inacti-
vation in females may play an important role in the increased
risk of autoimmunity. Furthermore, it has been shown, through
transgenic mouse models, that XX complement confers greater
susceptibility to autoimmune diseases, as compared with XY
[49]. One explanation, discussed in detail in next sections, of
this discrepancy between males and females is that female X-
linked self-antigens may bypass their presentation in the thy-
mus, thus avoiding the central tolerance induction.

X chromosome contains many important immune-related
genes, such as interleukin 2 receptor γ (IL2RG ), forkhead box
P3 (FOXP3 ), CD40 ligand (CD40L , CD154 ), and
interleukin-1 receptor-associated kinase 1 (IRAK1) [50–53].
As shown in Table 2, many of these X-linked and immuno-
related genes have been associated with SSc.

Skewed X Inactivation

Skewed X chromosome inactivation (sXCI) is the preferential
inactivation of one X chromosome in females, leading to a
deviation from the theoretical 1:1 ratio [66]. Although skewed
X inactivation is considered a normal process, it can cause
hemizygosity, a possible condition which could give rise to
someX-linked recessive disease [67].Moreover, although this
phenomenon is considered to be stable for all descendant
cells, the frequency of sXCI, present in peripheral blood cells,
increases with age [68].

In sXCI, some specific genes show different patterns of
inactivation, which could contribute to the heterogeneity in

gene expression among females [69], thus influencing im-
mune regulation. Until now, there is no evidence for a genetic
mechanism involved in human sXCI, and most of observa-
tions on X chromosome inactivation skewing suggest the
occurrence of mechanisms acquired secondarily [70].

It has been hypothesized that in random X inactivation, the
tolerance mechanisms are well performed because of the
expression of self-antigens on both X chromosomes.
However, under nonrandom X inactivation conditions, such
as in sXCI, thymic dendritic cells which express one copy of
X chromosome fail in recognizing thymic cells, thus causing
some thymocytes to escape from negative central selection
[71–73] (Fig. 1a).

sXCI could be involved in the pathogenesis of SSc.
Ozbalkan et al., with the analysis of the methylation status in
the androgen receptor gene, have shown an association be-
tween X inactivation and female predisposition to systemic
sclerosis. In particular, they found a high rate of a skewed
pattern of X chromosome inactivation in DNA of peripheral
blood cells from patients with SSc compared to the control
subjects [77]. Broen et al., showing a sXCI pattern in female
patients affected by SSc, have found that such a skewed
pattern was not restricted to a specific cell population, thus
suggesting the occurrence of this inactivation in precursor cell
populations. Moreover, they observed that the sXCI in SSc
was associated with decreased expression of FOXP3 , a mem-
ber of the forkhead family of transcription factors and essen-
tial for regulatory CD4+ T cells [78].

What is the relationship between skewed X inactivation
and SSc? According to Ozcelik, the failure of self-tolerance
could arise from the skewing and not vice versa because of the
extreme degree of skewing in SSc patients. Moreover, this
author speculated that any mutation, which compromises cell
survival, could induce skewed X inactivation [73].

In conclusion, it is noteworthy that there is a strong inter-
play between non-X-linked genes and X inactivation. In

Table 2 X-linked genes
associated with SSc with
relative references

Gene symbol Gene ID Location Description Ref.

ACE2 59272 Xp22 Angiotensin-converting enzyme 2 [54]

CD99 4267 Xp22.32 / Yp11.3 MIC2 [55]

CXCR3 2833 Xq13 Chemokine (C-X-C motif) receptor 3 [56]

FOXP3 50943 Xp11.23 Forkhead box P3 [57]

IL13RA2 3598 Xq13.1-q28 Interleukin 13 receptor, alpha 2 [58]

IRAK1 3654 Xq28 Interleukin1 receptor associated kinase [59]

MECP2 4204 Xq28 Methyl CpG binding protein 2 [60]

PGK1 5230 Xq13.3 Phosphoglycerate kinase 1 [61]

TIMP1 7076 Xp11.3-p11.23 Tissue metalloproteinases inhibitor 1 [62]

TLR7 51284 Xp22.3 Toll-like receptor 7 [63]

TLR8 51311 Xp22 Toll-like receptor 8 [64]

XIST 7503 Xq13.2 X inactive specific transcript (non-protein coding) [65]
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particular, non-X-linked mutations may influence X inactiva-
tion and expression of X-linked genes, through their ability in
regulating transcriptional and/or translational events.
Similarly, molecular abnormalities on the X chromosome
may influence gene expressions from other chromosome [79].

Escaping Gene Dosage Compensation

It is known that about 15 % of genes escape X chromosome
silencing in female humans. Furthermore, an additional 10% of

X-linked genes show a variable individual- and/or tissue-
dependent profile of inactivation [69]. Thus, females may show
substantial heterogeneity in X-linked gene expression.
Although in normal conditions X chromosome inactivation is
stably maintained, many environmental factors may in-
duce to a loss of epigenetic control, which can reactivate
silenced X-linked genes.

Gene escaping inactivation is a nonrandom event. X-linked
gene escaping inactivation is known to be clustered and pref-
erentially located in the distal portion of the X chromosome
short arm [69]. The mechanisms involved in XCI escaping are

Fig. 1 Several hypotheses, linked to X chromosome abnormalities, have
been proposed to explain the preponderance of autoimmune disorders in
females. Such hypothesis may be applied also for SSc. a sXCI may
induce a loss of mosaicism in females, leading ultimately to autoimmu-
nity. According to this model [43–45], females with a normal (random)
XCI have two subpopulations of thymic dendritic cells (DC) expressing
maternal (m) or paternal (p) X-linked self-antigens. Under this condition,
potential autoreactive thymocytes (thy) undergo a negative selection. On
the contrary, in females with a severe sXCI, thymic dendritic cells

expressing self antigens of one parent, will tolerize only the thymocytes
containing the self-antigens from other parent. Such thymocytes will
escape thymic negative selection. b Reactivation of genes from inactive
X chromosome could cause an overexpression of X immunorelated genes
[74,75]. c Acquired haploinsufficiency, caused by X monosomy, may
induce autoantibodies production by peripheral B cells (BC) [76]. Each
mechanism is not sufficient to explain SSc development, and one of them
must be regarded as a possible cofactor, together with other genetic and
epigenetic factors, in the onset of the disorder
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unclear. In addition to the long interspersed repeat elements and
the long terminal repeats, AT-rich motifs seem to be involved in
escaping XCI with the control of Xist RNA recruitment [80].
Furthermore, other noncoding RNAmay play an important role
in gene escaping inactivation [81]. Finally, boundary elements,
acting as insulator sequences, may arrest the spreading of
heterochromatin into region escaping inactivation [82].

Several genes escaping from XCI have been identified,
including tissue inhibitor of metalloproteinases 1 (TIMP1 ),
Il-1R associated kinase (IRAK1 ), and inhibitor of nuclear
factor-κB kinase-γ (IKBKB), which have been shown to be
associated to the development and/or to the different clinical
subsets of SSc [59,83,84].

These phenomena, resulting in sex-biased gene expression,
could explain sex-specific phenotypes in complex diseases
[85]. An altered gene dosage of X-linked genes may be
implicated in the loss of immune tolerance and in the female
preponderance to develop autoimmune disorders [48,86].

The reversal of X chromosome inactivation, X chromo-
some reactivation (XCR), is a critical step for diversifying X-
linked gene pool in germ cell formation [87,88]. Mechanisms
involved in X chromosome reactivation remain unclear. In
some autoimmune diseases, it has been demonstrated that X-
linked genes may be reactivated by DNA methyltransferase
inhibitors [89].

Selmi et al., with a genomewide fine mapping of DNA
methylation, found gene hyper- or hypomethylation exclu-
sively located on X chromosome of SSc monozygotic twins
[61].

The interaction between CD40 and its ligand (CD40L) plays
a role in SSc by stimulating B cells and fibroblasts [90,91].
CD40 and CD40L expression has been shown to be increased
in fibroblast from SSc patients [91,92]. Furthermore, CD40L
expression was demonstrated to be elevated only in SSc female
patients [75]. Such a gene reactivation on the inactive X chro-
mosome would double the expression of related proteins in
women [74], thus providing an explanation for the female
predominance of SSc [75] (Fig. 1b).

Hypermethylation of the CpG islands and histone deacety-
lation in the promoter region FLI1, a collagen suppressor gene,
were shown to occur in SSc fibroblasts and skin biopsy speci-
mens by Wang et al. [93]. On the contrary, a reduced global
DNAmethylation was observed in CD4+ Tcell DNA from SSc
patients [60].

X Chromosome Monosomy

In sXCI, some specific genes show different patterns of inac-
tivation, which could contribute to the heterogeneity in gene
expression among females [69], thus influencing immune
regulation. By using fluorescence in situ hybridization, a
higher rate of monosomy was found in peripheral blood cells

from SSc patients in comparison to healthy subjects [76].
Moreover, these increased monosomy rates have been mainly
found in lymphocytes.

An unusual case of morphea, a localized form of SSc, has
been found to be associated with a low-grade mosaic Turner’s
syndrome (karyotype 45, X0) [94]. In conclusion, X chromo-
some haploinsufficiency, caused by X chromosome monoso-
my, may be involved in the development of SSc (Fig. 1c).

X-linked Noncoding RNA

Recently, noncoding RNAs (ncRNAs) have attracted attention
for its involvement in the pathogenesis of various diseases,
such as autoimmune disorders. Noncoding RNA, regulatory
elements of gene expression, includes microRNA (miRNA),
long noncoding RNA (lncRNA), circular RNA [95,96].

About 10 % of microRNA, a family of small double-
stranded noncoding RNA, is localized on X chromosome,
suggesting a possible role in regulating gene expression, as by
transcriptional gene silencing [97,98]. X-linked miRNA may
be involved in immune regulation. It is possible that X-linked
miRNAs, which escape inactivation or are subject to skewed X
inactivation, may influence immune response in females [99].

Recently, many miRNAs—some of which are involved in
autoimmune and fibrotic processes, and located on X-
chromosome—were observed to be dysregulated in skin tis-
sue from SSc patients, and different regulation patterns were
associated to the different subtypes of the disease [100–102].

ncRNAs, together with the above discussed epigenetic
mechanisms, are known to be important players in the homeo-
stasis and function of the immune system. In particular,
ncRNAs are molecular regulators involved in many autoim-
mune diseases. Since many studies on these molecules rely on
their expression profile in patient peripheral blood mononu-
clear cells and target tissues, it is hoped that further studies on
various cell subpopulations, such as on lymphocyte subpopu-
lations, may help to elucidate the mechanisms responsible of
the pathogenesis of autoimmune diseases, including SSc.

Sex Hormones and X Chromosome

Sex chromosomes and sex hormones are profoundly intercon-
nected. It is known that some X- and Y-linked genes are
needed for the differentiation of gonads, which in turn are
needed for the synthesis of sex hormones, as testosterone and
estrogens. Sex hormone-induced signalling pathways may
modulate genes on sex chromosomes [103].

It is known that females have stronger immune response
compared with males. Such differences may be caused by sex
hormones, through their modulation of Th1/Th2 response
[11]. Generally speaking, androgens could promote a Th1
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response and activation of CD8+ cells. On the contrary, estro-
gens could favor a Th2 response [103–105].

It was suggested that the deep partnership between sex
chromosomes and sex hormones would reciprocally antago-
nize their effects in order to minimize the differences between
male and female immune response [106]. Estrogens play an
important role in lymphocyte maturation and activation, as
well as in the synthesis of cytokines and antibodies [107,108].
Moreover, estrogen receptors participate in innate and adap-
tive immunity, regulating activity of antigen-presenting cells
and dendritic cells [109].

Such a sex-biased difference in immune response could
explain the predominance of autoimmune disorders in fe-
males. It is known, in fact, that estrogens, inducing an
extramedullary hematopoiesis, could favor the autoreactive
B cell escaping from negative selection. Moreover, estrogens
are able to promote the survival of the autoreactive T cells
[110].

Since SSc occurs in women in childbearing age more
frequently than in men, it was suggested a pathogenic role of
sex hormones in this autoimmune disease. It is well known
that SSc patients show an altered hormonal status. In particu-
lar, 17β-estradiol would exert a profibrotic effect on normal
and SSc fibroblasts [111].

Decreased levels of serum dehydroepiandrosterone in
males, as well as in females in childbearing age, have been
associated with SSc [112]. Similarly, decreased serum levels
of testosterone and increased levels of prolactin were observed
only in female SSc patients [113]. Serum levels of prolactin
were found to be significantly elevated in SSc female patients
than in control subjects. Such a hyperprolactinemia correlated
positively with aggressiveness of skin involvement [114].
Afterwards, other authors showed that lymphocytes from
SSc patients were additional active sources of prolactin. In
these patients, lymphocyte-derived prolactin would stimulate
the same lymphocytes to increase the synthesis of interleukin-
2 receptor [115].

X-Linked Single Nucleotide Polymorphisms

It is well established that genetic predisposition is an impor-
tant factor for SSc development. Single nucleotide polymor-
phisms of genes located on the sex chromosomes can directly
influence the SSc susceptibility. These X-linked genes may
have a predominant role in sex bias of SSc. Moreover, many
of these SNPs may characterize distinct clinical SSc
phenotypes.

Significant association was found between the rs638376 of
interleukin-13 receptor subunit α2 (IL13RA2) and SSc in a
female Caucasian population [58]. These authors have shown
also an association between the SNP rs5946040 of IL13RA2
and dcSSc subtype. It is known that interleukin-13 plays an
important role in normal tissue repair, as well as in fibrosis
[116,117], and its serum level was found increased in SSc
patients compared to control healthy subjects [118].

Interleukin-1 receptor-associated kinase 1 (IRAK1), with
its modulating activity on NF-KB, is known to be involved in
TLR pathway [119]. An association between some IRAK1
SNPs and diffuse cutaneous SSc and anti topo-I positive SSc
patients was found [59]. However, the frequencies of IRAK1
SNP rs1059702 have been found associated only to the sus-
ceptibility to SSc with lung fibrosis [120].

The X-linked methyl-CpG-binding protein 2 (MECP2 )
encodes a protein that binds specifically to methylated DNA,
thus participating in the epigenetic mechanism, which may be
responsible cofactors for the onset of autoimmune disorders
[121,122]. The rs17345 ofMEPC2 was found to be associat-
ed to diffuse cutaneous SSc subtype in females of Caucasian
ancestry [120].

It is noteworthy that IRAK1 and MEPC2 activities are
strictly interrelated; thus, a variation of one gene may influ-
ence the expression of the other one, and vice versa [123].
Furthermore, since these two genes are in high linkage dis-
equilibrium, the real contribution of these genes to the sus-
ceptibility to SSc remains still controversial [59,123].

Fig. 2 Interplay between genetic
and epigenetic factors in the
influence of susceptibility to SSc.
Only X-linked factors are shown.
Genetic backgrounds are source
of predisposition to the disease.
Epigenetic and environmental
factors are needed for the trigger
of SSc (SNPs single nucleotide
polymorphisms; XCI X
chromosome inactivation)
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The transcription factor forkhead box P3 (FOXP3 ), a
member of the forkhead/winged-helix family, is widely
known for its role in the development and function of regula-
tory T cells, which play an important role in peripheral toler-
ance by suppressing immune response of self-reactive T cells
[124]. Moreover, alterations in regulatory T cells number as
well as FOXP3 expression have been shown in SSc [125–129]
and its clinical subtypes [130].

Recently, we have shown that rs2280883 of FOXP3 gene
could be associated to the susceptibility to SSc in a Caucasian
female population, with a preferential association with ACA+

patients and with those suffering from lcSSc. Unfortunately,
for the low number of recruited patients, we cannot rule out
such a possibility for male patients [131].

Tissue inhibitor of metalloproteinases 1 (TIMP-1 ) belongs
to the TIMP gene family. The main function of its encoded
protein is to inhibit the matrix metalloproteinases, peptidases
involved in degradation of the extracellular matrix [132].
Dysregulation of TIMP-1 has been found in serum and/or
skin biopsies of SSc patients [62,133,134].

An association between the rs4898 of the TIMP1 gene with
SSc as well as with SSc-associated digital ulcer formations has
been shown in a female Italian Caucasian population [135]. As
mentioned above, TIMP-1 is known to undergo a polymorphic
inactivation in females, thus leading to a gene dosage skewing
in females [83]. In agreement with polymorphic X chromo-
some inactivation, rs4898 of TIMP-1 has been shown to be
accompanied with a lower TIMP-1 protein expression in males
but not in females in inflammatory bowel disease [136].

Conclusions

SSc is a complex, heterogeneous, and multifactorial disease.
Both genetic and epigenetic factors would contribute to the
sex-specific difference in SSc incidence. As already men-
tioned, many sex- and immune-related genes, crucial for the
maintenance of physiological levels of sex hormones, as well
as of immune tolerance, are located on the X chromosome.
Epigenetic X-linked abnormalities, such as skewing of X
inactivation and/or gene reactivation, could play an important
role in predisposing females to develop SSc (Fig. 2).

Thus, the advantage of having a stronger immunoresponse
to infections in females reflects the possibility of having a
higher susceptibility to SSc. Understanding the mechanisms
which underlie X chromosome abnormalities would be very
useful for developing therapeutic strategies for autoimmune
disorders, including SSc. Moreover, because of reversible
nature of epigenetic modifications, potential therapeutics
treatments could be developed for reversing these modifica-
tions, which could be involved in the pathogenesis of SSc. For
example, modulation of miRNAs could offer a new potential
benefit for selective therapies.

Finally, in the development of therapeutic strategies differ-
ences in the immune response between the sexes must be
considered because they may differently affect pharmacoki-
netics and -dynamics in a sex-dependent manner.
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