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Abstract
Regenerative medicine has developed as a promising discipline that utilizes stem cells to address limitations in traditional 
therapies, using innovative techniques to restore and repair damaged organs and tissues. One such technique is the genera-
tion of three-dimensional (3D) organoids in stem cell therapy. Organoids are 3D constructs that resemble specific organs' 
structural and functional characteristics and are generated from stem cells or tissue-specific progenitor cells. The use of 3D 
organoids is advantageous in comparison to traditional two-dimensional (2D) cell culture by bridging the gap between in vivo 
and in vitro research. This review aims to provide an overview of the advancements made towards regenerative medicine 
using stem cells to generate organoids, explore the techniques used in generating 3D organoids and their applications and 
finally elucidate the challenges and future directions in regenerative medicine using 3D organoids.
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Introduction

Regenerative medicine, representing a new and emerging 
area of research in the field of health science studies, focuses 
on the generation and development of specific functional 
biological substitutes for restoring, replacing, or improving 
tissues and organ function [1]. It encompasses three subcat-
egories, namely, bioartificial organs, tissue engineering, and 
cell therapy. Tissue engineering focuses on the use of cells to 
regenerate biological tissue with the assistance of support-
ing structures and/or biomolecules [2, 3]. While cell therapy 
focuses on the use of cell culture to improve, maintain, and/
or restore the functionality of tissues and organs [4].

Stem cell therapy has become a major concept associated 
with regenerative medicine [2]. Stem cells have been used 
in various sub-categories of regenerative medicine. Stem 
cells are undifferentiated cells able to differentiate into many 
types of different specialized cells and tissue [3] as well as 
self-renew through cell division [4]. The ability of stem cells 
to divide, differentiate and develop into different specialized 

cell types and their capacity for constant self-renewal make 
them ideal candidates for various kinds of stem cell based 
therapeutic applications [5]. Stem cells can be found in 
embryos and adult tissue [5]. Depending on whether they 
are primarily embryonic or present in post-embryo adult tis-
sues the specific characteristics of stem cells with respect to 
the capacities for self-renewal, division and differentiation 
have been classified as totipotent, pluripotent, multipotent, 
or unipotent cells [6]. Different stem cells have previously 
been identified, namely: embryonic, induced pluripotent and 
adult stem cells, depending on where they have been isolated 
[5]. Embryonic stem cells (ESCs) are isolated from a blas-
tocyte, induced pluripotent stem cells (iPSCs) isolated from 
programmed adult stem cells and adult stem cells (ASCs) 
isolated from mature tissue [7]. Pluripotent stem cells can 
under specific conditions differentiate into any cell type in 
the body and includes both embryonic stem cells (ESCs) and 
induced pluripotent cells (iPSCs) [8]. Adult stem cells are 
tissue-specific stem cells that can be isolated from mature 
adult tissue and possess the ability to self-renew and dif-
ferentiate into specific cell types [10, 12, 14]. Organoids 
have previously been generated from both ASCs and PSCs 
[9, 10] (Fig. 2B).

To date researcher are working towards the development of 
3D cancer stem cells to address challenges faced in culturing 
delicate differentiated cells and non-malignant stem cells in 2D 
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[11]. The use of 3D culture in cancer studies allows for assess-
ing the pathophysiology of cancer progression and resistance 
[12], replicating a patient's tumour in vitro to enable individu-
alized treatment screening [13] as well as screening anti-can-
cer treatments in vitro [14]. In 2013 Kimlin and colleagues 
demonstrated that cancer stem cells in 3D are able to mimic 
the recurrence conditions and also show for a realistic treat-
ment response [15]. The promise that exists now is that cells 
cultivated in three-dimensional aggregates have the capacity 
to increase resistance to different cancer treatments. Recent 
research by Narmi et al. in 2023, which discovered that using 
3D culture is an efficient way to evaluate anticancer drugs, has 
supported this work [16]. Various priming techniques have 
been developed that aim to sensitize cells and get them ready 
for therapeutic treatment. The priming of normal and cancer 
stem cells differs significantly when comparing 2D and 3D 
culture. 3D preparations of cancer stem cells may be used to 
evaluate combination therapies or sensitization agents that tar-
get both bulk tumour cells and resistant stem cell populations. 
This provides a more representative platform for researching 
these methods [11, 17]. In 2023 Narmi and colleagues discov-
ered that the use of melatonin in three-dimensional culture has 
significant promise for comprehending the anti-tumour activ-
ity exhibited by melatonin in reaction to certain angiogenesis 
elements [16].

Techniques have been developed for generating organ spe-
cific tissues in the form of organoids from specific stem cells 
which can be used for the regenerative treatment of diseased 
or damaged organs. These techniques have focused on the gen-
eration of tissue and organ specific organoids from various 
stem cell sources [7]. Organoids are small, self-organizing, 
three-dimensional (3D) tissue culture structures that have been 
generated from stem cells and can be propagated in vitro under 
various tissue culture procedures [8, 18]. Organoids as model 
tissue culture systems possess multiple growth and develop-
ment attributes, such as self-organization and self-renewal, and 
capacities to perform functions similar to those of the tissues 
they mimic [19]. The science of regenerative medicine can be 
advanced by using organoids to research the mechanisms of 
development and regeneration through organ modelling [20]. 
The purpose of this review is to present the recent advances 
that have been made in the techniques and procedures for the 
induction, generation and development of organoids from vari-
ous stem cell sources, as well as the advances in the therapeu-
tic applications of organoids in organ regenerative medicine.

Modern Regenerative Therapies Using 
Three‑Dimensional Organoids

Previously, the basic cell and molecular biology, as well 
as the physiology, underlying the mechanisms responsible 
for the maintenance of the structure and functioning of the 

human nervous system were studied under in vitro con-
ditions using 2D tissue and cell cultures. However, these 
2D model systems based on in vitro cell and tissue culture 
procedures display organization features and physiological 
functions that are different from those occurring in vivo [21]. 
This is because they lack the 3D structural and functional 
organization that forms the basis for the cellular and physi-
ological connections between various types of neural cells 
[22, 23]. Traditionally 2D monolayer cell cultures have been 
used in drug discovery and a wide range of clinical research 
[24]. Primarily cell cultures are generated on a flat glass 
or plastic surface [25]. In 2009 Dutta showed that growing 
cells on a 2D monolayer does not sufficiently demonstrate 
the natural in vivo micro-environment [26], this method has 
always been assumed to mimic in vivo cell growth [27]. 
Studies suggest that the use of 2D cell and tissue culture 
has been shown to have some limitations, for example cells 
maintained in a 2D environment may lose several cell-spe-
cific characteristics seen in living organisms, such as shape, 
polarity, differentiation, and metabolic profile [27–29]. The 
biggest disadvantage of using 2D cell culture is that the cell 
lines are unable to mimic the cellular structural and func-
tional characteristics of functional tissues or organs, and the 
main reason for this is because they lack the required cell-to 
matrix and cell -to-cell interaction [18]. With current limita-
tions using 2D cultures still requires the use of animal how-
ever, testing the use of animals has risen an ethical concern 
due to pain and discomfort experienced by the animals [24].

The use of and reliance on 2D cell cultures as model sys-
tems in pre-clinical research has led to a knowledge gap 
between pre-clinical research and clinical research, as the 
observations and findings of the former are subject to sig-
nificant limitations and shortcomings which cannot be used 
to elucidate and make predictions at a clinical level [30, 
31]. Consequently, pre-clinical research studies need to be 
based on procedures that involve the use of 3D cell and tis-
sue cultures that are cultured and maintained under condi-
tions that replicate the in vivo physiological environment 
[32, 33]. Over the years the development of new cell culture 
techniques that enable 3D cell growth have been developed 
to address these drawbacks [27]. Three-dimensional cell 
cultures can produce an artificial extracellular micro-envi-
ronment (ECM) where cells develop and interact with their 
environment in three dimensions and enables the modelling 
of more complex organ-like structures as well as different 
cell types at the same time [18, 34–36]. The differences and 
similarities between the two cell culture methods have been 
reviewed in detail previously [24, 37, 38], Fig. 1 shows com-
parison of 2D and 3D cell culture systems.

The signalling, pathways involving paracrine and jux-
tacrine systems comprise an extensive network that intri-
cately governs cellular behaviours and interactions, notably 
in the microenvironment of stem cell regulation [39, 40]. 
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Paracrine signalling is the production of signalling mole-
cules by one cell to target adjacent cells, altering stem cell 
activity such as proliferation and differentiation by use of 
growth factors and cytokines [41]. While direct cell-to-cell 
contact is used in juxtacrine signalling, which allows for 
precise control of stem cell characteristics like as migra-
tion and differentiation [42]. The paracrine signalling is 
limited in 2D culture because of lack of spatial organiza-
tion, diffusion of paracrine factors is seen as restricted and 
this results in the limitation of cell-to cell contact [21, 43]. 
While in 3D culture the is increased cell to cell contact and 
increased spatial organization allowing for increased diffu-
sion of paracrine factors as well as prompting cell-to-cell 
communication [44]. The juxtacrine signalling mechanism 
by which direct cell-to-cell contact and signalling is facili-
tated increases in 3D culture as there is an increase in the 
spatial organization and promotes ligand-receptor interaction 
allowing for a direct signalling pathway to exist between the 
cells [40, 43]. In 3D culture system there is an increase in the 
pathway involving the paracrine and juxtacrine signalling 
due to increase in cell-to-cell communication and reduced 
diffusion distance. The study of paracrine and juxtacrine 

signalling pathways in stem cell behaviour particularly in 
3D cell culture is promising for advancing our understanding 
of cellular mechanisms and unlocking stem cell potential in 
regenerative medicine applications.

In 2015, Li and colleagues tried to establish a 3D sys-
tem for the culturing of mesenchymal stem cells derived 
(MSCs) from the human umbilical cord within a real 3D 
microenvironment. The obtained results showed that cell-
to-cell and cell-to-matrix connections are easily made in 3D 
cultures and MSC communication with the surrounding cells 
increased [45]. The findings of this work have further been 
confirmed by additional studies which have demonstrated 
that the use of 3D cell culture can bridge the experimental 
gap between in vitro cell culture and in vivo animal models 
[46]. Three-dimensional cultures are immortalized stem cells 
or cell lines which are arranged inside hydrogel matrices to 
resemble an in vivo cell environment [33]. In 2017, Simian 
and Bissell reported that the in vitro growth of 3D cellular 
structures could be classified as organoids. However, the 
precise definition of an organoid is still under review [19]. 
Organoids can be generated using various methods and from 
either PSCs or ASCs [46–48]. To date, many researchers 

Fig. 1   Comparison of 2D and 3D cell culture system
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have performed various experiments on the generation of 
organoids from either PSCs or ASCs. In 2022, Tang and col-
leagues reviewed the difference in organoids generated from 
PSCs and ASCs. They found that PSC-derived organoids are 
more suitable for researching early organogenesis because 
they form exclusively during embryonic development. How-
ever, ASC-derived organoids provide a better understanding 
of tissue and organ repair as well as studying disease [18]. 
Although both PSCs and ASCs could be used to generate 
organoids, the use of ASCs has been shown to be advanta-
geous because they are obtained directly from human adult 
tissue with simpler procedures [49, 50].

Role of Three‑Dimensional Organoids 
in Stem Cells Therapy

Since the development of organoids, they have been shown 
to be advantageous in the application of stem cell therapy. 
Scientists have since used organoids to study the function 
of stem cells in tissue regeneration, maintenance, commu-
nication and disease modelling [51, 52]. Organoids provide 
a more accurate representation of the in vivo physiology of 
the organ system and offer a stable system for tissue regen-
eration [46, 53]. They mimic biological characteristics like 
spatial order, cell–cell communication, and physiological 
processes of the cells, thereby filling the gap in knowledge 
that exists between the natural physiological environment 
and the in vitro environment [47, 54]. Organoids are increas-
ingly being used for modelling diseases because they contain 
a variety of cell types and are not constrained by interspecies 
differences [55]. Table 1 indicates a few diseases that have 
been modelled using stem cell derived organoids.

Organoids in History

The field of stem cells has flourished greatly since the dis-
covery of pluripotent stem cells from mouse embryos in 
1980 [70]. In the 1990’s, researchers were successfully able 
to separate and culture embryonic stem cells from human 
blastocysts [71]. In 2008, stem cell research started shifting 
from 2 to 3D when Erika et al. generated 3D central cortex 
tissue from ESCs [72]. Building on the work by Erika and 
colleagues in 2009; Sato et al. developed the first generation 
of intestinal organoids [73]. Since the discovery of organoids 
in 2009, considerable work has shifted from 2D into 3D gen-
erating organoids (Fig. 2). Disease models are increasingly 
being developed using organoids. Novel therapy techniques 
based on the utilization of organoids have been developed 
[46, 74].

In 2009, Sato and colleagues reported how single 
Lgr5 + stem cells could be used to generate the first long-
term 3D culture of intestinal organoids. Organoids were 
grown on a Matrigel supplemented with various growth 
factors until differentiation into intestinal cell types. The 
obtained results were used to set the groundwork for devel-
oping the technology that could be used to study various 
diseases in vitro [75]. Building on this work Spencer and 
colleagues went on to show that human induced PSCs and 
ESCs can be differentiated into functional 3D intestinal 
organoids in vitro using Matrigel matrix supplemented with 
growth factors [76].

In 2013, building on the foundations of the work started 
by Sato, Huch, and colleagues, Spencer and colleagues 
performed an in vitro expansion of Lgr5 + liver stem cells. 
In this mouse model, the damaged liver of a mouse was 
extracted and cultured into 3D organoids on Matrigel. The 
obtained results from this study showed that the cells could 

Table 1   Diseases model using 3D Organoids derived from various stem cells

Organoid Disease Modeled Method Used Cell Source Days Generated Reference

Brain Zika virus Matrigel and Orbital sharker Human embryo 65 + days [56–58]
Autism spectrum disorder Matrigel and Orbital sharker stem cells 45 days
Alzheimer’s Matrigel hiPSCs

hiPSCs
60 days

Pancreas Cystic Fibrosis Matrigel and microfluidics Patient derived and hiPSCs 10 + days and 30 days [59–62]
Pancreas cancer Matrix gel Patient derived -
Diabetes Matrigel hiPScs 90 + days

Prostate Prostate cancer Matrigel Patient derived - [63, 64]
Lung SARS-COV-2

COVID 19
Matrigel Patient derived 30 days [65]

Heart Cardiomyopathy Matrigel hiPSCs 21 days [66, 67]
Heart disease Matrigel hiPSCs 56 days

Kidney Polycystic kidney disease Geltrex hiPSCs 25 + day
35 + days

[68, 69]
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differentiate and form functional and mature hepatocytes 
[77]. In conjunction with the above work, Takebe and col-
leagues used human iPSCs to generate 3D liver organoids 
from human iPSCs on Matrigel. The results of these stud-
ies demonstrated the successful experimental generation 
of functional 3D liver organoids [78]. In 2013, Lancaster 
and colleagues set out to develop a 3D system that could 
be used to generate 3D cerebral organoids in vitro. This 
study was conducted using human derived ESCs. These 
organoids were grown on Matrigel with various neural 
differentiation media and generated in a spinning bioreac-
tor flask. The obtained results indicated that it is possible 
to replicate and mimic some elements in the human brain 
that are involved in neurodevelopment and neurological 
diseases using a suspended liquid in vitro culture system. 
The obtained results therefore serve to provide insight into 
understanding the pathogenesis of neurological disorders 
[79]. In 2013, Clevers’ Laboratory was the first to report 
on the generation of pancreatic organoids from mice. The 
obtained results in this study suggest that pancreas orga-
noids are able to differentiate into endocrine and duct cells 
post transplantation [80]. In 2015 Huang et al. generated 
pancreatic organoids from human ESCs. [81]. In both 
methods the organoids were developed on a Matrigel, and 
media supplemented with different growth factors [80, 
81]. The results of this study were used as a basis for the 

development of new therapeutic agents for the treatment 
of pancreatic ductal adenocarcinoma [81].

In 2015, Morizane et al. and Takasato et al. both devel-
oped the culture procedure for the generation of kidney 
organoids from human iPSCs. The cells were grown on 
ultra-low-attachment plates and Matrigel-coated plates. The 
obtained results in both studies demonstrated that human 
iPSCs could differentiate into functional 3D kidney orga-
noids [82, 83]. The use of a spinning bioreactor flask to 
generate 3D kidney organoids from human PSCs was proven 
successful in 2021. Przepiorski et al., developed a simplified 
method to generate organoids. In this instance kidney orga-
noids were generated using human PSCs that were cultured 
on ultra-low attachment plates and then transferred to a spin-
ner flask. This method proved to be rapid, cost-effective, and 
efficient in generating large quantities of organoids [84]. In 
2018, Turco and colleagues reported the generation of troph-
oblast organoids that were used to study placenta develop-
ment, and the investigation of the interactions of trophoblast 
with the maternal system. In this study human derived tissue 
was used to generate organoids on a specific culture followed 
by culturing on Matrigel [85]. In the same year Haider et al. 
also demonstrated the generation of trophoblasts from tissue 
samples obtained from multiple patients using first trimester 
cytotrophoblasts. Organoids were developed on a Matrigel 
matrix in cell culture plates [86]. In 2019 Wimmer et al. 

Fig. 2   Organoid generation. A Depletes the histological timeline on the development of organoids. B Show the various organoids that have been 
generated to date and the stem cells used to generate these organoids



514	 Stem Cell Reviews and Reports (2024) 20:509–523

1 3

developed the first human blood vessel organoid. Human 
iPSCs were differentiated into organoids on ultra-low attach-
ment plates to form aggregates and embedded in Matrigel. 
The results obtained for this study demonstrated that tissue 
culture generated organoids could recapitulate the function 
and structure of human blood vessels [59]. Many more orga-
noids have been developed over the years from mice, human 
iPSCs and ASCs [48, 87]. To date there are various orga-
noids that have been generated from multiple organs mainly; 
brain [9, 88], kidney [89–91], lung [92, 93], pancreas [81, 
94, 95], intestine [73, 96], stomach [97, 98], liver [99], blood 
vessel [100] and skin [101, 102] (Fig. 2B).

Organoid Culture Techniques

Organoids can be generated from cells that are tissue derived 
or iPSCs. Various methods have been developed for the rep-
licating of the organoid microenvironment that would allow 

for organoid growth and development. Over the years vari-
ous organoids have been generated from PSCs and ASCs 
using various techniques, which include the use of stirred 
bioreactors [24], extracellular matrix scaffolds [103], 3D 
bioprinting [22], and using organoid-on-a-chip [22] also 
see (Fig. 3).

Extracellular Matrix Scaffold

Using an extracellular matrix scaffold is another method 
used for generating organoids, in a synthetic or natural 
environment to induce biological processes such as tissue 
proliferation, organization and migration [103]. This method 
was developed by the Hans Clever’s team, in brief ASCs 
are plated on an ECM Matrigel, and maintained under the 
selected culture conditions. The use of ECM is coupled with 
the use of either a hydrogel or Matrigel. This method gener-
ates organoids that conform genetically and phenotypically 
to recognizable organoids structures [63, 104, 105]. The use 

Fig. 3   Schematic diagram on methods that have been identified to generate organoids. Organoids have been generated from induced pluripotent 
stem cells (iPSCs) and adult stem cells (ASCs) using various techniques
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of Matrigel has been one of the widely accepted ECM tech-
niques, this is mainly because Matrigel provides structural 
support for the organoid tissue as well as cell differentiation 
factors [106, 107].

Culture Using Bioreactors

The principle of this technique is to use cell suspension cul-
ture in a stirred medium to develop organoids by agitation 
or increasing media velocity in place of culturing cells on a 
solid media in petri dishes [24]. Different bioreactor configu-
rations have been used for generating organoids by growing 
suspension cell culture based on either rotational (bioreac-
tor) or spinning (spinning flask) and are differentiated by the 
amount of shear force applied to the cell culture [96]. The 
spinning flask suspension culture makes use of a stirring bar 
or rod while rational bioreactors rotate the culture container 
[24, 107]. Suspension cell bioreactors increase the forma-
tion of organoids from embryoid bodies under controlled 
physical conditions [108, 109]. The use of these bioreac-
tor systems allows for adequate diffusion of nutrients and 
oxygen to organoid cells because of constant mixing of the 
liquid cell culture medium, allows simple media exchange 
[79, 110, 111]. It has been shown that the use of bioreac-
tors also increases organoid culture longevity, differentiation 
yield and the development of complex [112].

Three‑Dimensional Bio‑Printing

Three-dimensional organoids can be generated through bio-
printing, in this technique loads stem cells are loaded into 
bioinks for layer-to-layer deposition to form 3D constructs 
of organoids [22, 103]. Primarily Hydrogels are primarily 
used as ink where primary cells are induced with different 
induction media and then printed on trans wells or perfused 
microwells to induce the generation of organoids [113]. Bio-
printing uses spatial architecture design for PSCs or ASCs, 
enabling high-precision and high-throughput organoid for-
mation [114]. The use of 3D bioprinting requires the use 
of growth factors, stem cells and computers to generate 3D 
structures [114, 115].

Micro‑Fluidics

The micro-fluidics technique is based on the use of culture 
devices that allow for the fabrication of “organoids-on-a-
chip” and allow for nutrient exchange and controls the 3D 
micro-environment [107]. This technique has been devel-
oped to allow for the creation of an environment in which 
different cell types interact with one another [116]. Using 
this technique, a more precise model of host–pathogen 
interactions has been made possible in studying infectious 

diseases thus providing understanding of the pathophysiol-
ogy of infectious micro-organisms [117].

Applications of Organoids in Regenerative 
Medicine

Stem cells are seen as an important component of regenera-
tive medicine because they provide structural and functional 
components. Stem cells have been used to generate biologi-
cal tissue in vitro in regenerative medicine [118]. The field 
of regenerative medicine aims to restore tissue to its’ normal 
structural form and function post injury. Regenerative medi-
cine has previously focused on the paradigm of replacement, 
regeneration and rejuvenation whilst looking at bridging 
the gap between advances in stem cell therapy and indi-
vidualized disease management [119]. Replacement focuses 
mainly on the transplantation of cell-based therapy, regen-
eration focusing on engraftment of progenitor cells and reju-
venation entails activating endogenous stem cells to promote 
tissue self-renewal [120]. A breakthrough of regenerative 
medicine has been the generation of organoids. Organoids 
are 3D aggregates of stem cells derived from specific organs 
[121]. The use of organoids has advanced applications in 
regenerative medicine, mainly in tissue engineering and 
stem cell therapy, involving organogenesis and transplanta-
tion of organoids [10]. Organ transplantation as a treatment 
of any disease is still constrained by a few limitations which 
include organ shortage and rejection risk from the affected 
patients. However, the use of organoids in transplantation 
therapy is proving to be a promising approach in modelling 
cancer treatment as a major component in drug discovery 
and molecular mechanism analysis [122]. With advances 
in organoid technology and generation, organoids are being 
demonstrated to play a pivotal role [123, 124] Fig. 2, shows 
the different organoids that have been engineered and the 
methods that have been used concurrently.

Organogenesis is the process by which new organs are 
formed from germ layers. There are three identified germ 
layers consisting of the ectoderm, mesoderm and endo-
derm [47, 50]. Organoids are derived from stem cells that 
are either pluripotent or adult derived. Adult stem cells 
are derived from specific tissues and the generation of the 
specific organoids [47, 125]. Pluripotent stem cells require 
differentiation into the different germ layers as a building 
block toward organoid genera [126]. Over the years many 
researchers have advanced and modelled various diseases 
from organoids and performed transplantations in animals 
such as mice and rats [18, 27, 46]. In 2018, Daviaud and col-
leagues performed the transplantation of cerebral organoids 
derived from human iPSC into mouse cortex. This study was 
performed to model diseases that affect the central nervous 



516	 Stem Cell Reviews and Reports (2024) 20:509–523

1 3

system. The obtained results indicated successful transplan-
tation and engraftment of cerebral organoids [127].

Proteomics and genomic technologies have significantly 
impacted regenerative medicine by providing insights into 
the identification of key biomarkers, signalling molecules, 
and pathways essential for understanding organoid behav-
iour in various therapeutic contexts [128, 129]. These tech-
nologies have significantly changed the analysis of various 
mechanism underlying understanding organoids mechanism 
of proteins [128], genes [53] and signalling pathways [46]. 
Proteomic techniques enable the comprehensive examination 
of all the proteins expressed in organoids, providing a com-
prehensive picture of their functional components Involved 
in understanding protein changes, interactions and modifi-
cations [128]. Conversely, genomic technologies facilitate 
the interpretation of the genetic blueprints that underlie the 
growth and behaviour of organoids by identifying mutations 
genetic alterations as well as DNA analysis [130, 131]. To 
date advancement to the application of genomic and epi-
genomic applications in organoids has been reviewed in 
details by Nam and colleagues [132]. Figure 4 summarizes 
various applications used in proteomic and genomic tech-
nologies used in organoid generation and profiles.

Clinical and Pre‑Clinical Models 
of Three‑Dimensional Organoids

The study of disease aetiology and the discovery of new 
drug targets have both benefited from the use of 3D orga-
noids as pre-clinical models [133]. The recent development 
of organoid models has paved the way for cutting-edge alter-
natives to animal-based research [134]. More than 90% of 
medicines that enter human clinical trials fail due to safety 
or efficacy issues, raising the question of whether human 
benefits outweigh the costs of animal [134, 135]. In 2020, 
Narsimhan and colleagues performed an experiment to fig-
ure out if organoid testing would assist in patients undergo-
ing treatment for peritoneal metastases. In this study colo-
rectal peritoneal metastases organoids were generated using 
patient derived samples. This study was focused on patients 
who were receiving various treatments, and the study was 
performed using various drugs for screening. This research 
set the path for a phase II clinical trial to assess the effective-
ness of this organoid-based platform in providing individual-
ized therapy to patients with colorectal peritoneal metastases 
[136]. In 2022, Westerling-Bui and colleagues set out to 
develop a new approach to study pharmacodynamics and 

Fig. 4   Applications in proteomics and genomics profile of organoids
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overcome the challenges that are being faced with using 
animal models. They identified that animal models provide 
uncertain applicability to human conditions when looking 
at kidney treatment. In this study, GFB-887, a new drug that 
was in phase II of the clinical trial, was orally dosed into a 
rat that had previously undergone kidney organoid transplan-
tation. The results from this study showed that pharmacody-
namics studies using organoids transplanted in rat host could 
serve to provide insight into the assessment of pre-clinical 
efficacy, as pre-clinical efficacy was reached in this study 
[137]. Based on the work performed by Narasimhan et al. 
and Westerling-Bui et al. novel drugs are currently being 
tested in clinics (Table 2).

Limitations of Organoid Application

The generation of organoids has significant promise in per-
sonalized treatment, tissue engineering, drug discovery and 
disease modelling [143]. However, there are still some limi-
tations and restrictions in using organoids. In this section 
we will be looking at the current limitations and the future 
directions that could be considered.

Technique and Protocol

Organoids are generated using different techniques, as such 
there is no specific protocol on the generation of organoids 
that has been developed. The morphological development 
of organoids may be restricted by naturally produced ECMs 
like Matrigel due to batch-to-batch variability and the pres-
ence of animal-derived products [143, 144].

Lack of Vascularization

Organoids are generated from stem cells of specific tis-
sues however, despite their specific derivation organoids, 
lack vascularization, neural and blood flow networks [143], 
which allows for adequate oxygen and nutrient exchange 
during organogenesis. Scientists have developed ways to 
generate vascularized organoids both in vitro vascularization 
and in vivo vascularization [145, 146]. In vitro vasculariza-
tion is a developed technique performed by adding vascular 
cells or tissue engineering by use of bio-printing [143, 146]. 
In vivo vascularization of organoids has been achieved by 
organoid transplantation into animal model [146].

Maturation and Functionality

Often generated organoids are small and range from 
100 µm to 300 µm, making it difficult to work with during 
in vivo applications [143]. It has been found that the use of 

bioreactors in suspension media containing various growth 
supplements allows for large quantities of organoids to be 
generated at a size of up to 1 mm [79, 147]. Bioreactors 
have been seen to increase the number of organoids, photo-
receptor cell yield, increased proliferation and decrease in 
apoptosis [148].

Ethical Issues

Organoids suggest significant promise for a wide range of 
biomedical and biotechnological applications. Regardless of 
its scientific potential, organoid technology presents difficult 
ethical challenges that could prevent any future benefits for 
patients and society [149]. Based on the generation of vari-
ous organoids, different ethical issues have been reported 
[150]. One of the concerns regarding the generation of orga-
noids is that they grow from ESCs [149]. Previously, animal 
models were used as a proxy for human embryonic develop-
ment and organ function research, however, the generation 
of organoids using ESCs has major ethical concerns [149, 
151, 152]. The use of iPSCs has the potential to serve as an 
alternative as intestinal organoids were previously developed 
from iPSCs [73]. The generation of cerebral organoids has 
also developed many ethical issues. It is unknown whether 
brain organoids, which are neuronal entities of human ori-
gin, can acquire human traits, cognitive functions, or sen-
tience [153].

Conclusion and Future Perspectives

In conclusion, the use of 3D organoids in stem cell therapy, 
offers significant promise for developing the area of regen-
erative medicine. Organoids offer an effective foundation 
for researching organ development, disease modelling, and 
identifying the effectiveness of stem cell-based therapies. 
The use of 3D organoids allows researchers to study stem 
cell regeneration characteristics and interactions within the 
appropriate physiological environment [53]. This provides 
for better understanding of tissue regeneration mechanisms 
and the development of novel techniques. The use of orga-
noids has the potential to overcome numerous research chal-
lenges in modelling diseases and bridging the gap between 
pre-clinical studies and clinical application.

The future of regenerative medicine will be dependent 
on improving 3D organoid culture methods to resemble 
the complexity and functionality of actual organs and tis-
sues more closely. The identification of novel techniques 
for inducing the development of organoids with capacities 
for vascularization and immune responses will also provide 
insight into the physiology underlying these responses and 
their regenerative potential. There are still a few outstanding 
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issues that need to be resolved before stem cell-based orga-
noids can be used in a clinical setting. This includes increas-
ing the production of organoids to clinically relevant quanti-
ties [7]. This would include developing large bioreactors that 
would allow for large organoid generation, and developing 
automated culture systems that would limit human error and 
make the process less time consuming [148]. Developing a 
standardized and reproducible protocol for the generation 
of organoids is a pre-requisite for the clinical application 
of organoids [48]. The absence of a standardized approach 
that is reproducible increases challenges that affect the func-
tionality and quality of generated organoids. Although orga-
noids mimic the actual organ or tissue, the functionality of 
the organoids remains a challenge as there is no set way to 
determine whether the generated organoids can function as 
required [53, 154]. Despite the present challenges identified 
with organoids there is immense therapeutic potential for 
numerous disease treatment.
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