Skip to main content

Advertisement

Log in

New Perspectives in Stem Cell Transplantation and Associated Therapies to Treat Retinal Diseases: From Gene Editing to 3D Bioprinting

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Inherited and non-inherited retinopathies can affect distinct cell types, leading to progressive cell death and visual loss. In the last years, new approaches have indicated exciting opportunities to treat retinopathies. Cell therapy in retinitis pigmentosa, age-related macular disease, and glaucoma have yielded encouraging results in rodents and humans. The first two diseases mainly impact the photoreceptors and the retinal pigmented epithelium, while glaucoma primarily affects the ganglion cell layer. Induced pluripotent stem cells and multipotent stem cells can be differentiated in vitro to obtain specific cell types for use in transplant as well as to assess the impact of candidate molecules aimed at treating retinal degeneration. Moreover, stem cell therapy is presented in combination with newly developed methods, such as gene editing, Müller cells dedifferentiation, sheet & drug delivery, virus-like particles, optogenetics, and 3D bioprinting. This review describes the recent advances in this field, by presenting an updated panel based on cell transplants and related therapies to treat retinopathies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Volarevic, V., et al. (2018). Ethical and Safety issues of Stem Cell-based therapy. International Journal of Medical Sciences, 15(1), 36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. King, N. M., & Perrin, J. (2014). Ethical issues in stem cell research and therapy. Stem Cell Research & Therapy, 5(4), 85.

    Article  Google Scholar 

  3. Zarbin, M. (2019). Cell-based therapy for Retinal Disease: The New Frontier. Methods in Molecular Biology, 1834, 367–381.

    Article  CAS  PubMed  Google Scholar 

  4. Zakrzewski, W., et al. (2019). Stem cells: Past, present, and future. Stem Cell Research & Therapy, 10(1), 68.

    Article  CAS  Google Scholar 

  5. Dai, G., et al. (2013). Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Research, 1533, 73–79.

    Article  CAS  PubMed  Google Scholar 

  6. Zarbin, M. (2016). Cell-based therapy for degenerative retinal disease. Trends in Molecular Medicine, 22(2), 115–134.

    Article  PubMed  Google Scholar 

  7. Li, X., & Sundstrom, E. (2022). Stem cell therapies for Central Nervous System Trauma: The 4 Ws-What, when, where, and why. Stem Cells Transl Med, 11(1), 14–25.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mesentier-Louro, L. A., et al. (2014). Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One, 9(10), e110722.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tsai, Y., et al. (2015). Human iPSC-Derived neural progenitors preserve Vision in an AMD-Like Model. Stem Cells, 33(8), 2537–2549.

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  11. Usui-Ouchi, A., et al. (2023). Integrating human iPSC-derived macrophage progenitors into retinal organoids to generate a mature retinal microglial niche. Glia, 71(10), 2372–2382.

    Article  CAS  PubMed  Google Scholar 

  12. Hewitt, T. (2023). Bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated ca(2+) entry and accelerated differentiation. Molecular Psychiatry.

  13. Groeger, M., et al. (2023). Modeling and therapeutic targeting of inflammation-induced hepatic insulin resistance using human iPSC-derived hepatocytes and macrophages. Nature Communications, 14(1), 3902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gong, Y., et al. (2023). Optimization of physical microenvironment to maintain the quiescence of human induced pluripotent stem cell-derived hepatic stellate cells. Biotechnology and Bioengineering, 120(8), 2345–2356.

    Article  CAS  PubMed  Google Scholar 

  15. Duval, K., et al. (2017). Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda, Md.), 32(4), 266–277.

    CAS  PubMed  Google Scholar 

  16. Ludwig, A. L., & Gamm, D. M. (2021). Outer retinal cell replacement: Putting the Pieces together. Transl Vis Sci Technol, 10(10), 15.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ventura, A. L. M., et al. (2019). Purinergic signaling in the retina: From development to disease. Brain Research Bulletin, 151, 92–108.

    Article  CAS  PubMed  Google Scholar 

  18. Strauss, O. (2005). The retinal pigment epithelium in visual function. Physiological Reviews, 85(3), 845–881.

    Article  CAS  PubMed  Google Scholar 

  19. Miesfeld, J. B., & Brown, N. L. (2019). Eye organogenesis: A hierarchical view of ocular development. Current Topics in Developmental Biology, 132, 351–393.

    Article  PubMed  Google Scholar 

  20. Yang, S., Zhou, J., & Li, D. (2021). Functions and diseases of the retinal pigment epithelium. Frontiers in Pharmacology, 12, 727870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hammadi, S. (2023). Bruch’s Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med, 12(8).

  22. Raeisossadati, R., et al. (2021). Epigenetic regulation of retinal development. Epigenetics Chromatin, 14(1), 11.

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Sousa, E., et al. (2013). Developmental and functional expression of miRNA-stability related genes in the nervous system. PLoS One, 8(5), e56908.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reynolds, J. D., & Olitsky, S. E. (2010). Pediatric retina. Springer Science & Business Media.

  25. Wang, M., & Wong, W. T. (2014). Microglia-Muller cell interactions in the retina. Advances in Experimental Medicine and Biology, 801, 333–338.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tworig, J. M., & Feller, M. B. (2021). Muller Glia in Retinal Development: From specification to Circuit Integration. Frontiers in Neural Circuits, 15, 815923.

    Article  CAS  PubMed  Google Scholar 

  27. Rathnasamy, G., et al. (2019). Retinal microglia - a key player in healthy and diseased retina. Progress in Neurobiology, 173, 18–40.

    Article  PubMed  Google Scholar 

  28. Verbakel, S. K., et al. (2018). Non-syndromic retinitis pigmentosa. Progress in Retinal and Eye Research, 66, 157–186.

    Article  PubMed  Google Scholar 

  29. Tatour, Y., & Ben-Yosef, T. (2020). Syndromic inherited retinal diseases: Genetic, clinical and diagnostic aspects. Diagnostics (Basel), 10(10).

  30. Chen, X., & Zhao, C. (2021). The Retinitis Pigmentosa Genes, in Advances in Vision Research, volume III, (pp. 207–221). Springer.

  31. Tsang, S. H., & Sharma, T. (2018). Retinitis Pigmentosa (Non-syndromic). Advances in Experimental Medicine and Biology, 1085, 125–130.

    Article  PubMed  Google Scholar 

  32. Comitato, A., et al. (2016). Dominant and recessive mutations in rhodopsin activate different cell death pathways. Human Molecular Genetics, 25(13), 2801–2812.

    CAS  PubMed  Google Scholar 

  33. Li, Y., et al. (2022). Novel variants in PDE6A and PDE6B genes and its phenotypes in patients with retinitis pigmentosa in Chinese families. Bmc Ophthalmology, 22(1), 27.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kuehlewein, L. (2021). Clinical phenotype of PDE6B-Associated Retinitis Pigmentosa. International Journal of Molecular Sciences, 22(5).

  35. Kihara, A. H., et al. (2008). Lack of photoreceptor signaling alters the expression of specific synaptic proteins in the retina. Neuroscience, 151(4), 995–1005.

    Article  CAS  PubMed  Google Scholar 

  36. Watson, C. J., et al. (2021). Genetic variants and impact in PDE6B rod-cone dystrophy, in Advances in Vision Research, volume III, (pp. 197–206). Springer.

  37. Huang, H., et al. (2018). Systematic evaluation of a targeted gene capture sequencing panel for molecular diagnosis of retinitis pigmentosa. PLoS One, 13(4), e0185237.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chiang, J. P., & Trzupek, K. (2015). The current status of molecular diagnosis of inherited retinal dystrophies. Current Opinion in Ophthalmology, 26(5), 346–351.

    Article  PubMed  Google Scholar 

  39. Xu, M., Zhai, Y., & MacDonald, I. M. (2020). Visual field progression in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci, 61(6), 56.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ali, M. U., et al. (2017). Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech, 7(4), 251.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fritsche, L. G., et al. (2016). A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 48(2), 134–143.

    Article  CAS  PubMed  Google Scholar 

  42. de Cabral, T. A., et al. (2022). Treatments for dry age-related macular degeneration: Therapeutic avenues, clinical trials and future directions. British Journal of Ophthalmology, 106(3), 297–304.

    Article  Google Scholar 

  43. Wong, K. H. (2022). Discovering the potential of natural antioxidants in Age-Related Macular Degeneration: A review. Pharmaceuticals (Basel), 15(1).

  44. Deng, Y., et al. (2022). Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis, 9(1), 62–79.

    Article  CAS  PubMed  Google Scholar 

  45. Ju, M. J. (2022). Long-term exposure to ambient air pollutants and age-related macular degeneration in middle-aged and older adults. Environ Res, 204(Pt A): p. 111953.

  46. Choi, Y. J., et al. (2022). Chemokine Receptor Profiles of T Cells in patients with age-related Macular Degeneration. Yonsei Medical Journal, 63(4), 357–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tzoumas, N., et al. (2022). Rare complement factor I variants associated with reduced macular thickness and age-related macular degeneration in the UK Biobank. Human Molecular Genetics, 31(16), 2678–2692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fisher, C. R. (2022). Human iPSC- and primary-retinal pigment epithelial cells for modeling age-related Macular Degeneration. Antioxidants (Basel), 11(4).

  49. Cho, Y. K., et al. (2022). The age-related Macular Degeneration (AMD)-Preventing mechanism of Natural products. Processes, 10(4), 678.

    Article  CAS  Google Scholar 

  50. Garcia-Layana, A., et al. (2017). Early and intermediate age-related macular degeneration: Update and clinical review. Clinical Interventions in Aging, 12, 1579–1587.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mitchell, P., et al. (2018). Age-related macular degeneration. Lancet, 392(10153), 1147–1159.

    Article  PubMed  Google Scholar 

  52. Kang, J. M., & Tanna, A. P. (2021). Glaucoma Med Clin North Am, 105(3), 493–510.

    Article  PubMed  Google Scholar 

  53. Weinreb, R. N., Aung, T., & Medeiros, F. A. (2014). The pathophysiology and treatment of glaucoma: A review. Journal of the American Medical Association, 311(18), 1901–1911.

    Article  PubMed  Google Scholar 

  54. Perez Bartolome, F., et al. (2018). Correlating corneal Biomechanics and Ocular Biometric Properties with Lamina Cribrosa measurements in healthy subjects. Seminars in Ophthalmology, 33(2), 223–230.

    PubMed  Google Scholar 

  55. Esporcatte, B. L., & Tavares, I. M. (2016). Normal-tension glaucoma: An update. Arq Bras Oftalmol, 79(4), 270–276.

    Article  PubMed  Google Scholar 

  56. Wang, K., et al. (2017). Trabecular meshwork stiffness in glaucoma. Experimental Eye Research, 158, 3–12.

    Article  CAS  PubMed  Google Scholar 

  57. Hussain, R. M., et al. (2021). Vascular endothelial growth factor antagonists: Promising players in the treatment of Neovascular Age-Related Macular Degeneration. Drug Design, Development and Therapy, 15, 2653–2665.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kamde, S. P., & Anjankar, A. (2023). Retinitis Pigmentosa: Pathogenesis, Diagnostic findings, and treatment. Cureus, 15(10), e48006.

    PubMed  PubMed Central  Google Scholar 

  59. Bott, D., et al. (2024). Barriers and enablers to medication adherence in glaucoma: A systematic review of modifiable factors using the theoretical domains Framework. Ophthalmic and Physiological Optics, 44(1), 96–114.

    Article  PubMed  Google Scholar 

  60. Schwartz, S. D., et al. (2012). Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet, 379(9817), 713–720.

    Article  CAS  PubMed  Google Scholar 

  61. Song, M. J., & Bharti, K. (2016). Looking into the future: Using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain Research, 1638(Pt A), 2–14.

    Article  CAS  PubMed  Google Scholar 

  62. Shirai, H., et al. (2016). Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci U S A, 113(1), E81–90.

    Article  CAS  PubMed  Google Scholar 

  63. Schwartz, S. D., et al. (2015). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet, 385(9967), 509–516.

    Article  PubMed  Google Scholar 

  64. Gonzalez-Cordero, A., et al. (2017). Recapitulation of human Retinal Development from Human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Reports, 9(3), 820–837.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ben, M., Barek, K. (2017). Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Science Translational Medicine, 9(421).

  66. Tu, H. Y., et al. (2019). Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine, 39, 562–574.

    Article  PubMed  Google Scholar 

  67. MacLaren, R. E., et al. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature, 444(7116), 203–207.

    Article  CAS  PubMed  Google Scholar 

  68. Pearson, R. A., et al. (2016). Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nature Communications, 7, 13029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh, M. S., et al. (2016). Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nature Communications, 7, 13537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ortin-Martinez, A., et al. (2017). A reinterpretation of cell transplantation: GFP transfer from donor to host photoreceptors. Stem Cells, 35(4), 932–939.

    Article  CAS  PubMed  Google Scholar 

  71. Mandai, M., et al. (2017). iPSC-Derived Retina Transplants Improve Vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports, 8(4), 1112–1113.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Movio, M. I., et al. (2023). Retinal organoids from human-induced pluripotent stem cells: From studying retinal dystrophies to early diagnosis of Alzheimer’s and Parkinson’s disease. Seminars in Cell & Developmental Biology, 144, 77–86.

    Article  CAS  Google Scholar 

  73. da Cruz, L., et al. (2018). Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nature Biotechnology, 36(4), 328–337.

    Article  PubMed  Google Scholar 

  74. Diniz, B., et al. (2013). Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: Improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci, 54(7), 5087–5096.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kashani, A. H. (2018). A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Science Translational Medicine, 10(435).

  76. Iraha, S., et al. (2018). Establishment of Immunodeficient Retinal Degeneration Model mice and functional maturation of human ESC-Derived retinal sheets after transplantation. Stem Cell Reports, 10(3), 1059–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pennington, B. O., et al. (2021). Xeno-free cryopreservation of adherent retinal pigmented epithelium yields viable and functional cells in vitro and in vivo. Scientific Reports, 11(1), 6286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gagliardi, G., et al. (2018). Characterization and transplantation of CD73-Positive photoreceptors isolated from human iPSC-Derived retinal organoids. Stem Cell Reports, 11(3), 665–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Aboualizadeh, E., et al. (2020). Imaging transplanted photoreceptors in living Nonhuman Primates with single-cell resolution. Stem Cell Reports, 15(2), 482–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Salas, A., et al. (2021). Cell therapy with hiPSC-derived RPE cells and RPCs prevents visual function loss in a rat model of retinal degeneration. Mol Ther Methods Clin Dev, 20, 688–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mandai, M., et al. (2017). Autologous Induced stem-cell-derived retinal cells for Macular Degeneration. New England Journal of Medicine, 376(11), 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  82. Mehat, M. S., et al. (2018). Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in Macular Degeneration. Ophthalmology, 125(11), 1765–1775.

    Article  PubMed  Google Scholar 

  83. Ford, E. (2020). Human pluripotent stem cells-based therapies for neurodegenerative diseases: Current Status and challenges. Cells, 9(11).

  84. Jones, M. K., et al. (2016). Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration. Molecular Vision, 22, 472–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, Z., et al. (2020). Intravitreal Injection of Human Retinal Progenitor cells for treatment of Retinal Degeneration. Medical Science Monitor, 26, e921184.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kuppermann, B. D., et al. (2018). Safety and activity of a single, intravitreal injection of human retinal progenitor cells (jCell) for treatment of Retinitis Pigmentosa (RP). Investigative Ophthalmology & Visual Science, 59(9), 2987–2987).

  87. Zhou, J., et al. (2018). Author correction: Retinal progenitor cells release extracellular vesicles containing developmental transcription factors, microRNA and membrane proteins. Scientific Reports, 8(1), 15801.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Higa, G. S., et al. (2014). MicroRNAs in neuronal communication. Molecular Neurobiology, 49(3), 1309–1326.

    CAS  PubMed  Google Scholar 

  89. Paschon, V., et al. (2016). Interplay between exosomes, microRNAs and Toll-Like receptors in Brain disorders. Molecular Neurobiology, 53(3), 2016–2028.

    Article  CAS  PubMed  Google Scholar 

  90. Mighty, J., et al. (2020). Analysis of adult neural retina Extracellular Vesicle Release, RNA Transport and Proteomic Cargo. Invest Ophthalmol Vis Sci, 61(2), 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lamba, D. A., et al. (2006). Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A, 103(34), 12769–12774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Borger, V. (2017). Mesenchymal Stem/Stromal cell-derived extracellular vesicles and their potential as Novel Immunomodulatory Therapeutic agents. International Journal of Molecular Sciences, 18(7).

  93. Sun, J., et al. (2015). Protective effects of Human iPS-Derived retinal pigmented epithelial cells in comparison with human mesenchymal stromal cells and human neural stem cells on the degenerating retina in rd1 mice. Stem Cells, 33(5), 1543–1553.

    Article  CAS  PubMed  Google Scholar 

  94. Tuekprakhon, A., et al. (2021). Intravitreal autologous mesenchymal stem cell transplantation: A non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Research & Therapy, 12(1), 52.

    Article  CAS  Google Scholar 

  95. Vilela, C. A. P., et al. (2021). Retinal function after intravitreal injection of autologous bone marrow-derived mesenchymal stromal cells in advanced glaucoma. Documenta Ophthalmologica, 143(1), 33–38.

    Article  PubMed  Google Scholar 

  96. Kruczek, K., et al. (2017). Differentiation and transplantation of embryonic stem cell-derived cone photoreceptors into a mouse model of end-stage retinal degeneration. Stem Cell Reports, 8(6), 1659–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Decembrini, S., et al. (2014). Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells. Stem Cell Reports, 2(6), 853–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gonzalez-Cordero, A., et al. (2013). Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nature Biotechnology, 31(8), 741–747.

    Article  CAS  PubMed  Google Scholar 

  99. Dorgau, B., et al. (2019). Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids. Biomaterials, 199, 63–75.

    Article  CAS  PubMed  Google Scholar 

  100. Zhu, W., et al. (2016). Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci U S A, 113(25), E3492–E3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fan, X. (2021). Replacement of the trabecular meshwork Cells-A way ahead in IOP Control? Biomolecules, 11(9).

  102. Sui, S., et al. (2021). iPSC-Derived Trabecular Meshwork Cells Stimulate Endogenous TM Cell Division through Gap Junction in a mouse model of Glaucoma. Invest Ophthalmol Vis Sci, 62(10), 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mathias, R. T., White, T. W., & Gong, X. (2010). Lens gap junctions in growth, differentiation, and homeostasis. Physiological Reviews, 90(1), 179–206.

    Article  CAS  PubMed  Google Scholar 

  104. Kihara, A. H., et al. (2010). Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. International Journal of Developmental Neuroscience, 28(1), 39–52.

    Article  CAS  PubMed  Google Scholar 

  105. Deuse, T., et al. (2019). De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nature Biotechnology, 37(10), 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  106. Raeisossadati, R., et al. (2019). Small molecule GSK-J1 affects differentiation of specific neuronal subtypes in developing rat retina. Molecular Neurobiology, 56(3), 1972–1983.

    Article  CAS  PubMed  Google Scholar 

  107. de Sousa, E., et al. (2022). VDAC1 regulates neuronal cell loss after retinal trauma injury by a mitochondria-independent pathway. Cell Death and Disease, 13(4), 393.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Botto, C., et al. (2022). Early and late stage gene therapy interventions for inherited retinal degenerations. Progress in Retinal and Eye Research, 86, 100975.

    Article  CAS  PubMed  Google Scholar 

  109. Nuzbrokh, Y., Ragi, S. D., & Tsang, S. H. (2021). Gene therapy for inherited retinal diseases. Ann Transl Med, 9(15), 1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Smith, A. J., Bainbridge, J. W., & Ali, R. R. (2012). Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Therapy, 19(2), 154–161.

    Article  CAS  PubMed  Google Scholar 

  111. Sodi, A., et al. (2021). RPE65-associated inherited retinal diseases: Consensus recommendations for eligibility to gene therapy. Orphanet Journal of Rare Diseases, 16(1), 257.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ameri, H. (2018). Prospect of retinal gene therapy following commercialization of voretigene neparvovec-rzyl for retinal dystrophy mediated by RPE65 mutation. J Curr Ophthalmol, 30(1), 1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fischer, M. D., et al. (2020). Safety and Vision outcomes of Subretinal Gene Therapy Targeting Cone photoreceptors in Achromatopsia: A Nonrandomized Controlled Trial. JAMA Ophthalmol, 138(6), 643–651.

    Article  PubMed  Google Scholar 

  114. Hu, M. L., et al. (2021). Gene therapy for inherited retinal diseases: Progress and possibilities. Clinical & Experimental Optometry: Journal of the Australian Optometrical Association, 104(4), 444–454.

    Article  Google Scholar 

  115. Hernandez-Juarez, J., Rodriguez-Uribe, G., & Borooah, S. (2021). Toward the treatment of inherited diseases of the retina using CRISPR-Based gene editing. Front Med (Lausanne), 8, 698521.

    Article  PubMed  Google Scholar 

  116. Cai, B., et al. (2018). Application of CRISPR/Cas9 technologies combined with iPSCs in the study and treatment of retinal degenerative diseases. Human Genetics, 137(9), 679–688.

    Article  CAS  PubMed  Google Scholar 

  117. Kantor, A., et al. (2021). CRISPR genome engineering for retinal diseases. Progress in Molecular Biology and Translational Science, 182, 29–79.

    Article  CAS  PubMed  Google Scholar 

  118. Eastlake, K., et al. (2019). Phenotypic and functional characterization of Muller Glia isolated from Induced Pluripotent Stem Cell-Derived Retinal organoids: Improvement of retinal ganglion cell function upon transplantation. Stem Cells Transl Med, 8(8), 775–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zheng, A., Li, Y., & Tsang, S. H. (2015). Personalized therapeutic strategies for patients with retinitis pigmentosa. Expert Opinion on Biological Therapy, 15(3), 391–402.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Benati, D., Patrizi, C., & Recchia, A. (2020). Gene editing prospects for treating inherited retinal diseases. Journal of Medical Genetics, 57(7), 437–444.

    Article  CAS  PubMed  Google Scholar 

  121. Bassuk, A. G., et al. (2016). Precision Medicine: Genetic Repair of Retinitis Pigmentosa in patient-derived stem cells. Scientific Reports, 6, 19969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Burnight, E. R., et al. (2017). Using CRISPR-Cas9 to Generate Gene-corrected autologous iPSCs for the treatment of inherited retinal degeneration. Molecular Therapy, 25(9), 1999–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Giacalone, J. C., et al. (2018). CRISPR-Cas9-Based genome editing of Human Induced Pluripotent Stem cells. Current Protocols in Stem Cell Biology, 44(p. 5B 7 1-5B), 7 22.

    Google Scholar 

  124. Sanjurjo-Soriano, C., et al. (2020). Genome editing in patient iPSCs corrects the most prevalent USH2A mutations and reveals Intriguing Mutant mRNA expression profiles. Mol Ther Methods Clin Dev, 17, 156–173.

    Article  CAS  PubMed  Google Scholar 

  125. Yu, W., & Wu, Z. (2021). Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Advanced Drug Delivery Reviews, 168, 181–195.

    Article  CAS  PubMed  Google Scholar 

  126. Beach, K. M., Wang, J., & Otteson, D. C. (2017). Regulation of Stem Cell Properties of Muller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina. Stem Cells Int, 2017, 1610691.

  127. Fischer, A. J., & Reh, T. A. (2001). Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nature Neuroscience, 4(3), 247–252.

    Article  CAS  PubMed  Google Scholar 

  128. Bernardos, R. L., et al. (2007). Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. Journal of Neuroscience, 27(26), 7028–7040.

    Article  CAS  PubMed  Google Scholar 

  129. Chua, J., et al. (2013). Early remodeling of Muller cells in the rd/rd mouse model of retinal dystrophy. The Journal of Comparative Neurology, 521(11), 2439–2453.

    Article  CAS  PubMed  Google Scholar 

  130. Conedera, F. M., & Enzmann, V. (2023). Regenerative capacity of Muller cells and their modulation as a tool to treat retinal degenerations. Neural Regen Res, 18(1), 139–140.

    Article  CAS  PubMed  Google Scholar 

  131. Lenkowski, J. R., & Raymond, P. A. (2014). Muller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Progress in Retinal and Eye Research, 40, 94–123.

    Article  PubMed  Google Scholar 

  132. Sanges, D., et al. (2016). Reprogramming Muller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest, 126(8), 3104–3116.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gandhi, J. K., et al. (2020). Fibrin hydrogels are safe, degradable scaffolds for sub-retinal implantation. PLoS One, 15(1), e0227641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kundu, J., et al. (2016). Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture. Acta Biomaterialia, 31, 61–70.

    Article  CAS  PubMed  Google Scholar 

  135. Jung, Y. H., et al. (2018). 3D Microstructured scaffolds to support photoreceptor polarization and maturation. Advanced Materials, 30(39), e1803550.

    Article  PubMed  Google Scholar 

  136. Sato, Y., et al. (2019). A multilayered sheet-type device capable of sustained drug release and deployment control. Biomedical Microdevices, 21(3), 60.

    Article  PubMed  Google Scholar 

  137. Guadagni, V., et al. (2015). Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Progress in Retinal and Eye Research, 48, 62–81.

    Article  CAS  PubMed  Google Scholar 

  138. Hosseini Shabanan, S., et al. (2022). Stem cell transplantation as a progressing treatment for retinitis pigmentosa. Cell and Tissue Research, 387(2), 177–205.

    Article  PubMed  Google Scholar 

  139. Wang, K., et al. (2017). Iron-chelating drugs enhance cone photoreceptor survival in a mouse model of Retinitis Pigmentosa. Invest Ophthalmol Vis Sci, 58(12), 5287–5297.

    Article  CAS  PubMed  Google Scholar 

  140. Lin, B., & Youdim, M. B. H. (2021). The protective, rescue and therapeutic potential of multi-target iron-chelators for retinitis pigmentosa. Free Radical Biology and Medicine, 174, 1–11.

    Article  CAS  PubMed  Google Scholar 

  141. Bakri, S. J., et al. (2019). Safety and efficacy of anti-vascular endothelial growth factor therapies for Neovascular Age-Related Macular Degeneration: A report by the American Academy of Ophthalmology. Ophthalmology, 126(1), 55–63.

    Article  PubMed  Google Scholar 

  142. Telias, M., et al. (2019). Retinoic acid induces hyperactivity, and blocking its receptor unmasks light responses and augments Vision in Retinal Degeneration. Neuron, 102(3), 574–586. e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dias, M. F., et al. (2018). Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Progress in Retinal and Eye Research, 63, 107–131.

    Article  CAS  PubMed  Google Scholar 

  144. Johnson, T. V., Bull, N. D., & Martin, K. R. (2011). Neurotrophic factor delivery as a protective treatment for glaucoma. Experimental Eye Research, 93(2), 196–203.

    Article  CAS  PubMed  Google Scholar 

  145. Limoli, P. G., et al. (2016). Cell surgery and growth factors in dry age-related macular degeneration: Visual prognosis and morphological study. Oncotarget, 7(30), 46913–46923.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Fernandez-Gonzalez, P., Mas-Sanchez, A., & Garriga, P. (2021). Polyphenols and Visual Health: Potential effects on degenerative retinal diseases. Molecules, 26(11).

  147. Ortega, J. T., & Jastrzebska, B. (2021). Neuroinflammation as a therapeutic target in Retinitis Pigmentosa and Quercetin as its potential modulator. Pharmaceutics, 13(11).

  148. Ortega, J. T., et al. (2022). Flavonoids improve the stability and function of P23H rhodopsin slowing down the progression of retinitis pigmentosa in mice. Journal of Neuroscience Research, 100(4), 1063–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chung, Y. H., Cai, H., & Steinmetz, N. F. (2020). Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Advanced Drug Delivery Reviews, 156, 214–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nooraei, S., et al. (2021). Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology, 19(1), 59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Banskota, S., et al. (2022). Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell, 185(2), 250–265e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Holan, V., et al. (2019). Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy. World J Stem Cells, 11(11), 957–967.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Limoli, P. G. (2019). Stem cell surgery and growth factors in Retinitis Pigmentosa patients: Pilot Study after Literature Review. Biomedicines, 7(4).

  154. Cardin, J. A., et al. (2010). Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols, 5(2), 247–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wittmann, T., Dema, A., & van Haren, J. (2020). Lights, cytoskeleton, action: Optogenetic control of cell dynamics. Current Opinion in Cell Biology, 66, 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. McGregor, J. E., et al. (2020). Optogenetic restoration of retinal ganglion cell activity in the living primate. Nature Communications, 11(1), 1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gauvain, G., et al. (2021). Optogenetic therapy: High spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates. Commun Biol, 4(1), 125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mace, E., et al. (2015). Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Molecular Therapy, 23(1), 7–16.

    Article  CAS  PubMed  Google Scholar 

  159. Khabou, H. (2018). Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight, 3(2).

  160. Sahel, J. A., et al. (2021). Partial recovery of visual function in a blind patient after optogenetic therapy. Nature Medicine, 27(7), 1223–1229.

    Article  CAS  PubMed  Google Scholar 

  161. Garita-Hernandez, M., et al. (2019). Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nature Communications, 10(1), 4524.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ruiz-Alonso, S. (2021). Current insights into 3D bioprinting: An Advanced Approach for Eye tissue regeneration. Pharmaceutics, 13(3).

  163. Wang, P. (2018). 3D bioprinting of hydrogels for retina cell culturing. Bioprinting, 11.

  164. Sullivan, M. A., et al. (2023). Three-dimensional bioprinting of stem cell-derived central nervous system cells enables astrocyte growth, vasculogenesis, and enhances neural differentiation/function. Biotechnology and Bioengineering, 120(10), 3079–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shi, P., et al. (2018). A bilayer photoreceptor-retinal tissue model with gradient cell density design: A study of microvalve-based bioprinting. Journal of Tissue Engineering and Regenerative Medicine, 12(5), 1297–1306.

    Article  CAS  PubMed  Google Scholar 

  166. Masaeli, E., et al. (2020). Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting. Biofabrication, 12(2), 025006.

    Article  CAS  PubMed  Google Scholar 

  167. Song, M. J., et al. (2023). Bioprinted 3D outer retina barrier uncovers RPE-dependent choroidal phenotype in advanced macular degeneration. Nature Methods, 20(1), 149–161.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil, #2019/17892-8 and #2020/11667-0), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil. #312047/2017-7 and #315372/2021-4), Coordenação Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil, financial code 001). The following authors were recipients of fellowships from FAPESP: GBS (#2021/03711-1 and #2021/14227-3), THLV (#2020/02035-0 and #2021/11969-9), MIM (#2017/26388-6).

Author information

Authors and Affiliations

Authors

Contributions

GBS, THLV, MIM, and AHK conceived the review and wrote the first draft. AHK, AB, and CBDD revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexandre Hiroaki Kihara.

Ethics declarations

Conflicts of interest/Competing Interests

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gabrieli Bovi dos Santos and Théo Henrique de Lima-Vasconcellos contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bovi dos Santos, G., de Lima-Vasconcellos, T.H., Móvio, M.I. et al. New Perspectives in Stem Cell Transplantation and Associated Therapies to Treat Retinal Diseases: From Gene Editing to 3D Bioprinting. Stem Cell Rev and Rep 20, 722–737 (2024). https://doi.org/10.1007/s12015-024-10689-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-024-10689-4

Keywords

Navigation