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Abstract

Background COVID-19 rapidly escalated into a worldwide pandemic with elevated infectivity even from asymptomatic
patients. Complications can lead to severe pneumonia and acute respiratory distress syndrome (ARDS), which are the main
contributors to death. Because of their regenerative and immunomodulatory capacities, stem cells and their derived extra-
cellular vesicles (EVs) are perceived as promising therapies against severe pulmonary conditions, including those associ-
ated with COVID-19. Herein, we evaluate the safety and efficacy of stem cell EVs in treating COVID-19 and complicating
pneumonia, acute lung injury, and ARDS. We also cover relevant preclinical studies to recapitulate the current progress in
stem cell EV-based therapy.

Methods Using PubMed, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science, we searched for all
English-language published studies (2000-2023) that used stem cell EVs as a therapy for COVID-19, ARDS, or pneumonia.
The risk of bias (ROB) was assessed for all studies.

Results Forty-eight studies met our inclusion criteria. Various-sized EVs derived from different types of stem cells were
reported as a potentially safe and effective therapy to attenuate the cytokine storm induced by COVID-19. EVs allevi-
ated inflammation and regenerated the alveolar epithelium by decreasing apoptosis, proinflammatory cytokines, neutrophil
infiltration, and M2 macrophage polarization. They also prevented fibrin production and promoted the production of anti-
inflammatory cytokines and endothelial cell junction proteins.

Conclusion Similar to their parental cells, stem cell EVs mediate lung tissue regeneration by targeting multiple pathways
and thus hold promise in promoting the recovery of COVID-19 patients and improving the survival rate of severely affected
patients.
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Introduction

COVID-19 was declared a global pandemic on the 11th of
March 2020 by the World Health Organization (WHO) [1].
Caused by severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2), COVID-19 has resulted in mortality rates
exceeding 5.5 million and 272 million reported cases within
two years [2]. As a positive-sense single-stranded RNA virus,
SARS-CoV-2 rapidly developed various mutations unleashing
multiple variants of concern, including alpha (B.1.1.7), beta
(B.1.351), gamma (P.1), delta (B.1.617.2) [1], and Omicron
(B.1.1.529) [2]. In humans, this virus is transmitted via respira-
tory droplets and affects patients of different ages and sexes
with fluctuating virulence levels [3].

Upon infection with SARS-CoV-2, the patient’s immune
system induces an inflammatory “cytokine storm” to defeat the
virus. This response can also result in damage and aggravate
other conditions, including interstitial pneumonia, acute res-
piratory distress syndrome (ARDS), multiple organ failure, or
even death, depending on many factors, including the strength
of the patient’s immune system [4, 5]. In an early study, ARDS
was reported in 42% of COVID-19 patients, and 61-81% of
the total cohort needed intensive care due to severe hypoxemia
that required mechanical ventilation [6]. Affected lung tissue
displayed endothelial damage with severe inflammation, poor
pulmonary oxygenation, increased vascular permeability, and
pulmonary interstitial fibrosis [7]. ARDS is thus considered
more severe in COVID-19 patients and even results in post-
COVID-19 pulmonary fibrosis in some survivors [8].

Multiple treatments for COVID-19 have been implemented
or proposed. Some treatments, such as repurposed anti-malar-
ial and anti-viral drugs, may improve recovery and survival
rates but do not regenerate damaged lung tissue [9]. In con-
trast, stem cell therapy was proposed as a COVID-19 approach
specifically because of promising regenerative capacities for
a plethora of cardiovascular [10], degenerative [11], and lung
diseases [12]. The therapeutic effects of stem cells are attrib-
uted to anti-inflammatory, immunomodulatory, regenerative,
pro-angiogenic, and anti-fibrotic properties, along with a vast
variety of potential sources [13]. Stem cells may be especially
attractive as COVID-19 treatments since early passages do not
display the SARS-CoV-2 receptor (angiotensin-converting
enzyme 2 (ACE2)), rendering them resistant to infection [14].
Different stem cells and their secretomes have thus been tested
in preclinical and clinical settings to combat COVID-19 com-
plications [15, 16]. For example, umbilical cord, adipose and
bone marrow-derived mesenchymal stem cells have successfully
ameliorated the cytokine storm by regulating immune cells such
as macrophages, neutrophils, B and T cells, DCs, and natural
killer cells [17-20].

Stem cell therapy faces the challenges of finding proper
tissue matching, the use of immune suppressive regimens, and
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the complications of graft rejection or graft vs. host disease.
Extracellular vesicles (EVs) may thus present a viable alterna-
tive, as they provide many of the stem cell regenerative prop-
erties and avoid the complications of whole-cell therapy. EVs
are small lipid bilayer nanovesicles of different sizes and ori-
gins that are released by live cells and possess the same immu-
nomodulatory and regenerative properties as their parental
cells [21, 22]. Since cell-based therapies also face applica-
tion hurdles, including large-scale production and the limita-
tions of reconstituting cryopreserved cells, EVs are shifting
regenerative medicine from cellular to acellular therapy [23,
24]. In addition to advantages such as low immunogenic and
teratogenic properties, EVs have been reported to trigger
anti-inflammatory cytokine release and reduce inflammation
[24, 25]. In different lung injury models, EVs are thought
to function by shuttling microRNA, mRNA, DNA, proteins,
and metabolites to and/or into recipient cells in injured tissue,
thereby promoting repair and regeneration [26]. At the time
of this writing, at least 28 clinical trials had been registered
worldwide to investigate the safety and/or efficacy of stem cell
EVs for ARDS and/or pneumonia in patients critically ill with
COVID-19 (ClinicalTrials.gov, Chinese Clinical Trial Reg-
ister (ChiCTR), IRCT, ISRCTN Registry, EU Clinical Trials
Register, last accessed: 9th of September 2022). Amidst this
growing interest in EV therapies, we aim in this systematic
review to assess the immunomodulatory effects and efficacy
of stem cell EVs in treating severe pulmonary conditions
associated with COVID-19, such as acute lung injury (ALI),
ARDS, and severe pneumonia in humans. The review also
covers preclinical studies in induced animal models and reca-
pitulates the current progress in stem cell EV-based therapy.

Methods
Literature Search Strategy

A defined literature search was conducted by three authors
independently using the following databases: PubMed,
Scopus, Web of Science, and Cochrane Central Register
of Controlled Trials. The following MeSH headings and
keywords were used: “extracellular vesicles”, “exosomes”,
“microvesicles”, “COVID-19”, “SARS-CoV-2", “corona-
virus”, “acute respiratory distress syndrome”, “acute lung
injury”, “pneumonia”, and “stem cells”. Studies published
from 2000 until May 31, 2023, were included. This review
was reported using the Preferred Reporting Items for Sys-
tematic Reviews and Meta-analysis (PRISMA) statement
[27] and was registered on the international prospective reg-
ister of systematic reviews (PROSPERO; CRD42022335053
and CRD42022336501) [28].
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Inclusion Criteria

We included all in vitro studies, preclinical in vivo animal
studies, and clinical interventional studies of stem cell
EVs of various designations (extracellular vesicles,
microvesicles, and exosomes) from any tissue source (bone
marrow, adipose, umbilical cord, dental pulp, placenta, etc.)
used as an intervention to treat COVID-19, ARDS and/
or lung injury. We included studies that used syngeneic,
allogeneic, or xenogeneic cells as the secretome source.
Studies that were fully accessible and published in English
were included. The PICO search strategy is provided as
supplemental file 1.

Exclusion Criteria

We excluded studies that (1) administered only non-
stem cell-based therapeutics to treat COVID-19, such
as cell therapy using somatic cells other than stem cells,
antiviral, immunomodulatory, and anti-cytokine drugs
or a combination thereof; (2) did not report EV isolation
methods; (3) were conducted in silico only; (4) were on
pulmonary fibrosis, asthma or other respiratory conditions
that were not directly related to COVID-19; (5) were review
articles, meta-analyses, comments, notes, book chapters or
surveys and theses, conference proceedings and editorials;
and (6) used EVs to treat organs other than the lungs.

Study Selection and Data Extraction

Using the inclusion and exclusion criteria, the title and abstract
were initially screened independently by SA, MA, and AG
via Rayyan.ai (https://rayyan.qcri.org/), an online platform
for the study selection process. Differences in opinion or
discrepancies were resolved by discussion and consultation
with the NB. All duplicated studies were checked and removed
before the study selection process. Full-text articles were
retrieved by three authors independently to assess the final
eligibility. Data extraction and subsequent full-text review
were performed using an Excel data extraction form to search
for data in the Results and Method sections as well as in tables,
graphs, and figures. Cross-checking of the data retrieved for
each article was performed by the other authors. Specific
data extracted from studies included study characteristics
(e.g., lead author, year of publication, country), study design,
and intervention characteristics (e.g., sample size, source
of stem cell, reported size and type of EV, EV separation
and characterization methods, mode of administration, EV
dosage, and time of assessment). All data about the primary
and secondary outcomes (e.g., survival rate, lung injury
score, oxygenation level, days in ICU, inflammatory cytokine
concentrations, CT, laboratory and radiologic findings, and
adverse events) were also recorded.

Outcome Measures

Patient survival rate and measures of efficacy of EVs in targeting
COVID-19 severity according to the World Health Organiza-
tion Ordinal Scale for Clinical Improvement (WHO-OSCI) were
included as primary outcome measures [29]. These included
oxygenation levels (e.g., PaO2/FiO2 ratio), anti-inflammatory
cytokines (IL-10, transforming growth factor [TGF]-b, etc.),
inflammatory markers (D-dimer, C-reactive protein, ferritin,
etc.), circulating levels of immune cells (lymphocytes, neutro-
phils, macrophages, regulatory dendritic cells, NK cells, etc.),
proinflammatory cytokines (IL-6, IL-8, tumor necrosis fac-
tor [TNF]a, interferon [IFN]y, etc.), organ failure assessment
score (e.g., Sequential Organ Failure Assessment [SOFA]),
and adverse events following EV administration (tumorigen-
esis, thromboembolism, etc.). Importantly, for stem cell EVs of
different designations, we included EV source, EV separation
and characterization method, biological effects, and the route,
formulation, and dosage of their administration.

Quality Assessment

We used the Cochrane Bias Risk Assessment tools to assess
the quality of the included studies, where the risk of bias was
based on the following criteria: random sequence generation
(selection bias), blinding of outcome assessment (detection
bias), incomplete outcome data (attrition bias), allocation con-
cealment (selection bias), blinding of participants and research-
ers (performance bias), selective reporting (reporting bias) and
other bias. The RoB-2 tool for randomized studies was used to
assess the risk of bias for the interventional controlled studies
[30]. The ROBINS-I tool for nonrandomized studies was used
to assess the risk of bias for the interventional controlled stud-
ies [31]. Additionally, we used the systematic review center for
laboratory animal experimentation (SYRCLE) risk of bias tool
to evaluate the risk of bias in preclinical studies [32]. The Confi-
dence in the Evidence from the Reviews of Qualitative research
(CERQual) tool was used to assess the evidence quality of each
outcome in the systematic review [33]. A PRISMA figure fol-
lowing the PRISMA checklist criteria was created [27].

Results
Literature Search

A search on PubMed, Web of Science, Scopus, and Cochrane
Central Register of Controlled Trials retrieved a total of 1351
studies. After removing duplicate publications, the title and/
or abstract of 700 studies were screened to include articles
that assessed the efficacy and/or safety of stem cell EVs in
combating COVID-19 or severe pulmonary conditions such
as ARDS, ALI and pneumonia. We excluded 625 studies that
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were review articles, meta-analyses, comments, news, book
chapters, surveys, theses, conference papers, and/or editorials.
These studies were also excluded because they did not match
the outcome of interest (e.g., lung injury models not relevant
to COVID-19, such as bronchopulmonary dysplasia, cystic
fibrosis, and asthma) or the treatment criteria (e.g., stem cell
EVs employed as biomarkers and not for treatment) or were
reported in languages other than English. Thus, the remaining
75 articles were assessed for eligibility via full-text screening.
Thirty-seven studies that did not characterize EV's by size and/
or at least one protein marker were excluded, and 48 studies
were eventually retained for final analysis (Fig. 1) [34-81]. The
selected studies were published between 2000 and 2023 and
included in vitro, ex vivo, in vivo, and human subjects and/ or
human-origin materials. These studies targeted COVID-19,
ALI/ARDS, pneumonia, or allergic airway inflammation. A
list of excluded articles is provided in supplemental file 2.

Study Characteristics

The 48 studies remaining after the application of the
inclusion and exclusion criteria included seven studies of
human patients or tissues. The 48 studies were targeting
ALI (75%), SARS-CoV-2 (20.8%), ARDS (14.6%), and
pneumonia (4.2%) (Fig. 2A). Four studies targeted severely
ill COVID-19 patients. Two studies examined mild to
moderate COVID-19 patients or long-haul patients via
two FDA-approved (Exoflo and Zofin) treatments. One
study used an Escherichia coli-induced model of severe
pneumonia in ex vivo perfused human lungs. To model
COVID-19 or ALI/ARDS in experimental animals, inducing
agents including lipopolysaccharide (LPS), Escherichia coli,
endotoxin, Pseudomonas aeruginosa, histones, bleomycin,
burn injury, influenza virus injection, ovalbumin, cytokine
exposure, trauma or mechanical ventilation injury. These
studies primarily evaluated the therapeutic efficacy and
safety of EVs derived from various sources as a cell-free
therapy for recovery from lung injury. The major sources
for these EVs were MSCs derived from human or animal
bone marrow, adipose tissue, umbilical cords, amniotic fluid,
and Wharton’s jelly. However, other EV sources, such as
placenta, endothelial progenitor cells, neuronal stem cells,
human neonatal fibroblasts, menstrual blood, and IPCS were
included (Fig. 2B). All but one in vivo study (of commercial
pigs as a large animal model) was carried out in mice or rats.
Table 1 shows the reported characteristics of stem cell EVs
in all selected studies.

Stem Cell-EV Intervention Characteristics
Twenty-two studies out of the forty-eight selected studies

used EV terminology based on the guidelines of the
International Society for Extracellular Vesicles (ISEV) [82].
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Table 1 shows the separation, characterization, reported
nomenclature and size, dosage, and mode of administration
of EVs, along with the time of assessment, for all studies.
Separation methods included ultracentrifugation (the most
common procedure, 66.7%), commercially available kits
based on precipitation reagents (14.6%), size exclusion
or anion exchange chromatography (6.3%), ultrafiltration
(UF) (2.8%), combined methods including UC with UF
(4.2%), UC with sucrose cushion (4.2%), and UC with PEG
(2.8%) (Fig. 2C). Likewise, as recommended by ISEV,
various characterization methods were involved, including
transmission (75%) or scanning electron microscopy
(10.4%), particle tracking analysis (66.7%), western
blotting (52.1%), flow cytometry (35.4%), dynamic light
scattering (10.4%), resistive pulse sensing (4.2%), and
atom force microscopy (4.2%) (Fig. 2D). It is noteworthy
that all the included studies reported the methods used in
EV characterization, while only four studies used a single
characterization procedure [39, 46, 49, 77]. Regarding
the route of EV administration, EVs are most commonly
administered to humans by inhalation or intravenous
administration, while injection into the tail or jugular veins
or intratracheal or intraperitoneal administration is also
used in animal models (Fig. 2E). EVs were administered to
humans one to five times but in animal models in just one or
two doses. Throughout this review, EV therapy was in the
form of whole EVs or specific EV-derived molecular cargos
(i.e., miRNA, mRNA, or protein) that were isolated from
EVs and tested and/or evaluated for their potential antiviral
and therapeutic effects (Fig. 3).

Stem Cell EVs as COVID-19 Therapeutics

The included studies were classified into seven clinical
and forty-one preclinical studies (Fig. 4). The seven studies
evaluated the safety and/or efficiency of EVs against SARS-
COV-2 in acute or long-hauler patients. Among them, four
studies targeted COVID-19 mild, moderate, severe, or long-
hauler patients using FDA-approved EV-based drugs (Zofin
and Exoflo) derived from human amniotic fluid or bone
marrow MSCs [35-38]. Similarly, three other studies high-
lighted the feasibility, tolerance, and safety of human umbili-
cal, menstrual, and adipose MSC-derived EVs in alleviating
SARS-CoV-2 [34, 39, 40]. Table 2 shows patient character-
istics, EV source, effects, and outcomes. In these studies,
EV-based drugs were shown to have no adverse events with
improved oxygen saturation level, survival rates, SOFA and
Glasgow scores, partial pressure of arterial oxygen to frac-
tion of inspired oxygen (PaO2/Fi02), and absolute lympho-
cyte count (ALC). Moreover, they also improved immuno-
competence by reducing neutrophil infiltration as well as
the pro-inflammatory and anti-inflammatory cytokine storm,
including tumor necrosis factor-alpha (TNF-a), interleukin-6
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(IL-6), d-dimer, platelets, and c-reactive protein (CRP)
[34-39].

Stem Cell EVs in ARDS, ALI, and Pneumonia Models

Twenty-one studies out of 41 preclinical studies used whole
MSC EVs to treat model systems without identifying spe-
cific EV-based molecules responsible for any observed
effects (Fig. 4) [41-44, 50, 51, 54-57, 62-65, 68, 73-76,
83]. As shown in Table 3, in all studies except one, ARDS

or ALI models were induced by a variety of inflamma-
tion inducers in perfused lungs. Overall, EV administra-
tion improved survival rates and cellular repair, albeit not
significantly reducing lung injury scores, as indicated by
lessened inflammation, alveolar congestion, and cell per-
meability damage [41-44, 51, 54-57, 68, 76]. Ameliorated
inflammation was evaluated by measuring neutrophil infil-
tration, M2 macrophage polarization, apoptotic macrophages
[64, 73, 76], and proinflammatory and/or anti-inflammatory
cytokines [50, 63, 65, 75, 76]. As recapped in Table 3, EVs
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Fig.2 An overview of studies characteristics. A Ratios of pulmonary
diseases including ARDS, COVID-19, ALI and pneumonia. B Stem
cells sources to separate EVs with number of studies using each
source. C Percentages of different EV separation methods. D Per-
centages of characterization procedures used for EV identification
with number of studies. E EV administration routes reflected by the

improved mitochondrial respiration and ATP turnover [58,
76] and upregulated anti-inflammatory interleukin (IL-10),
arginase-1 (Arg-1), keratinocyte growth factor (KGF), and
prostaglandin E2 (PGE2) [54-56, 62, 63, 75, 76]. Adipose
MSC EV preparations alleviated ALI and improved tissue
integrity and pathological scores through mitochondrial
DNA (mDNA) transfer [58, 76]. Additionally, EV treat-
ment restored endothelial cell—cell adhesion by increasing
the levels of the adherens junction proteins VE-cadherin
and B-catenin [44, 74]. They also improved various respira-
tory functions, such as tidal volume (TV), peak inspiratory
flow (PIF), peak expiratory flow (PEF), and 50% forced
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number of studies for each route. UC: ultracentrifugation; UF: ultra-
filtration; TEM: transmission electron microscopy; NTA: nano track-
ing analysis; WB: western blot; FC: flowcytometry; DLS: dynamic
light scattering; SEM: scanning electron microscopy; TRPS; tunnel
resistive pulse sensing; AFM: atomic force microscopy; BCA: bicin-
choninic acid assay

expiratory flow (EF50) [54]. In contrast, EV treatment sig-
nificantly downregulated many proinflammatory cytokines,
including IL-1 [50, 51, 62, 75, 76], IL-6, IL-8, IL-4, IL-5,
IL-13, macrophage chemoattractant protein-1 (MCP-1), and
RANTES [50, 73, 75, 76]. Similarly, inflammatory media-
tors such as tumor necrosis factor-o (TNF-o), macrophage
inflammatory protein 2 (MIP-2), nuclear factor kappa B
subunit 1 (NF-kB), and keratinocyte-derived chemokines
were reported to be significantly downregulated [41-44,
50, 51, 54-58, 62-65, 68, 75, 76]. Modest expression of
proteins in bronchoalveolar lavage fluid (BALF) was also
reported. These included coagulation mediators such as
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Fig.3 Stem cell EVs as therapeutics for COVID-19. A EVs derived from stem cells of various origins were investigated in the form of whole
EVs or specific EV-associated cargos. B EVs are administered via different routes, in both clinical and preclinical studies

tissue factor (TF), thrombin—antithrombin complex (TAT)
[50], alveolar epithelial injury indicators (i.e., receptors for
advanced glycation end products (RAGE)) [58], and lipid
peroxidation measures (i.e., 4-hydroxynonenal (4-HNE))
[42]. EVs were reported to alleviate lung edema and hem-
orrhage as measured by decreased matrix metalloproteinase
(MMP)-9 expression levels and lung tissue wet-to-dry ratio
[44, 51, 54]. EVs also have a dramatic effect on glycolysis-
related proteins such as hypoxia-inducible factor 1 (HIF-1a),

Clinical studies
(n=7)

{ Systematic Review

Preclinical studies
(n=41)

Fig.4 Illustration of the included studies classification. Throughout
the systematic review, the included studies are classified into clinical
(n=7) and preclinical (n=41) studies. Each group was subclassified
based on the type of molecule used in the intervention. In clinical

hexokinase 2 (HK2), pyruvate kinase isoform M2 (PKM2),
glucose transporter 1 (GLUT1), lactic acid, ATP, and lactate
dehydrogenase A (LDHA) [51]. Interestingly, EVs preserved
the lung structure and the alveolar-capillary barrier by reduc-
ing early apoptosis and necrosis, as indicated by lower levels
of reactive oxygen species (ROS) [57, 75, 76], nitric oxide
[68], and inducible nitric oxide synthase (iNOS) [55, 62,
76]. Additionally, EVs maintain lung integrity by modu-
lating the crosstalk between inflammation and oxidation in

FDA-approved EV
based drugs
(n=4)

Whole stem cell EV
(n=3)

Whole stem cell EV
‘ (n=21)

L Noncoding RNAs
(n=15)
Specific stem cell EV
encapsulated cargo

(n=20)

Proteins and/ or
mRNA
(n=5)

trials: whole stem cell EVs (n =3) and EV-based drugs (n=4) were
used, while in preclinical studies: whole stem cell EVs (n=21) or
specific EV encapsulated noncoding RNA (n=15) or encapsulated
proteins or RNA (n=35) were tested
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Springer

a therapeutic candidate

replication, RAAS

fibroblasts

(ASTEX, TEV1, Calu-3)

(2022-USA)

for COVID-19 through
suppressing PI3K/

mTOR pathway

dysregulation, PI3K/

mTOR

TmiR-16, cytoprotective

and antiviral effects

SD Sprague—Dawley, ARDS Acute respiratory distress syndrome, AL/ Acute Lung Injury, MSC Mesenchymal stem cells, ADCS Adipose-derived stem cell, LL24 Human lung fibroblast

line, Beas-2B human bronchial epithelial cell line, BV2 mouse microglial cell line, SK-N-BE (2)C human neuroblastoma cell line, LPS Lipopolysaccharide, EVs Extracellular vesicles,
MVs Microvesicles, IncRNA long noncoding RNA, IL-1f Interleukin-1beta, IL-6 Interleukin six, TNF-a Tumor necrosis factor-alpha, NF-kB Nuclear factor-kappa, IFNy Interferon-gamma,

Arg-1 Arginase-1, MCP-1 Monocyte chemoattractant protein-1, BALF bronchoalveolar lavage fluid, WBC White blood, SIRT! Sirtuin 1, SOD Superoxide dismutase, GSH glutathione,
FZD6 Frizzled class receptor 6, iNOS nitric oxide synthase, WDR wet to dry ratio, MPO myeloperoxidase, MDA malondialdehyde, VEGFa vascular endothelial growth factor, HMGBI high-

mobility group protein, TLR4 Toll-like Receptor 4, Sg-E Subgenomic E region, ASTEX Activated Specialized Tissue Effector EVs, TEVI EVs from immortalized CDC EV's

ALI by regulating major oxidative stress mediators, such
as nuclear factor erythroid 2-related factor 2 (Nrf2), Toll-
like receptor 4 (T1r4), Hmox heme oxygenase-1 (HO-1), and
Arg-11[75,76].

Stem Cell EV Encapsulated Cargos Against Acute
Lung Injury

Regulatory Noncoding RNAs

Different types of nonregulatory RNAs, including miRNAs,
long noncoding RNAs (IncRNAs), and PIWI-interacting RNAs
(piRNAs), have been proposed to ameliorate SARS-CoV-2 com-
plications such as ALI as shown in Table 4. piRNAs are often
24-32 nucleotides in length, compared with 21-24 nucleotides
for miRNAs, and their biogenesis does not depend on the Dicer
machinery [84]. These RNAs function, especially in the germ
line, when complexed with the PIWI-subfamily argonaute pro-
teins. PIWI-piRNAs were reported to be encapsulated into neu-
ral stem cell EV's to promote antiviral innate and adaptive immu-
nity against SARS-CoV-2 [77]. Another type of noncoding
RNA is miRNAs, small noncoding RNAs that exert posttran-
scriptional regulation by recognizing partially complementary
sequences in target mRINAs and thus suppressing the production
of proteins. Fifteen intervention studies investigated EV miR-
NAs as having roles in treating SARS-COV-2 or ARDS/ALI
[45, 47,48, 52, 59-61, 66, 67, 69, 71, 77, 78, 80, 81]. Various
miRNAs were reported to mediate antiviral responses related
to chemokines, cytokine—receptor interactions, TNF-a, NF-kB,
Toll-like receptors, and the Jak-STAT signaling pathways. MSC-
EV-associated miRNAs miR-92a-3p, miR-26a-5p, miR-23a-3p,
miR-103a-3p, and miR-181a-5p were reported to efficiently
regulate the inflammatory response in SARS-COV-2 by modu-
lating the NF-xB signaling pathway and p65 translocation [67].
Significant attenuation of lung injury was attributed to various
miRNAs, including miR-150, miR-181, miR-126, miR-377-3p,
miR-27a-3p, miR-30b-3p, and miR-451, which regulate different
signaling pathways [47, 48, 52, 59, 60, 66, 69, 71]. miR-150 in
particular was reported to downregulate several MAPK pathway
proteins, such as p-Erk, p-JNK, and p-p38, causing a reduction
in various proinflammatory cytokines and of neutrophils [59].
Additionally, through the IncRNA-p21/miR-181/SIRT1 path-
way, IncRNA-p21 suppressed apoptosis and lung tissue injury
by sponging miR-181 and upregulating sirtuin 1 (SIRT1) [66].
miR-126 in EVs from MSCs and endothelial progenitor cells
was implicated in reducing endothelial damage, lung hemor-
rhage, and edema while increasing the animal survival rate.
This effect was mediated by regulating the PI3K/Akt signaling
pathway and inhibiting the inflammatory alarmin high-mobility
group protein (HMGB 1) and vascular endothelial growth factor
(VEGF) [45, 48, 71]. The Toll-like receptor 4 (TLR4)/NF-xB
signaling pathway was also reportedly regulated by EV miR-
451, which in turn was said to reduce the inflammation found
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in injured lungs [60]. However, the red blood cell-specificity of
miR-451 should be considered when interpreting this report.
Of note, macrophage polarization was reportedly promoted via
EV miR-16-5p, miR-127-3p, and miR-125b-5p. This effect was
due to suppression of the expression of M1 markers IL-12 and
chemokine receptor (CCR-7), in addition to various cytokines,
including TNF-a, IL-1f, IL-10 and IL-6 [61]. Other purportedly
EV-associated miRNAs, such as miR-377-3p, miR-27a-3p, and
miR-30b-3p, were reported to promote autophagy and phago-
cytic activity and inhibit apoptosis by suppressing inflammatory
serum amyloid A3 (SAA3) expression, eventually leading to
amelioration of the induced lung damage [47, 52, 69].

Coding mRNAs and Proteins

Several studies identified EV mRNAs or proteins as contrib-
uting to therapeutic effects. In five studies, EVs were reported
to promote the healing of lung injuries via hepatocyte growth
factor (HGF), angiopoietin-1 (Angl), or keratinocyte growth
factor (KGF) [46, 49, 53, 70, 72] (Table 5). HGF associ-
ated with EVs was reported to alleviate acute lung injury by
reducing apoptosis, pro- and anti-inflammatory cytokines,
neutrophil infiltration, and total protein content BALF [53].
Additionally, it was reported that MSC-EVs play a role in
regulating endothelial permeability partly by HGF, as evi-
denced by elevated levels of lung integrity VE-cadherin
and occludin proteins [72]. EV-mediated transfer of angi-
opoietin-1 mRNA to injured cells induced the secretion of
anti-permeability factors and reduced white blood cells, total
protein, and inflammatory TNF-a in BALF [46, 70]. Like-
wise, EV-associated KGF was reported to have protective
effects as efficient as those of the parent MSCs, as indicated
by reduced levels of TNF-a, neutrophils, protein, permeabil-
ity, and extravascular lung water (EVLW), as well as elevated
levels of MIP-2 and IL.-10 [49].

Quality Assessment and Risk of Bias

Studies were subjected to quality assessment and catego-
rized as having a “low”, “high”, or “unclear” risk of bias.
As shown in Fig. 5A, human clinical studies scored low and
moderate risk of bias using ROBINS-I due to measurement
of outcomes and confounding biases. The in vivo animal
studies assessed using SYRCLE had an unclear risk of bias,
as most of them did not report details of sequence genera-
tion, allocation concealment, or random housing details.
The in vitro studies assessed using modified SYRCLE for
in vitro models showed a low risk of bias across all domains
(Fig. 5B). The tables of the risk of bias assessment are pro-
vided in supplemental file 3. The CERQual tool that was
used to rate the outcomes showed that the overall rating

for assessment of confidence was “high” for inflammatory
response and recovery of lung injury in the alveolar epithe-
lium and lower in the other domains (Supplemental file 4).
Finally, the PRISMA checklist was completed with further
details for the review scoring (Supplemental file 5).

Discussion

In this systematic review, we evaluate the reported role of
stem cell EVs in targeting COVID-19 and its commonly
induced complications, including ARDS, ALI, and pneu-
monia. Clinical studies showed that EVs derived from
diverse stem cell sources could significantly ameliorate
the clinical symptoms of lung injury induced by COVID-
19 or complicating ARDS/ALI and reduce the time in
the ICU or on mechanical ventilators. EV-treated patients
had better survival rates, reversed hypoxia, and restored
respiratory function and oxygenation index. Modulation
of the cytokine storm was supported by downregulated
proinflammatory cytokines, elevated anti-inflammatory
cytokines, and decreased levels of immune cells, includ-
ing neutrophils, lymphocytes, and macrophages.

Stem Cell EVs are as Efficient as their Parental Cells
Against COVID-19, ARDS, and Pulmonary Lung
Injuries

MSCs were recently employed in 122 phase I and II clini-
cal trials as a cell-based therapy against COVID-19, as
detected by the Cochrane Central Register of Controlled
Trials. In moderate to severe COVID-19 patients, admin-
istration of MSCs led to a significant increase in survival
rates by reducing lung inflammation and modulating the
immune system toward an anti-inflammatory status, with
no serious complications reported [18, 85, 86]. In long-term
follow-up, MSCs were shown to be safe and effective alter-
native therapeutic agents with a reliable recovery of lung
lesions and COVID-19 symptoms. Minimal serious adverse
effects during treatment or thereafter were reported [17].
Based on these data, MSCs were promoted to large-scale
phase III clinical trials in subjects with varying severity
profiles of COVID-19-induced ARDS and ALI to further
evaluate their effect on mortality and long-term pulmonary
disabilities [87]. Given the important role of EVs in MSC
mechanisms of action, the outcome of MSC-EV-based clini-
cal trials might also predict the efficacy of MSC-EV-based
therapy against COVID-19, ARDS, pneumonia, or ALI. In
the included studies, EVs were employed against COVID-
19, ARDS, and/or ALI with or without identification of the
roles of specific molecular cargo, such as miRNA, mRNA,
or protein.
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Clinical Studies

In the included clinical studies, the whole EV cargo showed
a significant capacity to maintain a reparative phenotype that
restored lung vascular damage when used as a cell-free ther-
apy against COVID-19, ARDS, pneumonia, and ALI. Sen-
gupta et al. reported that administration of an MSC-derived
EV preparation (Exoflo) in 24 patients diagnosed with severe
COVID-19-induced ARDS restored their immunity and oxy-
genation capacity after the inflammation was ameliorated
[38]. Similarly, in a clinical trial of 11 moderately to severely
ill COVID-19 patients and a single long hauler, EVs derived
from amniotic fluid (Zofin) were reported to be an accessi-
ble, feasible, safe, and efficacious treatment for respiratory
failure induced by COVID-19 infection [35-38]. In another
study by Zhu et al., aerosol inhalation of an EV preparation
derived from human adipose-derived MSCs suggested safety
and efficiency in 7 severe COVID-19 patients [34]. Like-
wise, Fathi-Kazerooni et al. showed that a menstrual stem
cell-derived secretome was an efficient and feasible thera-
peutic that improved hypoxia, restored immune function
and controlled the cytokine storm in 15 severe COVID-19
patients [39]. These findings were consistent with multiple
systematic reviews that assessed the MSC therapeutic effect
on severe COVID-19 patients [88—90]. This finding supports
the efficacy of stem cell EVs as a cell-free therapy against
different respiratory disorders, including COVID-19.

Preclinical Studies

These findings were similar to those stated of experimental
animal studies in which MSC-EVs were reported to signifi-
cantly improve and mediate lung function and pathology
via different pathways, including the TRPV4/Ca2, Nrf-2/
ARE, and NF-xB signaling pathways [44, 65, 75]. Moreover,
restoration of lung tissue function was mediated via mito-
chondrial transfer, resulting in reducing oxidative stress and
promotion of an anti-inflammatory and highly phagocytic
macrophage phenotype [64, 76]. Indeed, these findings
aligned with similar mechanisms reported using stem cell-
based therapy administration [91-94]. As described by Yan
et al., MSC administration protected against ARDS and ALI
at least in part by regulating Nrf2-Keap1-ARE signaling-
mediated cell apoptosis [92]. Xiao et al. reported that MSCs
reversed lung injury progression by blocking the activation
of NF-kB pathways in ALI [93]. Additionally, Jackson et al.
reported that mitochondrial transfer to alveolar macrophages
was mediated via tunneling nanotubes (TNTs), leading to
enhanced macrophage oxidative phosphorylation and phago-
cytosis [94]. Both MSCs and their EVs were found to be
effective in diminishing inflammatory cytokines by inhibit-
ing MMP-9 synthesis and upregulating SP-C [54]. MSC-
EVs possess anti-inflammatory and antiviral properties that

@ Springer

inhibit influenza virus-induced apoptosis and propagation in
animal lung epithelial cells [56].

EV RNAs and Proteins with COVID-19 Therapeutic
Effects

MSC-EVs were shown to be superior, simpler, and clinically
more convenient than their parental MSCs in COVID-19
therapy since EVs do not provoke immunological responses
or lead toteratomas, and they protect their cargos against
digestive circulating enzymes [95]. Moreover, whole MSC
therapy might lead to significant vascular insufficiency, as
cells may tend to aggregate intravascularly, and could syner-
gize with COVID-19-induced vascular clots [96]. However,
MSC-derived RNAs and proteins have been used as thera-
peutic targets in lung injuries, including COVID-19 [97, 98].

In comparison, in the analyzed preclinical studies, EV-
miRNAs were reported to suppress endothelial damage,
inflammatory interleukins, and apoptosis or to promote
autophagy and macrophage polarization by mediating the
IncRNA-p21/miR-181/SIRT1, PI3K/Akt, TLR4/NF-xB,
and MAPK signaling pathways [45, 47, 48, 59, 60, 66].
Similar findings were reported by Li et al., who suggested
that parental MSCs attenuated lung injury by a KGF-
dependent PI3K/AKT/mTOR signaling pathway [99].
Similarly, MSCs mediate a therapeutic effects, in part, by
many proteins, such as hepatocyte growth factor (HGF),
angiopoietin-1 (Angl), and keratinocyte growth factor
(KGF) [100]. Perreau et al. and others reported that HGF
expression levels could predict the severity of COVID-
19 and that HGF could contribute to alleviating lung
injury by suppressing the transforming growth factor-
beta (TGF-P) signaling pathway [101-103]. While Adas
et al. showed that KGF secreted by MSCs can reduce
lung injury [103], similar protective effects were reported
using MSC-MVs through the transfer of KGF mRNA to
injured alveolar cells [49]. Lastly, Ang-1 mRNA transfer
by MSC-EVs mediated the immunomodulatory properties
of macrophages and was associated with a therapeutic
effect on ALI [46, 70]. These findings were supported
by a study by Lu et al., who reported that Ang-1-derived
peptide inhibited apoptosis and improved endothelial
cell survival, thus reducing inflammation induced by the
SARS-CoV-2 virus [104].

EV Characteristics and Application Considerations
for Clinical Translation

Most of the EVs in the included studies, whether admin-
istered to patients, experimental animals, or in vitro, were
reportedly smaller than 200 nm in diameter and derived
mostly from MSCs. In at least partial agreement with the
ISEV guidelines regarding EV characterization [105],
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forty-one studies in this review characterized EV preparation
using three different protocols, [82]. It is worth mentioning
that, currently, there are approximately 22 registered clini-
cal trials of phases I, II, and III to evaluate the safety and
efficiency of stem cell EVs against COVID-19. Only one
systematic review has been published about in vivo animal
studies of stem cell EVs against COVID-19, but it did not
include any subjects infected by SARS-CoV-2 [106].

However, a specific effect of EVs has not necessarily
been proven in these studies, which in general do not strictly
establish EV preparation purity, integrity, efficacy, and
specificity. This may be due to the various stem cells that
were used as sources, separation through different procedures,
non-standardized assessment and reporting of EV purity and
integrity, and limited support for specific therapeutic effects of
MSC-EVs versus non-MSC-EVs and/or co-separating non-EV
factors.

Forty studies separated EVs from MSCs; however, these
MSCs were derived from various sources, such as bone
marrow, adipose tissue, and umbilical cord, possibly with
an unclear safety profile. Forty-five out of 48 studies used
either UC or precipitation reagents in EV separation. Both
procedures are highly non-specific for EVs and were found
to give significant variation in reported EV yield and size
profile. In the clinical studies, although 4 studies reported
safety and promising EV applications in severe COVID-
19 cases, the sample sizes were small and in at least one
case, commentators remarked on a lack of clarity about EV
source and purity [107]. Similarly, in preclinical studies, the
use of animals with different ages and unspecified breeding
conditions may influence relevance of future human trials
[108]. EVs might exert different actions in vitro and
in vivo, and paracrine action of non-EV components of the
MSC relesate might contribute to results [22]. Despite the
recommendations of MISEV2018 [105], none of the studies
established a biogenetic origin (e.g., of reported “exosomes”
or “microvesicles” as opposed to a mixed EV population)
or reported the presence of non-EV components or potential
contaminants such as albumin, cytokines, or lipoprotiens
from culture media or plasma/serum. Nevertheless,
the unreported integrity and half-life of EVs before
administration should be considered as an extra source of
imposed variation.

EVs might also be engineered to have advantages over
native EVs [81, 109, 110]. For example, cells might be
engineered to produce EVs that modulate infection-related
signaling pathways in recipient cells [81], or present targets
for the SARS-CoV-2 spike protein and thus “sponge” the
virus [109, 110]. These bioengineered EVs might enhance
the overall yield, bioactivity, and half-life and improve
the targeting effect for clinical applications; however, the
extended half-life may induce adverse effects such as fibro-
sis. Thus, more future clinical studies should be carried out

to test the validity, safety, and efficacy of these synthetic
EVs.

EVs might also be engineered to have advantages over
native EVs [81, 109, 110]. For example, cells might be
engineered to produce EVs that modulate infection-related
signaling pathways in recipient cells [81] or present targets
for the SARS-CoV-2 Spike protein and thus “sponge” the
virus [109, 110]. These bioengineered EVs might enhance
the overall yield, bioactivity, and half-life, and improve
the targeting effect for clinical applications, however, for
instance, the extended half-life may induce adverse effects
like fibrosis. Thus, more future clinical studies should be
carried out to test the validity, safety, and efficacy of these
synthetic EVs.

ISEV and the International Society for Cell and Gene
Therapy (ISCT) urge that EV studies should consider mul-
tiple key points since EV research is relatively new and no
adequate quality control and manufacturing obligations
are yet in place [111]. Among these considerations are the
source of stem cell EVs, optimal isolation technique, stor-
age, dosing, and administration route [111]. Variations in
these key points may affect the reproducibility of MSC-EVs
in clinical research against COVID-19.

Cell Source

The cell sources of EVs included human, animal, and in vitro
studies were mostly either bone marrow or adipose MSCs.
Although the mechanism by which EVs exert their antiviral
or anti-inflammatory actions may differ depending on the
source, all have shown promising efficacy against lung inju-
ries, as illustrated earlier. However, it is worth mentioning
that adipose-derived MSC-EVs were recently reported to
increase the thrombosis risk more than bone marrow-derived
MSC-EVs, potentially heightening the risk of microvascular
injury syndrome in severe COVID-19 patients [112, 113].
Additionally, Huang et al. confirmed that EVs of different
origins might have heterogeneous effects [61]. He showed
that EVs derived from young MSCs had preferable effects
in alleviating acute lung injury and macrophage polariza-
tion over EVs derived from aging MSCs in experimental
animals [61].

EV Separation Procedure

The procedure for EV separation or concentration could have
a significant impact on the therapeutic outcome. Although
different techniques, such as ultracentrifugation, size exclu-
sion chromatography, precipitation, and immunoaffinity,
were utilized in the included studies, ultracentrifugation
was the most commonly reported. Furthermore, the ultra-
centrifugation sizing procedure and instrument varied from
one study to another, which also led to different-sized EV
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populations. Each ultracentrifugation isolation procedure
may hold advantages, such as high isolation efficiency,
purity, and concentration, but they may also hold some dis-
advantages, such as isolating malfunctioning EVs. Harsh and
rigorous purification procedures could even result in removal
or damage of EV-intrinsic effectors or extrinsic factors that
act with EVs to exert their functions [108]. Moreover, these
different separation procedures may result in EVs of differ-
ent sizes, concentrations, purity levels, and ultimately func-
tion. These differences could challenge reproducibility and
complicate rapid EV clinical translation.

EV Dosage and Administration

Major variation among studies may arise due to the absence
of predefined patient enrollment criteria. Hence, patients
involved in any study should be selected carefully by check-
ing different clinical biomarkers, disease severity, age, and
several other considerations. Another main contributor to
variation is the dosage of stem cell EVs since it was equiva-
lent to the dosage reported in stem cell-based therapy, among
most studies, because the minimal amount of EVs required
to induce therapeutic effects without being toxic is not yet
defined. EV doses ranged from 1 up to 5 doses of varying
concentrations diluted in either saline or sodium chloride. For
intratracheal administration, the doses ranged from 1 up to 3
EV doses, while for inhalation and intravenous, they ranged
from 1 up to 5 EV doses. Finally, the mode of EV administra-
tion is dependent on the disease’s severity, where IV is usu-
ally selected for direct and faster drug delivery into the blood-
stream in severe COVID-19 cases. In contrast, oral route is
often used in early COVID-19 patients when there is a need
for effective and economical treatment that can be taken at
home [114, 115]. However, the route of administration is
also dependent on the drug properties, and the patient’s indi-
vidual circumstances. Intravenous (IV) and inhalation routes
were the most commonly used in humans [34-39, 116], while
direct intratracheal application was common in preclinical
studies. In COVID-19 patients, intravenous administration
holds the potential to target not only injured lung cells, but
also multiple organ failures induced by SARS-CoV-2, such
as myocardial infarction and microvascular dysfunction [117,
118]. However, it is still debated to what extent IV admin-
istered EVs will reach injured lungs or other organs [119,
120]. EV inhalation, compared to IV, is simpler, less invasive,
offers direct drug delivery to the lung, and can achieve higher
drug concentrations at a lower overall dose. The intratracheal
route delivers the treatment more directly.

Evidence Profile

The included studies are methodologically sound, as evaluated
by the SYRCLE risk of bias tool, which provided a very high
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rating for assessment of confidence in the domains most related
to COVID-19, including inflammatory response and recovery of
lung injury in the alveolar epithelium. This suggests the high like-
lihood of practical application of the findings from the selected
animal studies to clinical settings. However, other domains of the
SYRCLE risk of bias tool reported a lower level of confidence.
This was potentially a result of unclear documentation of various
parameters and methodological limitations such as blinding for
assessors, group randomization, and concealment that ultimately
impact the internal validity of the primary studies. Hence, there
is a clear need for better documentation and rigorous methodo-
logical discipline in future studies in an effort to improve the
reliability and credibility of the resultant publications.

Limitations and Potential Solutions

The strength of our study is limited by the modest number of
included COVID-19 patients and the high variation among
the EV populations within the studies, which, in turn, lim-
ited the data available for a meta-analysis. However, avail-
able data on EV clinical trials support their application for
effective COVID-19 therapy despite several challenges: (1)
difficult and standardized EV separation procedures are
lacking, with unclear implications for EV purity; (2) assess-
ment of stem cell EVs in a clinical setting, such as their
biodistribution, metabolism, excretion, etc., still cannot be
performed; (3) there are no guidelines for large-scale EV
production and quality control; and (4) optimal EV dose and
dosing regimens must be determined. Further research is
necessary to optimize EV production protocols, standardize
dosage and administration routes, and conduct large-scale
randomized controlled trials to definitively establish the effi-
cacy and safety of EVs in a clinical setting. Additionally,
exploring EVs derived from specific stem cell types tailored
to target different stages and pathologies of COVID-19 holds
promising potential for personalized medicine approaches.

Conclusion

In conclusion, our systematic review of preclinical and clini-
cal evidence demonstrates the immense potential therapeutic
role of stem cell EVs in combatting COVID-19, particularly
in mitigating the devastating complications of ARDS, ALI,
and pneumonia. EVs derived from various stem cell sources
hold a favorable safety profile and exhibit potential efficacy in
combating COVID-19. Stem cell EVs induce anti-inflammatory
properties in COVID-19 patients, evident in the suppression of
the proinflammatory mediators, cytokine storm, and neutrophil
infiltration, offer a critical approach to managing the detrimen-
tal inflammatory response associated with severe COVID-19.
Beyond combating the acute effects of COVID-19, EVs display
promise in facilitating patient recovery by promoting endothelial
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cell junction formation and reducing fibrin production, thereby
mitigating pulmonary edema and improving lung function.
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