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Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with 
immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-
related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological 
status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the 
ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also dis-
cussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic 
or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage 
number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, 
thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status 
on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants 
have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn 
for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs 
to be carefully considered in further standardized research. Importantly, field experts’ opinions may help to make it clearer.
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Introduction

Adipose tissue-derived stem/stromal cells (ASCs) are the 
relatively homogenous population of fibroblast-like cells that 
can be expanded after plating the stromal vascular fraction 
of adipose tissue (AT) onto standard cell culture surfaces 
[1]. hASCs express the surface markers of mesenchymal 

stem/stromal cells (MSCs), including the receptor mole-
cules CD90 and CD105; the glycosyl phosphatidylinositol-
anchored enzyme CD73 and the cell adhesion molecules 
CD29, CD44, CD146, and CD166. Additionally, hASCs 
should be negative for the hematopoietic antigens, includ-
ing CD11b, CD13, CD14, CD19, and CD45, the endothelial 
markers CD31 and CD34, and the human leukocyte antigen 
(HLA)-DR [2].

ASCs hold great promise for clinical application as a per-
sonalized cell therapy because of a number of advantageous 
characteristics (Fig. 1).They can be easily isolated with min-
imal ethical issues and donor risk and they are expandable 
in vitro [3, 4]. hASCs exhibit more enhanced proliferation, 
multipotency [5], and immunosuppressive capacity [6], 
however, lower senescence [7], than donor-matched bone 
marrow (BM)-derived MSCs (BMSCs). Importantly, varied 
paracrine factors including inflammatory, angiogenic, anti-
apoptotic, anti-oxidative, anti-fibrotic, and anti-inflamma-
tory mediators, contribute to ASCs-mediated tissue repair 
[8, 9].

 * Marwa Mahmoud 
 marwa_aromatic_85@yahoo.com

1 Stem Cell Research Group, Medical Research Centre 
of Excellence, National Research Centre, 33 El Buhouth St, 
Ad Doqi, Dokki 12622, Cairo Governorate, Egypt

2 Department of Medical Molecular Genetics, Human Genetics 
and Genome Research Institute, National Research Centre, 
Cairo, Egypt

3 Department of Reproductive Health Research, National 
Research Centre, Cairo, Egypt

4 Department of Biochemistry and Molecular Biology, Faculty 
of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt

http://orcid.org/0000-0003-2954-4573
http://crossmark.crossref.org/dialog/?doi=10.1007/s12015-023-10654-7&domain=pdf


176 Stem Cell Reviews and Reports (2024) 20:175–205

1 3

ASCs are widely reported not to induce the immune response 
of allogeneic lymphocytes [10–12]. Such property was attrib-
uted to the low expression of major histocompatibility (MHC) 
class II molecule (MHC II/HLA-DR) and co-stimulatory mol-
ecules, CD40, CD80, and CD86 [12, 13]. On the contrary, some 
studies illustrated that ASCs had the potential to activate the pro-
liferation of resting allogeneic CD4 T cells under circumstances 
of low inflammation [14, 15], and to induce the reactivity of 
cytotoxic CD8 T cells educated with allogeneic ASCs [16], or 
the production of alloreactive-memory CD8 T cells [17], so they 
are not intrinsically immunoprevilliged [18].

The immunomodulatory functions of hASCs in vitro are 
multifaceted and include the proliferation and differentiation 
of a variety of immune cells [19]. In particular, the effect 
of hASCs on effector T helper (Th) cells and regulatory T 
cells (Tregs) has been widely studied [20–22] (Supplemen-
tal Table 1). ASCs inhibit the proliferation of T cells via a 
plethora of paracrine mechanisms, including indoleamine 2, 
3-dioxygenase 1 (IDO) activity [22, 23], secretion of pros-
taglandin E2 (PGE2) [24], leukemia inhibitory factor (LIF) 
[25], tumor necrosis factor-stimulated gene 6 (TSG-6) [26], 
interleukin 1-receptor antagonist (IL-1RA) [27], and other 
several factors [19, 28], and also induce T cells to adopt a reg-
ulatory phenotype [29, 30]. Surface molecules also contribute 
to ASC immunosuppressive effect on T lymphocytes [31–33].

In addition, hASCs have been reported to affect the prolif-
eration, differentiation, and immune functions of B cells [34], 
inhibit dendritic cell (DC) maturation [35], suppress natural 
killer (NK) cells cytotoxicity [36, 37], and stimulate mac-
rophage polarization to anti-inflammatory macrophages [38, 
39]. It has been recently evolved that apoptotic MSCs, after 
MSC infusion, are phagocytosed by macrophages that are 
then reprogrammed to become immunoregulatory cells [40].

The above findings recommend the potential immu-
nomodulatory ability of ASCs in vitro [41, 42]. However, 
the ASC immunomodulation in culture greatly depend on 
multiple parameters. In the current review, the impact of 
the experimental settings and donor characteristics on the 
immunomodulatory effects of hASCs in vitro are discussed. 
Factors that may control hASC immunomodulatory pheno-
type and functions in vitro are categorized into four main 
groups including coculture setting parameters, ASC prim-
ing or preconditioning, ASC-related parameters, and donor-
related characteristics (Fig. 2).

Coculture Setting Parameters

Autologous vs. Allogeneic

Despite the off-shelf availability of allogeneic MSCs, 
patient-derived (autologous) rather than allogeneic MSCs 
may be the safer choice in clinical perspectives, to avoid 
anti-donor immune responses in some cases [43, 44]. Human 
ASCs are able to modulate the activity of both autologous 
and allogeneic immune cells in vitro; however, the strength 
of the suppressive effect may be different [45]. ASCs iso-
lated from patients with rheumatic diseases (RD) were able 
to inhibit the proliferation [46], and to attenuate the expres-
sion of the activation marker CD25 on allogeneic phytohe-
magglutinin (PHA)-activated CD4 and CD8 T lymphocytes 
[47]. Relative to that setting, the RD ASCs comparably 
inhibited the proliferation [46], however, a weaker inhibi-
tory effect to downmodulate CD25 expression on autolo-
gous PHA-CD4 and CD8 T lymphocytes [47]. Such results 
suggest a possible weaker control of T cell activation by 

Fig. 1  ASCs’ regenerative 
characteristics. Abbreviations: 
ASCs: adipose tissue-derived 
stem/stromal cells, b-FGF: basic 
Fibroblast growth factor, CCL2: 
C–C motif chemokine ligand 2, 
CCL5:: C–C motif chemokine 
ligand 5, HGF: Hepatocyte 
growth factor, IL-6: Interleukin 
6, IL-8: Interleukin 8, IL-1ra: 
Interleukin 1 receptor antago-
nist, IL-10: Interleukin 10, IGF: 
Insulin-like growth factor, IDO: 
Indoleamine 2, 3 dioxygenase, 
PGE2: Prostaglandin E2, 
PDGF: Platelet-derived growth 
factor, STC-1, stanniocalcin-1, 
TSG-6: Tumor necrosis factor 
stimulated gene-6, TGF-β: 
Transforming growth factor 
beta, VEGF: Vascular endothe-
lial growth factor
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autologous ASCs of RD patients in vivo [47]. In the context 
of diabetes mellitus, hASCs, from patients with type 2 diabe-
tes (T2D), exhibited compromised antiproliferative potential 
on autologous anti-CD3/CD28-activated peripheral blood 
mononuclear cells (PBMCs) [48]. However, co-transplanta-
tion of autologous ASC-derived insulin-producing cells and 
hematopoietic stem cells showed a better response in indi-
viduals with type 1 diabetes (T1D) as compared with a simi-
lar allogeneic regimen [49]. Recently, it has been assumed 
that the current clinical scenario recommend the suitability 
of using autologous MSCs for T1D, not T2D therapy [50]. 
We think that numerous standardized studies to address the 
in vitro immunomodulatory phenotypes and functions of 
hASCs, from patients with different inflammatory diseases 
in autologous settings, are still needed, before assumption 
of the possibility of using autologous ASCs therapy in 
immune-related or inflammatory diseases.

Direct‑ vs. Indirect‑ Cell Contact

Some studies revealed the necessity of direct contact 
between (b/w) hASCs and immune cells to exert their immu-
noregulatory effect [51–54], where transwell experiments 
decreased the strength of inhibition of hASCs on mitogen-
activated PBMCs [51, 55], not on a mixed lymphocyte reac-
tion (MLR) [51]. Quaedackers et al. studied the impact of 
cell-to-cell interactions b/w ASCs and activated T cells on 
the immunomodulatory potential of the former cell popula-
tion [56]. The authors reported that allogeneic activation 
of PBMCs had induced the attachment of their membranes 
to ASCs after 1h and 24h of coculture. The cell binding 
was HLA-class I or class II independent, as similar interac-
tions had been established b/w the PBMCs and autologous 

or allogenic ASCs, without the additional effect of ASC 
treatment with the pro-inflammatory cytokine; interferon-
gamma (IFN-ɤ). Analysis of ASC-bound and suspended 
lymphocytes revealed that the former lymphocytes had been 
enriched for B cells,  CD8+ T cells, and  CD4−  CD8− T cells, 
whereas  CD4+ T cell-bound proportion had been increasing 
over time. The bound  CD4+ T cells were well-proliferative, 
and highly activated, in terms of CD25 elevated expression, 
they also expressed the regulatory transcription factor, fork-
head box P3 (FOXP3), and however, expression of CD127 
excluded the Treg phenotype  (CD4+  CD25high  CD127low 
 FOXP3+) [57]. Cell proximity potentiated the immunosup-
pressive effect of the cell membrane or soluble ASC immu-
nomodulatory proteins on IL-2-treated  CD8+ T cells. ASCs 
depressed the bound and suspended  CD8+ T cells' response 
to IL-2, as presented by a reduced increase in the level of 
phosphorylated signal transducer and activator of transcrip-
tion (STAT)-5, with a more pronounced effect in the bound 
cells. The results indicated that in an active immune envi-
ronment, ASCs secrete attractant and bind T lymphocytes 
inhibiting  CD8+ T cell activity and depleting the activated 
 CD4+T cells from the cell suspension compartment [56]. In 
another study, direct contact b/w activated  CD3+ T cells and 
hASCs led to active attachment and flattening of T cells to 
ASCs surfaces, specifically  CD3+/CD4+ Th cells and NK T 
cells  (CD3+/CD56+16+). At the attachment sites, elevated 
expression of intracellular adhesion molecule 1 (ICAM-
1)/CD54 was detected, indicating the formation of highly 
specific ligand-receptor contacts b/w interacting cells [58]. 
Recently, ASC spheroids modulated effectively the prolifera-
tion and cytokine production of allogenic γδ  CD3+ T lym-
phocytes in direct contact, while their conditioned medium 
(CM) induced much weaker inhibitory effects [59].

Fig. 2  Factors affecting hASC 
immunomodulation in vitro. 
Abbreviations: hASCs: human 
adipose tissue-derived stem/
stromal cells, AT: adipose tis-
sue, 2D: two-dimensional, 3D: 
three-dimensional, BMI: body 
mass index
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Other reports demonstrated that direct interaction is not 
essential for the hASC immunosuppressive effects, as the 
immunoinhibition persisted in transwell experiments where 
hASCs and immune cells were separated by a semiperme-
able membrane [22, 23, 32, 58, 60–66]. CM from IFN-ɤ 
treated hASCs were able to abrogate the proliferation of anti-
CD3/CD28 activated CD4 T cells [67]. Such studies confirm 
the contribution of paracrine soluble factors and extracellu-
lar vesicles to hASC immunosuppressive effects [19].

Normoxia vs. Hypoxia

A number of investigators addressed the immunoregula-
tory impact of hASCs under hypoxic (1–7%) vs. normoxic 
or ambient oxygen (O2) levels (20%) [58, 68–73]. Low O2 
level is typical for the putative site of the MSC-T cell inter-
actions [72]. Hypoxia potentiated the direct antiproliferative 
effect of hASCs on PHA-activated PBMCs [70] or  CD3+ T 
cells [58, 71]. The effective hASC antiproliferative poten-
tial at 5% over 20% O2 level was attributed to the upregu-
lated expression of PDCD1 and TGF-β1, in cocultured T 
cells, which encode for programmed cell death protein 1 
(PD-1) and TGF-β1, respectively [58], and both markers 
are involved in cell cycle arrest [74, 75]. Moreover, hASCs 
superior suppression for IFN-ɤ secretion by the directly 
cocultured T cells at low O2 level [58]. Conclusively, cell-
to-cell contact may induce stronger hASC immunosuppres-
sion at 1% or 5% O2 over 20% O2 level [58, 70].

Immune Cell Stimulant Type & Stimulation Timing

The MSC populations act as a switcher of inflammation, at 
a low level of immune cell activation, they acquire a pro-
inflammatory phenotype, while at a high level of inflamma-
tion, they are immunosuppresors [76]. Similarly, ASCs are 
plastic immunoregulators that depend on the stimuli context 
to acquire pro- or anti-inflammatory phenotype [77]. Thus, 
the hASC immunoregulatory functions in vitro are affected 
by the type of immune cell stimulant (mitogen vs. alloan-
tigen/MLR) [51, 61]. ASC immunosuppression on PBMCs 
was the greatest against proliferation induced by PHA, then 
by concanavalin A, and last by OKT3 (anti-CD3 antibody) 
[51].

Another determinant is the level of immune cell activa-
tion which is defined by the timing of coculture relative to 
stimulation, i.e. simultaneous coculture and stimulation vs. 
coculture after stimulation induction [78]. Mancheño-Corvo 
et al. [78], investigated the influence of PBMC pre-stimula-
tion on the antiproliferative effect of hASCs. T lymphocyte 
pre-stimulation impaired in a time-dependent manner the 
capacity of ASCs to inhibit proliferation. Deficient ASC 
potential to inhibit the proliferation of 48 h pre-stimulated 
PBMCs was not due to reduced IDO activity, but rather to 

the kinetics of tryptophan (Trp) degradation and the low 
level of Trp available in the medium at 48 h of stimulation 
to be degraded by IDO. Pre-activation of ASCs with IFN-ɤ 
or polyinocinic-polycytidykic acid (poly I:C), toll-like recep-
tor (TLR)-3 ligand, restored their capacity to inhibit prolif-
eration of 48 h pre-stimulated lymphocytes, with a stronger 
effect with IFN-ɤ [78].

ASC: Immune Cell Ratio & Cellular Context

The immunomodulatory potential of hASCs in vitro is, as 
well, strongly affected by cells ratio. At a hASC: immune 
cell ratio ranging from (1:1–1:25), hASCs exhibit potent 
immunosuppressive properties on diverse immune cell 
types. Substantial literature studies reported maximum 
hASC immunosuppression at high ASC: immune cell ratio 
(from 1:1 to 1:10) [6, 10–12, 14, 21, 24, 25, 33, 36, 51, 58, 
61, 64, 67, 73, 79–88]. Others reported maximum suppres-
sion at lower ratios (1:20) [89] or (1:25) [23, 32, 35, 90]. 
At cell ratios 1:50, 1:100, or 1:1000, hASCs inhibited [6, 
51] or failed to inhibit the proliferation [14, 23] of activated 
lymphocytes. The attenuated hASC immunosuppression at 
low ASC densities could be associated with intensive cell 
death [91], and autophagy-mediated apoptosis of MSC under 
inflammatory conditions [92]. Surprisingly, Th17 lympho-
cyte pathway is significantly modulated by hASC density, 
and it was greatly enhanced at high (1:5), compared with 
low (1:80) ASC: T cell ratio, contradicting the well‐docu-
mented immunosuppressive effect of ASCs, specifically at 
high density [93].

The intensity of ASCs inhibition varied with cellular con-
texts, i.e. the whole PBMC population or a specific purified 
immune cell compartment is included in the coculture with 
the hASCs [22, 45, 61]. The effect of the cellular context on 
the in vitro ASC immunoregulation was clearly presented 
in cocultures of hASCs and mitogen (PHA)-stimulated 
PBMCs, where there was a marked decrease of IFN-ɤ and a 
significant increase of IL-17AF. While, in the cocultures of 
anti-CD3/CD28 activated CD4 + T cells with ASCs, there 
was some increase in IFN-ɤ and IL-17AF. As well, ASCs 
significantly downregulated CD25 expression on PHA-stim-
ulated PBMCs, however, they did not affect its expression 
on ɑ-CD3/CD28-activated T cells [61]. Such findings rec-
ommend that immune cells create a cytokine milieu in vitro 
which differs depending on the stimulation method and cel-
lular context, and in turn differentially affects ASC immu-
nomodulatory actions [61]. To shift Th differentiation to a 
functional anti-inflammatory direction, ASCs require acces-
sory cell support, whereas their direct effect on a purified 
immune cell type may be a pro-inflammatory [46]. In other 
contradictory reports, hASCs exerted analogous immuno-
suppressive action on the proliferation of activated whole 
PBMCs population and enriched  CD4+ T cells [22, 67], 
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reducing the impact of the interplay of accessory immune 
cells (B cells, NK cells, and monocytes) within PBMCs on 
MSC immunoregulation [94].

Coculture Duration (Assessment Day)

The duration of the ASCs/immune cells interaction is 
another considerable issue. The type of immune cells [64] 
and the assessed immune cell-related parameters [33], are 
determinants of the coculture time. Significant inhibitory 
effects of hASCs have been reported on days 3 [36, 58, 70], 
4 [33, 95], 5 [6, 23–25, 46, 51, 96], 7 [21], or 10 [34], of 
coculture. Inhibition of lymphocytes’ immune responses 
becomes more distinct with an extension of the coculture 
time [45, 51].

ASC Priming/Licensing/Preconditioning

MSCs can actively sense their surroundings and modulate, 
accordingly, their fate and behavior. Intriguingly, it has 
been proposed that MSCs immunosuppressive ability is not 
constitutive; instead, it is induced in inflammation [97, 98] 
and interaction with activated immune cells [99]. Several 
approaches have been introduced to boost the in vitro immu-
nosuppressive functions of hASCs isolated from healthy 
donors or even patients with inflammatory diseases and they 
are discussed below.

Inflammation Preconditioning

The cohabitation of ASCs with pro-inflammatory cytokines 
such as tumor necrosis factor (TNF)-α, IFN-ɤ, IL-6, IL-1β, 
and/or IL-17 can potentiate their effectiveness for inflam-
matory diseases [53, 100, 101]. Numerous investigators 
(Table 1) assessed the immunogenicity and/or immuno-
suppressive properties of hASCs after treatment with pro-
inflammatory cytokine(s) [6, 13, 14, 22, 27, 61, 67, 85, 93, 
102–121] or TLR agonist (s) [122–129].

Pre-conditioning of ASCs with IFN-ɤ is one of the most 
common approaches to enhance ASC-mediated immuno-
suppression [19, 67, 105]. IFN-ɤ upregulates expression 
of the immunoregulatory surface molecules, programmed 
death-ligand 1 (PD-L1)/CD274, PD-L2, and ICAM-1/
CD54 by hASCs [13, 61]. Moreover, IDO activity poten-
tially involved in the enhanced immunosuppressive effects of 
IFN-ɤ-treated ASCs [14, 85]. Interestingly, ASCs showed a 
stronger upregulated expression of IDO than BMSCs by 8 h 
IFN-ɤ exposure [6]. Enhanced activation of the JAK/STAT1 
pathway mediates IFN-ɤ induced expression of PD-L1 and 
IDO in primed MSCs [114]. From mechanistic perspectives, 
priming of MSCs with IFN-ɤ increased glucose turnover 
leading to abundant STAT1 glycosylation and stability, thus 

sustaining its downstream effects [115]. Glucose metabolic 
reprogramming is thus a novel modulatory mechanism 
for the immunosuppressive function of IFN-ɤ–challenged 
MSCs and this mechanism can be analyzed in the IFN-ɤ 
primed hASCs. Not only the IFN-ɤ licensed-ASCs, but also 
their CM can exert potential immunosuppression [67, 108]. 
Moreover, IFN-ɤ treatment using low [67] or high [109] 
dose enhanced the immunoregulatory phenotypes, and anti-
proliferative potential of ASCs from patients suffered from 
T2D with different ethnicities and body mass indices.

Individual treatment with TNF-α activated nuclear fac-
tor kappa B (NF-κB) pathway in hASCs to promote the cell 
survival. Transcriptome analysis revealed that TNF-α treated 
ASCs differentially expressed genes involved in the differ-
entiation of ASCs into mononuclear leukocytes (NFKB1, 
IRF8, RELA, RELB, IRF7) and in the antitumor immunity 
(TLR2 and PTGS2) [111]. Regarding treatment with IL-1β, 
priming of hASCs from patients with osteoarthritis (OA) 
with this cytokine (1 ng/ml for 24 h) induced the differential 
expression of genes enriched in inflammation modulation 
and extracellular matrix (ECM) remodeling. Moreover, com-
pared to non-primed cells, IL-1β primed hASCs superiorly 
modulated the  CD80+/CD206+ cell ratio in co-culture with 
polarized M1 macrophages, promoting an increase of the 
anti-inflammatory  CD206+ M2a macrophages [112].

The synergistic effect of priming ASCs with a mixture 
of different inflammatory cytokines have been tested [13, 
14, 27, 54, 93, 103, 106, 110, 116]. Full genome expres-
sion analysis was carried out for hASCs cultured for 7 days 
under control conditions and two different inflammatory 
conditions; either with alloactivated PBMCs (MLR) in a 
transwell setting or with a cocktail containing IFN-ɤ, TNF-
α, and IL-6 [14]. Partial overlapping in the significant gene 
expression changes, induced by both inflammatory condi-
tions, was demonstrated indicating different ASCs responses 
to alloactivated PBMCs than to pro-inflammatory cytokines. 
Human ASCs cocultured with MLR showed a significant 
upregulation of the PGE2-producing enzyme; cyclooxyge-
nase 2 (COX-2) (tenfold). However, priming with the pro-
inflammatory cytokines cocktail significantly induced the 
expression of IDO (394fold) in ASCs [14]. In another report, 
priming with a mix of IFN-ɤ, TNF-α, and IL-1β induced 
significantly the surface expression of CD274 and the secre-
tion of PGE2 by hASCs [103]. The increased CD274 level 
under inflammatory conditions may be one of the mecha-
nisms by which ASCs counteract the immunogenic effect of 
the upregulation of CD40 in inflammation [12, 103, 117]; 
these changes in expression may ultimately lead to inhibi-
tion of activated lymphocytes [103]. In addition to IDO 
upregulation, priming of hASCs with the cocktail (IFN-
ɤ, TNF-α, IL-1β, and IFN-α) was found to upregulate the 
transcriptional levels of the immune regulatory semaphorins 
SEMA4D and SEMA7A [116]. The combination of IFN-ɤ/
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1 3

TNF-α induced significantly the release of PGE2, IL-10, and 
IL-8 by ASCs (at ≥ 20 ng/ml) and that of IL-6 and CCL-2, 
only at 40 ng/ml [106]. Cytomix treatment (IFN-ɤ, TNF-
α, IL-1β, all at 5 ng/ml) at normoxia robustly induced the 
most potent immunosuppressive functions of ASCs, likely 
via induced release of IL-1RA, among other mediators [27].

The effect of human Th17 cell polarizing pro-inflamma-
tory factors such as IL-1β, IL-6, and IL-23 on the immu-
nophenotype and immunomodulatory properties of ASCs vs. 
BMSCs was studied [54]. It was found that priming of both 
MSC types with those factors promoted the expression of 
CD45 by about 80%.  CD45+ ASCs and BMSCs maintained 
similarly the antiproliferative functions of the respective 
 CD45− MSCs on MLR, in contact- or contactless- depend-
ent manner. Pro-inflammatory cytokines treatment did not 
modulate the secretion of IFN-ɤ, TNF-α by both MSC types, 
however, decreased that of IL-4 and increased that of TGF-β. 
Such increase in TGF-β recommends that ASC pro-inflam-
matory conditioning strengthens their immunoregulatory 
properties [54].

Chemokines play important roles in the recruitment of 
leukocytes leading to various immune responses [118, 119]. 
The neutrophil, monocyte and eosinophil chemoattract-
ants, at mRNA levels, including chemokine C-X-X motif 
ligand (CXCL)-1 and -6 were increased in ASCs cultured 
with MLR, whereas, the genes of T- lymphocytes attractants 
including CXCL-9, CXCL-10, CXCL-11 were upregulated in 
ASCs treated with IFN-ɤ, TNF-α, and IL-6 [14]. Individual 
IFN-ɤ priming enhanced the secretion of chemokines such 
as monocyte chemotactic protein 1 (MCP-1) and human 
interferon-inducible protein 10 (IP-10)/ CXCL-10 [61], IL-8 
and CCL-5 [83] or CXCL-9, CXCL-10 and CCL-8 [85] by 
treated ASCs, promoting immune cells recruitment to their 
close proximity to exert immunomodulatory functions [61, 
120]. CM of TNF-α treated hASCs has also been reported to 
promote monocyte migration in vitro via the enhanced secre-
tion of IL-6, IL-8, CXCL-6, CXCL-2, and MCP-1/CCL-2 
(chemokine C–C motif ligand 2) [102]. The synergistic 
treatment with TNF-α and IL-1β enhanced the expression, 
by MSCs from different sources including AT, of a number 
of ECM proteins and chemokines including, among others, 
CXCL-2, CXCL-6, IL-8, CCL-2 [121].

An additional boosting strategy is to precondition ASCs 
with TLR agonists. TLRs are members of a large family of 
receptors (e.g. TLR1-10), among which TLR3 and TLR4 
are highly expressed by human MSCs [126]. In the con-
text of treatment of hASCs with lipopolysaccharide (LPS)/
TLR-4 agonist, it has been reported that hASCs retained 
short-term memory when exposed to TNF-α or LPS. Tran-
sient treatment with TNF-α or LPS dramatically increased 
the release of IL-6, IL-8, and MCP-1, and all cytokine lev-
els remained elevated, even after re-plating and culture of 
hASCs in the absence of stimulating factor. A second round 

of stimulation induced quick secretion of the cytokines. 
Importantly, LPS-primed ASCs displayed enhanced thera-
peutic efficacy in skin flap survival in a diabetic rat model 
than did unprimed ASCs. Three miRNAs (mir-146a, mir-
155, and mir-150) and 5 hydroxymethyl cytosine, epige-
netic regulatory molecules, mediated the observed short-
term memory of hASCs to LPS or TNF-α [124].

Some studies have suggested that LPS promotes ASCs 
to acquire a pro-inflammatory phenotype [123, 125], how-
ever, the immunomodulatory functions of LPS-ASCs in 
coculture with activated immune cells in such studies were 
not tested. Models of acute or chronic inflammation of 
hASCs were established by treatment of cells with 1 μg/
mL LPS for 6 h or 4 weeks, respectively [125]. LPS acti-
vated the TLR4/TLR2/NF-κB/ STAT3 signaling pathway 
to produce the inflammatory cytokines IL-6, IL-1β, and 
TNF-α via most likely downregulating miR-223. LPS also 
significantly down-regulated the expression of miR-2909, 
to upregulate its target, the transcription factor; Kruppel-
like factor 4 (KLF4) which in turn significantly, in the 
presence of activated NF-κB, upregulated the indicated 
pro-inflammatory cytokines expression. The authors dem-
onstrated that miR-223 and miR-2909 play important roles 
in the immune-regulatory activity of hASCs, forming a 
complex regulatory network with pro-inflammatory factors 
and signaling pathways in ASCs stimulated by LPS [125]. 
The discrepancy of LPS-ASC immunoregulatory role from 
immunosuppressive to immunosupportive may be attrib-
uted to the differential LPS concentration and treatment 
duration [131].

Many reports demonstrate that priming of MSCs with 
the TLR3 agonist, Poly I: C promotes their anti-inflamma-
tory phenotypes and functions [132, 133]. In the context 
of hASCs and Poly I: C treatment, studies have been con-
ducted and inconsistent effects have been reported [78, 85, 
108, 122, 126, 128]. Some authors revealed the expression 
of several immunosuppressive and inflammatory cytokines 
by Poly (I:C)-hASCs [126, 128], while, others reported 
that TLR3 signaling in ASCs did not significantly influence 
their immunoregulatory phenotype [85, 108, 122]. More 
studies are thus needed to investigate the immunosuppres-
sive functions of TLR3-primed ASCs in vitro to drive the 
effective Poly I: C concentration. TLR3 priming of ASCs 
to promote their Treg-mediated generation as earlier dem-
onstrated with BMSCs [134], can be considered as an 
interesting research. The synergistic effect of incubation of 
hASCs with a combination of a pro-inflammatory cytokine 
and one of the TLR agonists should also be studied.

Hypoxia Preconditioning

Hypoxia preconditioning generates ASCs with improved 
therapeutic immunosuppression [68, 71, 101, 130]. One of 
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the suggested mechanisms that mediate the enhanced MSC 
biology and function in hypoxia is the induced expression 
of hypoxia inducible factor 1 alpha [100, 135] and the pro-
duction of various growth factors, such as vascular endothe-
lial growth factor (VEGF), fibroblast growth factor (FGF), 
platelet-derived growth factor (PDGF), hepatocyte growth 
factor (HGF), or insulin-like growth factor (IGF) [9]. Addi-
tionally, hypoxic ASCs were able to upregulate strongly 
the expression of the immunomodulatory molecules IDO 
and PD-L1 upon stimulation with IFN-ɤ and TNF-α [71]. 
Hypoxia also maintained the chemoattractive properties 
of ASCs, as evidenced by the enhanced expression of the 
lymphocytes attractant CXCL-10 [71]. In another report, 
dual priming of hASCs with IFN-ɤ and hypoxia potentiated 
their T cell inhibition and the underlying mechanisms were 
unraveled to be the augmented expression of IDO, PD-L1 
and HLA-G via IFN-ɤ and the hypoxia-mediated shift of 
the hASC metabolism to glycolysis, causing rapid glucose 
turnover and production of T-cell inhibitory lactate levels 
[130]. An advanced in vitro culture system for maintained 
constant O2 levels is crucial to ensure quality-controlled 
hypoxia-treated ASCs, which would contribute to reproduc-
ible results [101].

Chemical or Pharmacological Preconditioning

Different chemical treatments potentiate the immunosup-
pressive phenotype and/or action of hASCs on immune 
cells [136–141]. High concentrations of nanocurcuminoids 
(12–100 µM) enhanced the expansion and the frequency of 
CD4Tregsin PBMCs in coculture with hASCs. Additionally, 
nanocurcuminoids at low doses (below 12 µM) in ASCs/
PBMCs cultures were able to decrease the expression of 
the inflammatory cytokines, IL-17, IFN-ɤ, and IL-6. As 
well, low doses of nanocurcuminoids augmented the anti-
oxidative capacity of hASCs, as manifested by increased 
superoxide dismutase activity [136]. Interestingly, priming 
of ASCs with curcumin before cryopreservation potentiated 
the viability and functional potency of thawed ASCs [142]. 
In another report, treatment of hASCs with the active form 
of vitamin B6, pyridoxal-5'-phosphate (PLP) (at a concentra-
tion of 50 ng/ml) enhanced their immunosuppressive effect 
on  CD3+  CD8+ T lymphocytes via activation of IDO medi-
ated- Trp metabolism and promotion the accumulation of 
kynurenine (a Trp catabolic metabolite). Specific blocking 
of TLR4 reduced  CD3+  CD8+ T lymphocytes inhibition by 
50 ng/ml PLP-treated hASCs indicating the involvement of 
the TLR4/NF-κB axis in the PLP-stimulation hASC immu-
nomodulation [137].

Treatment of MSCs, from BM and AT, with specific epi-
genetic regulatory modulators such as 5-aza-2-deoxycyt-
idine (5-aza-dC) could modulate their immunoregulatory 
capability via upregulating the mRNA expression of the 

immunomodulator, HLA-G [138]. Another study reported 
that preconditioning of hASCs with the iron chelator defer-
oxamine (DFX), a hypoxia mimetic agent, induced a sig-
nificant increase in the ASC secretion of anti-inflammatory 
factors as IL-4 and IL-5 [139]. Importantly, incubation with 
astragaloside IV, a traditional Chinese medicine at 30 or 
60 μg/ml restored significantly the expression of PD-L1 and 
TGF-β and attenuated the expression of IFN-ɤ by hASCs 
from patients with psoriasis vulgaris [140]. Short-term 
incubation times to include 24 h [136, 140], 48 h [137, 
139] or 72 h [138], have been reported. However, no study 
addressed the challenge time as a determinant for effect 
of the applied pharmacological or chemical treatment on 
ASC immunosuppressive phenotype or action. Recently, 
long term (14 days) treatment of hASCs with Naltrexone 
hydrochloride (NTX), an antagonist of mu-, delta-, and 
kappa-opioid receptors, upregulated the IL-6 secretion by 
hASCs and promoted the induction of IDO and PD-L1 in 
IFN-ɤ treated hASCs. Such effects proportionated directly 
with the NTX concentration [141]. Treatments of hASCs 
with cannabinoid compounds have been reported to protect 
the cells from tunicamycin-induced endoplasmic reticulum 
stress and inflammation, which resemble those associated 
with metabolic and inflammatory diseases [143, 144]. 
However, the stimulating effect of those compounds on 
hASC immunosuppressive functions in vitro has not been 
tested. In conclusion, the above-mentioned studies recom-
mend priming of hASCs with chemical or pharmacological 
molecules could augment their immunosuppression and/or 
oxidative stress resistance in the settings of inflammatory 
diseases.

Genetic Engineering

Direct transduction of immunomodulators and anti-
inf lammatory factors in ASCs by gene editing may 
represent a promising approach to enhancing the 
immunosuppressive functions of ASCs. Among the 
immunoregulatory factors have been delivered in human 
ASCs are IL-4 [145], fusion proteins comprising the 
extracellular domain of cytotoxic T-lymphocyte-associ-
ated protein 4 and the CH2-CH3 domains of immuno-
globulin (CTLA4Ig) [146], glial-derived neurotrophic 
factor (GDNF) [38], TGF-β1 [147], or HLA-G1 [148]. 
In vitro cultured GDNF-ASCs induced a shift in mac-
rophage phenotype from the inflammatory (M1) phe-
notype to the reparative (M2) phenotype [38]. TGF-β1 
transduced-ASCs displayed strong IFN-γ-mediated 
immunosuppressive. ASCs overexpressing TGF-β1 sig-
nificantly upregulated the expression of IL-10 in  CD4+ T 
cells and downregulated the expression of IL-17A, IL-21, 
and IL-22 [147].
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ASC‑related Parameters

Anatomical AT Harvest Site

For developing effective ASC immunotherapy, it is 
important to consider the effect of fat depots. Whether 
derived from visceral (v.) or subcutaneous (sc.) AT, 
ASCs have differential biological characteristics, meta-
bolic properties, multipotency [149, 150], and response 
to inflammation [151]. ASCs exhibit depot-specific gene 
expression profiles [152]. Additionally, within the sc. AT, 
the harvesting area is a strong determinant of the qual-
ity of hASCs, influencing cell viability and yield [153]. 
Limited studies investigated the immunomodulatory phe-
notype [154, 155] and/or functions of ASCs [156, 157], 
derived from different origins under the same experimen-
tal setup. Serena et al. reported that CM from healthy sc. 
ASCs, with normal weight, effectively suppressed acti-
vated T cell proliferation, however, that of healthy v.ASC 
failed to do. CM from sc.ASCs or v.ASCs from patients 
with T2D and obesity did not attenuate T cell prolifera-
tion. Interestingly, v.ASC reflected the inflammatory sta-
tus associated with the metabolic disturbances (T2D and 
obesity) than sc.ASCs did, by expressing higher levels 
of IL-1β, IL-6, MCP-1, TNF-α, inflammasome compo-
nents and caspase-1 [156]. Further, CM of superficial 
and deep sc.ASCs promoted equally the polarization of 
M2 anti-inflammatory macrophages in THP-1 mono-
cytes, possibly via PGE2 and TSG-6 dependent mecha-
nisms [157]. Omentum ASCs have been reported to have 
a secretome with enhanced anti-inflammatory capacity 
and higher cytokines levels, except for IL-8, relative to 
that of sc.ASCs, despite being with lower yield [155]. 
In another report, a comparative analysis for the expres-
sion of immune-related surface and soluble markers by 
sc.ASCs isolated from two different anatomical loca-
tions, (abdomen vs. breast), from different donors, was 
performed [154]. The results revealed a significant eleva-
tion in the expression of the two potent immunosuppres-
sive genes, IL-10 and IDO as well as the expression of 
the multifaceted immunomodulatory adipokine, visfatin, 
in breast vs. abdominal ASCs. Such data shed light on 
the possible therapeutic applications of breast ASCs in 
inflammatory diseases [154]. Conclusively, the fat depot 
location, whether subcutaneous or visceral or subcutane-
ous from different anatomical sources, may impact the 
immunomodulatory properties of hASCs.

ASC Differentiation

Some studies addressed the immunogenic and/or immuno-
suppressive properties of hASC-differentiation derivatives 

[79, 158–162]. Osteogenically differentiated hASCs and 
BMSCs retained similarly low expression of HLA-DR and 
costimulatory molecules (CD40, CD40L, CD80, and CD86) 
[79]. They did not induce proliferation of HLA mismatched 
PBMCs in MLR, even after induction of HLA-DR expres-
sion via licensing with IFN-ɤ and TNF-α [159]. Addition 
of biomaterials that stimulate bone tissue formation did not 
alter MSC immune-related properties [159]. In the context 
of the chondrogenic lineage, ASC- and BMSC- derived 
chondrocytes retained hypoimmunogenicity, as manifested 
by non-induction of PBMC alloproliferative response, even 
after licensing of MSCs with the inflammatory cytokines 
IFN-ɤ and TNF-α [160]. Both MSC-derived chondrocytes 
displayed dose-dependent immunosuppressive functions 
on T cells and NK cells. Interestingly, ASC-derived chon-
drocytes, but not BM-derived respective, inhibited strongly 
allostimulated PBMCs at low cell dosages, suggesting that 
ASCs would be better than BMSCs for cartilage repair. 
Noteworthy that the maintained immunoregulatory poten-
tial of ASC-derived preosteoblasts [159] or chondrocytes 
[160] was mediated partly via the expression of HLA-G5 
and its level was boosted in immune-active environments. In 
another study, chondrogenic differentiation or IFN-ɤ treat-
ment potentiated the immunosuppressive effects of hASCs 
on mitogen-treated PBMC activation and proliferation via 
secreting expression of higher levels of IL-10 and the sur-
face immunomediator, jagged-2 [161].

Moreover, adipogenic differentiation of hASCs kept 
their ability to inhibit neutrophil and lymphocyte recruit-
ment to TNF-α-treated endothelial cells in an IL-6/suppres-
sor of cytokine signaling 3 (SOCS3)-dependent manner 
[162]. On the contrary, adipocytes derived from BMSCs 
lost their immunoprotective effects on neutrophils, but not 
lymphocytes. The authors proposed that soluble bioactive 
molecules, generated by BMSC‐derived adipocytes in 
coculture with the target immune cells, induce a reduction 
in TGF-β1 response, modulating IL‐6 signaling, such that 
it is no longer immunoprotective. Abnormal adipogenesis 
of MSCs in inflammation thus adversely affect MSC behav-
ior; loss their immunosuppressive effects and contribute 
to the pathogenic recruitment of leukocytes [162]. It has 
been reported that adipocytes, like their progenitors, from 
obese donors promoted the IL-6 mediated-Th17 differen-
tiation in vitro (in coculture with PHA-PBMCs) and in a 
murine model [163]. Similarly, adipocytes differentiated 
from sc.ASCs or v.ASCs from T2D patients exhibited ele-
vated IL-1β phenotype as their precursors [156]. Further 
studies to explore the immunogenicity and immunoregu-
latory properties of ASC-derived cell products in health 
and disease may be a crucial step, beside the cell prod-
uct functionality, to develop an effective applicable ASC 
derivatives-based therapy.
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ASC Culture Conditions

Diverse culture conditions could impact variably hASC 
immunomodulation, including among others the serum sup-
plement of the culture medium [17, 53, 164, 165], suspended 
spheroid vs. mono-adherent layer culture [86, 166], and pas-
sage number (early vs. late) [13, 52, 167–170].

Serum Supplementation

To date, most studies use fetal bovine serum (FBS)—based 
culture media to address the immunomodulatory functions 
of hASCs  in vitro. However, safety concerns have been 
raised regarding FBS addition for the manufacturing of 
clinical grade MSC products [171], most of them related to 
immunological risk or possibility of disease transmission 
due to prions, bacteria, or viruses [172]. Regulatory-com-
plaint xeno-free media such as chemically defined media 
[173], or media supplemented with human serum (HS) [67], 
or human platelet lysate (hPL) [173, 174] are promising 
alternatives to preserve or even enhance the ASC immu-
nomodulatory functions in vitro.

Patrikoski et  al. [53] assessed the immunogenic and 
immunosuppressive properties of hASCs expanded in 
serum and xenobiotic-free medium (SF/XF) or medium 
supplemented with FBS or HS. hASCs expanded in any of 
the three conditions did not lose their hypoimmunogenicity 
and they were able to suppress the proliferation of PBMCs 
in two-way MLR. However, the significantly strongest sup-
pression was observed by those expanded in FBS and such 
effect was attributed to the higher expression of ICAM-1 and 
IL-6 [53]. In another study and relative to those expanded in 
FBS, platelet poor Plasma (PPP)—cultured ASCs exhibited 
compromised potential to generate Tregs and that was cor-
related with limited PPP-ASC potential to produce soluble 
immunomodulatory factors [165]. In contrast, PPP supple-
mentation promoted the expression of vascular cell adhesion 
molecule-1 (VCAM-1)/CD106 and ICAM-1 on ASC surface 
hinting possibly toward maintained direct immunosuppres-
sive mechanisms. These data confirm the strong effect of 
culture media composition on ASC immunomodulatory 
behavior as well as serving as an alert regarding the com-
plexity of replacing FBS in MSC culture [53, 165].

Other authors reported enhanced or at least maintained 
hASC immunosuppressive functions in the absence of FBS 
[12, 67, 173, 175]. Effective inhibition by hASCs on CD4 
T cell proliferation, activation, and functions in a 5% HS-
supplemented culture medium, have been recently reported 
[67]. As other alternatives, ASCs isolated from human infra-
patellar fat pad (hIFP-ASCs) were processed in the pres-
ence of hPL, chemically reinforced medium (Ch-R), or FBS 
[173]. hIFP-ASCs cultured in the regulatory-compliant con-
ditions (hPL or Ch-R) displayed enhanced anti-inflammatory 

surface and paracrine phenotype which was intensified by 
priming of hIFP-ASCs with IFN-ɤ and TNF-α. In the two 
indicated regulatory-compliant conditions, hIFP-ASCs 
upregulated CD10/Neprilysin expression which degraded 
substance P in vitro and in vivo, relieving experimental 
synovitis [173]. Interestingly, hASCs expanded in clinical 
grade hPL were more potent in inhibiting T-cell growth, than 
BM counterparts via a superior IFN-ɤ-mediated IDO activ-
ity [175]. Additionally, resting and inflammatory primed 
ASCs-PL expressed higher transcriptional levels of TSG-6 
[12], which is a suppressor to neutrophil recruitment in acute 
inflammation [176]. In another report, fabricated hASC 
sheets in the presence of human PL exhibited enhanced dep-
osition of ECM and inhibition of stimulated macrophages 
migration [177]. hPL- ASCs are thus suggested as interest-
ing anti-inflammatory cell therapy for further preclinical and 
clinical evaluations.

Three‑Dimensional ASC Cultures

The traditionally cultured MSCs in a two-dimensional (2D) 
adherent monolayer exhibit limited physiological relevance 
and altered genetic and epigenetic signatures [178]. Thus, 
cultivation of MSCs in three-dimensional (3D) systems, 
such as low attachment surfaces, hydrogels, or scaffolds, 
to resemble the in vivo spatial organization with increased 
cell–cell and cell–matrix interactions, have gained attention 
[171, 179]. The methods to generate 3D MSC spheroids, 
including ASC ones, and the limitation and challenges of 
different MSC spheroid generation platforms have been 
recently reviewed [171, 180].Enhanced therapeutic and anti-
inflammatory mechanisms have been reported in different 
preclinical models treated with human ASCs cultured by a 
3D strategy [86, 100, 178, 181–190].

Scaffold‑free 3D ASC Spheroids Limited studies addressed 
the immunomodulatory phenotype and/or functions of scaf-
fold free- 3D ASC spheroids in vitro [59, 86, 166]. hASC 
aggregates, obtained by the hanging drop technique, exhib-
ited a stronger ability than 2D counterparts, to modulate 
macrophage polarization from M1 (pro-inflammatory) to 
M2 (anti-inflammatory) phenotype in vitro, presumably via 
elevated PGE2 production [86]. Recently, ASC spheroids sig-
nificantly abrogated the proliferation and IFN-ɤ secretion and 
promoted the production of the anti-inflammatory cytokines 
IL-9 in coculture with stimulated γδ  CD3+ T lymphocytes 
[59]. γδ  CD3+ T lymphocytes represent a bridge b/w innate 
and adaptive T cell responses and produce high levels of 
IL-17 in obesity contributing to AT inflammation and insu-
lin resistance [77]. The detected anti-inflammatory effects 
were greater than those observed by adherent ASCs due to 
higher levels of the immunomodulators IL-5, IL-10, IL-4 and 
IL-13 in the ASC spheroid secretome [59]. In another report, 
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comparative gene expression analysis in 2D vs. 3D (in ultra-
low attachment surfaces) ASC cultures revealed superior 
expression, of genes involved in stemness (SOX2, POU5F1, 
and NANOG), anti-aging (SIRT1), and anti-inflammation 
(TGF-β1), however, lower expression of those involved in 
oxidative stress (ALDH3), in 3D ASC spheres [166].

Scaffold‑based 3D ASC Spheroids Some authors addressed 
the immunomodulatory properties of hASCs encapsulated 
in hydrogels [185, 188, 191]. hASCs encapsulated in inject-
able alginate hydrogel modified with arginine-glycine-
aspartate- motifs did not induce DC maturation and they 
exhibited potentiated inhibitory lymphocyte proliferation. 
Importantly, hASCs in alginate responded like hASC mon-
olayer to IFN-ɤ licensing [185]. Such results indicate that 
the combination of ASCs and alginate is non-immunogenic, 
however, immunosuppressive. That might be attributed to 
the elevated secretion of the chemokine IL-8 by 3D ASCs in 
inflammation [185]. As well, incorporating the hASCs sphe-
roids in alginate microbeads in thermosensitive hydrogels 
[188] enhanced significantly the expression of immunosup-
pressive cytokines such as IL-10 and/or TGF-β1 for control-
ling inflammation in wound healing. As well, hASC-sphe-
roids in non-crosslink hyaluronic acid gel (4%) displayed a 
promoted expression of some angiogenesis growth factors, 
pluripotency markers, the anti-inflammatory factors (IL1RN, 
IL11, etc.), in addition to compared to the adherent ASC 
cultures [191]. Such studies recommend that aggregation of 
ASCs in hydrogels stimulates paracrine signaling and the 
level of anti-inflammatory factors [19], and potentiates the 
cell functionality [192]. The positive effects can be amplified 
by incorporating of the ASC spheroids in tunable immuno-
tolerant polymeric hydrogels to tailor the target therapeutic 
effects [193]. Interestingly, sustained MSC licensing could 
be achieved by the chemical modification of the hydrogel 
capsule to present an inflammatory cytokine [194] or by 
incorporating the cytokine in the hydrogel matrix [193]. 
Such strategies might ensure enhanced MSC persistence 
and immunomodulation in vivo.

Anoikis is the apoptosis of adherent cells due to the lack 
of a scaffold, so the cultivation of MSCs on a fabricated 
scaffold can prevent it [195]. However, matrix stiffness 
(mechanical properties), construct dimensions, fiber align-
ments, and/or fluid forces may affect ASC characteristics 
[196, 197] including immunomodulatory ones [198, 199]. 
Wan et al. studied the effect of fiber orientation (random or 
aligned), as one of the physical features of the scaffold, on 
the ASC immunomodulatory paracrine mechanisms. hASCs 
seeded on aligned fibers secreted significantly higher levels 
of immunomodulators, including among others, COX-2 and 
TSG-6, than those cultured on random fibers and that was 
correlated with a superior promotion of M2 macrophages. 

Aligned fibers stimulated ASC immunomodulatory function 
by activating mechanotransduction pathways; focal adhesion 
kinase (FAK)-extracellular regulated kinase 1/2 (ERK1/2) 
and YAP/TAZ [198]. FAK has been reported to mediate 
the cellular responses to the biomaterial physical cues [200, 
201], and has been directly linked to transcriptional regula-
tion of COX-2 [202]. The inhibition of YAP/TAZ nuclear 
translocation reduced the gene expression of crucial immu-
nomediators including COX-2, TSG-6, IL-1RA, and MCP-1 
in hASCs cultured on aligned fibers [198]. Signaling mech-
anisms regulating the MSC response, specifically those 
derived from bone marrow, to the physical cues of scaffolds 
are recently reviewed [199]. In the context of hASCs, further 
transcriptomic, proteomic and functional studies to address 
the immunomodulatory capacity of scaffold-free- or based- 
hASC spheroids are demanded.

ASC Passaging and Cryopreservation Effects

Expansion of hASCs till passage 6 (P6) P6 did not 
reduce the immunomodulatory properties of hASCs, 
whereas, cryopreservation significantly did [52]. 
Analysis of hASC immunophenotype including the 
immuneregulatorymarkers;CD200, CD274, CD271, CD73, 
and CD29 [203, 204] over 8 passages revealed that hASCs 
maintained the expression of these markers at variable lev-
els over the whole culture period without significant differ-
ences except for CD271 which decreased by culture [170]. 
On the other hand, a larger literature cohort recommends 
that only ASCs of low passage rounds would be ideal for 
immunomodulatory therapeutic purposes [13, 167–169, 
205]. ASCs at late passages failed to inhibit IFN-ɤ produc-
tion by PBMCs and to abrogate neutrophil activity and the 
levels of pro-inflammatory markers TNF-α and IFN-ɤ in a 
model of peritonitis [168]. In another report, ASCs at P3 
downregulated the proportion of Th17 cells, in patients with 
active systemic lupus erythematous, and their abilities to 
produce IL-17, whereas ASCs at P8 had a contrasting effect 
[205]. hASCs at late passages had reduced levels of secreted 
IL-10 and HGF [168], in addition to the surface (CD200 
and CD274), or intracellular (heme oxygenase 1 (HO-1)), 
proteins [13], and all these factors contribute to effective 
ASC immunomodulation[19]. Decreased gene expression of 
the anti-inflammatory factors (TSG6 and HLA-G) was also 
detected in ASCs and BMSCs over repeated passages up to 
P10 [169]. Regarding the expression of MHC proteins in 
repeatedly passaged ASCs, HLA-ABC (MHC-1) level was 
not affected by expansion. However, levels of HLA-DR and 
the surface and the intracellular HLA-G in ASCs decreased 
by expansion [13].

Overall, in vitro-aged hMSCs, as a result of extensive 
culture expansion, have been reported to show senescence 
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signatures, diminished immunosuppressive capacity, and 
weakened regenerative potential as well as pro-inflammatory 
features [206]. Impaired autophagy and altered epigenetics 
molecular mechanisms involved in MSC aging in vitro and 
in vivo have been reviewed [207].

In clinics, modest immunomodulatory activity of freeze-
thawed, relative to fresh, MSC products has been reported 
[208]. Cryopreserved MSCs exhibited attenuated immu-
nosuppressive properties in vitro as a result of heat-shock 
response, impaired IFN-ɤ treatment response [209], and 
T-cell mediated cytolysis [210]. In the context of hASCs, 
different cryoprotectants have been tested to include dime-
thyl sulfoxide (DMSO) alone or in combination with pentai-
somaltose [211], intracellular delivered trehalose [212]. For 
clinical grade cryopreservation, xeno and/or DMSO free-
cryopreservation solutions containing trehalose, dextran 40, 
propylene glycol, glycerol, polyvinylpyrrolidone, hydroxy-
ethyl starch, and/or methylcellulose have been developed 
[213–219]. Despite the diverse protocols [214, 220], up to 
our knowledge, the impact of cryopreservation and freeze-
thawing on the immunomodulatory properties of hASCs is 
still not explored. Thus, future studies, aim to investigate the 
inhibitory effects of long-term cryopreserved hASCs, using 
different cryoprotectants, on T lymphocytes and their IFN-ɤ 
licensing response, are recommended.

Donor‑related Parameters

Age, BMI, and Sex

Increasing donor age negatively impacts the biological 
features of hASCs, including decreased expansion kinet-
ics, differentiation potential [221, 222], and/or regenerative 
capacity [223]. Regarding the immunomodulatory proper-
ties, young rat ASCs [224] and canine ASCs [225] exhibited 
lower antiproliferative effects on activated T lymphocytes 
than old respective. Recently, an inflammatory state, char-
acterized by elevated expression of IL-6, IL-1β, TNF-α, and 
MCP-1, has been detected in hASCs derived from elderly 
subjects (≥ 65 years) and that was associated with enhanced 
glycogen storage and decreased expression of sirtuin 1 and 6 
[226]. Sirtuins are key metabolic sensors that links inflam-
mation and metabolism [227]. Obesity exacerbated the 
inflammatory phenotype of elderly hASCs [226].

In the context BMI, numerous investigators reported the 
adverse effects of obesity [BMI ≥ 30] on the immunomodu-
latory phenotype and functions of hASCs [39, 77, 156, 226, 
228–238]. ASCs isolated from patients with obesity exhibited 
altered glucose metabolism [226, 239, 240], reduced sirtuins 
expression [226, 241], pro-inflammatory phenotype [20, 156, 
228, 229]. The pro-inflammatory state of hASCs from obese 
patients characterized by the elevated secretion of inflammatory 

cytokines and chemokines including IL-6, IL-1β, TNF-α, IL-
17A, IL-8 and /or MCP-1 [39, 156, 228, 229, 242]. In addition 
to the activation of inflammasome components, NF-Kβ [156], 
and mitogen-activated protein kinase (MAPK) signaling that 
are linked to inhibiting insulin signaling [77].

In vitro, hASCs from patients with obesity failed to 
inhibit T cell proliferation [156] and promoted Th17 dif-
ferentiation via IL-1β [242] and/or PD-L1 [234]-mediated 
manner. As well obese ASCs potentiated monocyte polari-
zation toward the inflammatory macrophages (M1) [39]. 
Noteworthy, obesity deteriorates the response of hASCs to 
IFN-ɤ -induced expression of IDO and that might explain 
the dysfunctional antiproliferative effect of obese ASCs on T 
cells [232]. A new mechanism has been recently introduced 
to explain the reduced therapeutic efficacy of ASCs derived 
from obese subjects [243]. The decrease in mitochondrial 
cardiolipin content in obese ASCs resulted in compromised 
cell potential to sequester their damaged mitochondria into 
LC3-dependent autophagosomes. That led to mitochondrial 
dysfunction, impaired intercellular mitochondrial transport, 
and finally attenuated therapeutic efficacy of obese ASCs. 
Importantly, pharmacological treatment using a compound 
that modulate mitophagy and/or autophagy such as pyrrolo-
quinoline quinone rescued the mitochondria health in obese 
ASCs [243]. Interestingly, the addition of n-3 polyunsatu-
rated fatty acid precursor, alpha-linolenic acid (ALA), or its 
derivatives, eicosapentaenoic, or docosahexaenoic acid, to 
co-cultures of human obese ASCs and PBMCs abrogated the 
immunostimulatory impact of obese ASCs. ALA inhibited 
obese ASC-mediated activation of Th17 cells, IL-17A secre-
tion, Cox-2 and STAT-3 expression [244]. Another approach 
to rescue obese ASC biology, cytosol transfer from control 
ASCs derived from patients with normal weight restored the 
glucose metabolism in ASCs from patients with obesity via 
Lin28-mediated repression of let7 pathway [239].

On the other hand, limited studies illustrated maintained 
or slightly affected immunosuppressive potentials of ASCs 
from obese subjects [67, 231, 235]. The discrepancies b/w 
studies on the impact of obesity-associated inflammation 
and metabolic abnormalities on the immunosuppressive 
potential of hASCs could be due to differences in fat depots 
locations, the methods used to evaluate immunosuppres-
sive functions in vitro, or to the use of donors with different 
adiposity grades, or at different stages of obesity develop-
ment. Studies that investigated the effect of obesity on hASC 
immunomodulation are presented in Table 2.

Sex impact on the immunomodulatory properties of 
hASCs has been recently studied [110, 127]. Mckinnirey 
et al. examined the potency and functionality of both female 
and male ASCs in order to gain further insights into donor 
selection. Female ASCs, significantly suppressed activated 
PBMC proliferation more than male ASCs did, due to the 
production of higher concentrations of the anti-inflammatory 
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factors; IDO1, IL-1RA, and PGE-2 and the prolonged 
expression of VCAM-1 post-activation [110]. In another 
report, inter-individual variability and/or possible sex dif-
ferences exist in ASCs’ response to LPS treatment and the 
potential of LPS-ASC CM to regulate CD14 expression in 
THP-1 human monocytes have been reported [127]. Vari-
ables, including age, sex, and biological sources of MSC, 
that can guide the important choice of “universal” or “per-
sonalized” MSC therapy for autoimmune diseases have been 
recently reviewed [245, 246].

Presence of Inflammatory Disease

The impact of inflammatory diseases on the immunosup-
pressive properties of hASCs has been extensively investi-
gated to include RD [46, 47, 96, 112, 231, 247–257], T2D 
[67, 109, 156, 258], sepsis [259], Crohn’s disease [260–263], 
ulcerative colitis [264], breast cancer [265–269], osteoporo-
sis [270], psoriasis vulgaris [140], Parkinson's disease [271], 
and atherosclerosis [272]. The results are contradictory from 
diseased ASCs having intact immunomodulatory functions 
to impaired immunosuppressive effects.

Effect of RD

The RD include a wide range of auto-immune and inflam-
matory disorders that affect bone, tendon, ligaments and/
or muscles. Examples of RD forms are rheumatoid arthritis 
(RA), OA, systemic lupus erythematosus (SLE), systemic 
sclerosis (SSc), and ankylosing spondylitis (AS) [46, 47, 
96, 253, 254]. hASCs inhibited the proliferation and the 
production of inflammatory cytokines (IFN-ɤ, TNF-α, and 
IL-17) by collagen II -activated  CD4+ and  CD8+ T cells 
from patients with RA. hASCs also stimulated the genera-
tion of  CD4+CD25+FOXP3+ Tregs, with capacity to sup-
press collagen-specific T cell responses. Finally, hASCs 
downregulated the inflammatory response of synovial cells 
isolated from patients with RA, by downmodulating the pro-
duction of matrix-degrading enzymes [247]. hASCs were 
able to modulate Th17 responses by inhibiting the gene 
expression and/or secretion of IL-17, IL-21, and/or IL-6 by 
PHA-activated PBMCs isolated from RA vs. healthy donors, 
with more intense suppressive effects in the RA group due 
to their priming by the patients’ inflammation. Noteworthy, 
hASCs remarkably induced TGF-β1 expression in healthy 
PBMCs [249]. Not only the cells are effective, but also the 
secretome of healthy hASCs were able to downmodulate 
Th17 cells and significantly increase Tregs in coculture with 
PBMCs from RA patients [257].

Regarding the immunosuppressive potential of ASCs iso-
lated from patients with RD, controversial data have been 
reported from mostly intact [47, 112, 254, 273], to affected 

[250], ASC immunosuppressive functions. RD/ASCs (from 
patients with SLE, SSc, or AS) were characterized by low 
basal levels of CD90 and ICAM-1 expression, upregulated 
secretion of IL-1Ra, TSG-6 and sHLA-G, but impaired 
release of kynurenines and galectin-3 [252].

Despite the altered immunomodulatory phenotype, 
intact immunosuppressive effects of hASCs derived from 
patients with SLE, SSc, or AS have been reported by the 
same research group [47]. Comparable to healthy ASCs, 
RD/ASCs were able to modulate the activation of alloge-
neic  CD4+ and  CD8+ T lymphocytes in direct and tran-
swell coculture settings. RD/ and healthy ASCs attenuated 
the expression of CD25 and HLA-DR on T lymphocytes, 
however, upregulated the CD69 level [47].. Recently, ASCs 
from patients with RA or OA exhibited intact lymphocytes 
antiproliferative potential via mostly the induced release of 
IL-10 and PGE2 and the enhanced activity of IDO [254]. In 
another report, hASCs derived from healthy donors and SSc 
patients with extracutaneous manifestations presented the 
comparable potential to inhibit the PHA-activated PBMCs 
proliferation in direct contact settings [273].

On the contrary, Skalska and Kontny revealed that the 
immunosuppressive and anti-inflammatory functions of 
ASCs derived from inflammatory rheumatoid joints of 
patients with RA or OA are impaired [250]. ILl-17A is one 
of the crucial mediators in the development of RA [274]. 
The enhanced release of this cytokine by activated PBMCs 
after contact with rheumatoid ASCs may recommend their 
involvement in disease progression by promoting pro-
inflammatory activity [250, 251]. Treatment of RA-ASCs 
with high/moderate molecular weight adiponectin only was 
found to considerably upregulate the secretion of the soluble 
factors IL-1RA, PGE2, TGF-β, IL-6, IL-8, and VEGF, how-
ever, it did not greatly impact the weak immunosuppressive 
effects of RA-ASCs on PHA-activated PBMCs [250].

Effect of Inflammatory Bowel Diseases

Inflammatory bowel disease (IBD) primarily comprises 
Crohn’s disease (CD) and ulcerative colitis (UC) [264]. 
The available studies that addressed the immunomodu-
latory properties of ASCs from patients with active IBD 
illustrate that such cells have blunted immunosuppressive 
functions and so they are not suitable for autologous therapy 
[261–264]. Serena et al. investigated the altered immune 
profile of hASCs derived from mesenteric or subcutaneous 
fat depots from CD patients. Mesenteric creeping fat hASCs, 
of CD patients, exhibited exacerbated migration capacity 
and elevated IL-1β expression. Also, CM from active and 
inactive CD subcutaneous ASCs failed to inhibit the prolif-
eration of stimulated T and B cells and to promote the M2 
polarization. That was attributed to inflammasome activa-
tion and inflammatory markers elevation, as represented by 
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upregulated gene levels of IL1β, IL6, TNF-αA, and CCL2, 
however, reduced expression and production of the ASC 
immunomodulator; TGF-β [261]. In a more recent report, 
the authors demonstrated that sc. ASCs from active CD 
patients exhibited distinct epigenetic DNA methylation pat-
terns associated with differential expression of immune sys-
tem- related genes [262]. With except of TNF-α, in hASCs 
isolated from patients with inactive disease, almost the 
expression levels of all those genes were comparable to the 
control level, indicating that immune system genes affected 
by methylation marks were partially restored in patients 
during episodes of remission [262]. Importantly, cigarette 
smoking favored the pro-inflammatory epigenetic changes 
and the blunted immunosuppressive functions of hASCs 
from patients with active CD [263].

The first report to investigate the immunosuppressive 
potential of hASCs from UC patients, with different dis-
ease degrees has been recently published [264]. UC-ASCs 
exhibited a diminished ability to inhibit stimulated PBMC 
proliferation, suppress CD25 and CD69 activation marker 
expression, decrease the production of IFN-ɤ and TNF-α, 
and reduce their cytotoxic effect on A549 cells. On inflam-
matory priming with a mix of IFN-ɤ and TNF-α, UC-ASCs 
secreted lower levels of PGE2, IDO, and TSG-6, which 
mediated their blunted immunopotency. Moreover, UC-
ASCs induced weaker therapeutic effects than healthy ASCs, 
in experimental UC. These findings indicate that the immu-
nosuppressive properties of ASCs from patients with UC 
(mild, moderate or severe) are affected [264].

Effect of Breast Cancer

Numerous studies demonstrate that resident ASCs in breast 
cancer(BC) tissue are greatly affected by the tumor microenvi-
ronment [265–269]. In one study, IL-10 and TGF-β1 mRNAs 
were significantly higher in ASCs isolated from patients with 
BC (pathological stage II/III) than those from normal indi-
viduals. Moreover, the CM of ASCs isolated from patients 
with BC (stage III) upregulated the expression levels of the 
regulatory molecules genes; IL-4, TGF-b1, IL-10, CCR4 and 
CD25 and increased the frequency of  CD4+  CD25+  FOXP3+ 
Tregs in peripheral blood lymphocytes (PBLs) [265]. In a 
more recent report, ASCs from BC patients significantly 
directed naïve CD4 T lymphocytes toward Tregs with dif-
ferent phenotypes. They significantly induced the expan-
sion of the  CD4+CD25+Foxp3+CD45RA+,  CD4+CD25+ 
 FOXP3+Helios+,  CD4+CD25−  FOXP3+Helios+, and  CD25+ 
 FOXP3+CD73+CD39+ Tregs and that was associated with 
enhanced production of IL-10 and TGF-β1 by the generated 
T regs [269].

Another immunomodulatory role seems to be exerted by 
hASCs in the tumor microenvironment is IFN-ɤ mediated- 
elevated expression of major histocompatibility complex 

class I polypeptide-related sequence B (MIC B). MIC B is 
a ligand of Natural-killer Group 2, member D (NKG2D) 
receptor to protect the cancer cells from NK cells. Frequent 
stimulation of NKG2D receptor by MIC B can result in 
downmodulation of this receptor and the impairment of NK 
cells activation in invasive ductal breast carcinoma [268]. 
Another report demonstrated a significant decrease in the 
percentage of  CD3−  CD16+  CD56+bright and  CD3−  CD16+ 
 CD56+dim NK cell subsets after exposure of PBLs to ASCs 
either from normal donors or patients with BC (pathological 
stage II/III). A considerable reduction in NK cell activating 
receptors as NKG2D and the CD69 among the cocultured 
PBLs was also observed. However, no significant difference 
was observed b/w cancerous vs. normal breast ASCs in the 
NK cell suppressive effects. However, cancerous ASCs had 
significantly higher IDO1, IDO2, and HLA-G5 mRNAs 
[266].

In the context of B cells, ASCs from normal donors and 
patients with invasive ductal BC (stage II/III) were cocul-
tured with B cells derived from breast tumor draining lymph 
nodes in direct and transwell systems [267]. ASCs from nor-
mal donors, not from patients with BC, were able to inhibit 
proliferation of in direct contact only. However, cancer ASCs 
induced higher frequency of IL-10 regulatory B cells than 
normal ASCs did [267]. All available studies recommend 
that ASCs may have crucial roles in breast tumor growth 
and progression by inducing regulatory molecules and 
promoting anti-inflammatory reactions within the tumor 
microenvironment.

Effect of Miscellaneous Inflammatory Diseases

Other different inflammatory or autoimmune diseases may 
affect the immunosuppressive phenotype and/or functions 
of ASCs. Under Th17 polarization conditions, hASCs from 
healthy donors inhibited the differentiation of  CD4+ T cells, 
from patients with Parkinson's disease, into Th17 cells, how-
ever, they induced functional Tregs producing IL-10Such 
ASC immunosuppressive findings in Parkinson's disease 
was attributed to the release of LIF by hASCs [271]. In the 
context of atherosclerosis (ATH) alone or with T2D, ASCs 
from patients had compromised ability to suppress the pro-
liferation of activated allogeneic CD4 + T and the effect was 
more profound in the presence of T2D [272].

In the context of sepsis, three monocyte subsets 
 (CD14++CD16+,  CD14+CD16++, and  CD14++CD16–) were 
isolated from patients in the early phase of severe sepsis or 
septic shock [259].The levels of  CD14++CD16+ mono-
cytes (pro-inflammatory phenotype) were positively cor-
related with the disease severity scores. hASCs were able 
in coculture to switch monocytes from  CD14++CD16+ to 
 CD14++CD16–and modulate the production of inflammatory 
cytokines toward anti-inflammatory phenotype (increased 
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IL-10 secretion) via PGE2/EP4-dependent mechanism. Addi-
tionally, ASCs modified frequenciesof monocyte phenotypes 
in experimentalsepsis [259]. A research indicates that ASCs, 
from osteoporotic donors, exhibit superior anti-inflammatory 
effects, over osteoporotic BMSCs in vitro and in a model 
of osteoporosis due to their potential to maintain stemness, 
energy metabolism and anti-oxidative capacity [270].

Conclusion & Perspectives

In the inflammatory microenvironment, the immunoregula-
tory potential of MSCs is susceptible to various factors, which 
leads them either to promote or reduce inflammation. From 
clinical perspectives, numerous recent review articles pre-
sented the effective potential of hASCs in treating of autoim-
mune/inflammatory or degenerative disorders [1, 4, 19, 275, 
276]. Due to their great contribution to hASC therapeutic 
effectiveness, we discussed the experimental and the donor-
related parameters that may affect hASC immunomodulatory 
functions in vitro. However, contradictory results about the 
adjustments of most of those determinants have been reported.

It is commonly thought that the younger the donor is, 
the less the passage of MSCs, the higher their stemness. 
From multiomics perspective, it has been found that even in 
ASCs from an elderly subject (≥ 60 years), when the round 
of cell passages is early, the stemness is high, indicating that 
ASC passage has a greater impact on the stemness and char-
acteristics of hASCs than donor age [222]. Regarding the 
experimental setting, direct contact with properly activated 
immune cells at high cell ratio may ensure effective immuno-
suppressive potential of hASCs. Regulatory-complaint xeno-
free media are promising alternatives to preserve or even 
enhance the ASC immunomodulatory functions in vitro [67, 
173]. However, comparative standardized research focus on 
profiling the changes in ASC immunomodulation in asso-
ciation with different culture medium compositions, is still 
needed for efficient FBS alternatives development and safe 
clinical translation.

ASC priming strategies to enhance their immunosup-
pressive efficacy are diverse and IFN-ɤ treatment of hASC 
spheroids seems to be a promising approach. Noteworthy, 
IFN-ɤ stimulation increased IDO expression noticeably in 
ASCs over BMSCs and umbilical cord blood-MSCs, how-
ever, it did not increase ASC immunosuppressive functions 
[22]. The latter findings might recommend assessing the 
IDO activity instead of expression to predict the ASC line 
immunosuppressive functions. Other licensing conditions 
can also be applied such as hypoxia, TLR stimulation and 
pharmacological manipulation. More attention needs to be 
paid to the affected molecular and signaling mechanisms, 
in primed ASCs, to personalize the therapeutic outcome 

and improve the ASC dysfunctionality in disease. Better 
knowledge of the differences b/w the immunomodulatory 
potentials of ASCs derived from various fat depots would 
be of great interest for a better source selection for ASC 
immunotherapeutic targets. As well, the effect of physical 
cues such as substrate stiffness and fluid forces in 3D plat-
form on the immunomodulatory capacity of ASCs requires 
further research in the near future [200].

In the context of the impact of pathological conditions on 
the immunomodulatory properties of hASCs, limited ability 
to use hASCs from patients with obesity, IBD and/or cancer 
in an autologous ASC based therapy is recommended. That 
may be due to the repeatedly reported blunted immunosup-
pressive capacity of ASCs from those patients. In the con-
text of other inflammatory and autoimmune diseases, such as 
RD, osteoporosis, and diabetes mellitus, contradictory results 
from being unaffected to slightly or severely affected ASC 
immunoregulatory capacity from patients with one of these 
diseases. To minimize discordant outcomes, the future stud-
ies need to take into account stratifying patients depending on 
patient-related parameters (such as age, body mass index, and 
genetic background) and disease-related parameters (such as 
the exact pathogenic cause, disease stage, duration). Impor-
tantly, the contradictory results can also be attributed to lack 
of standardized MSC immunopotency assays on both the 
whole PBMCs and a purified disease-relevant immune cell 
type [277]. Importantly, transciptomic and proteomic analy-
ses of ASC/ immune cell cocultures with different incuba-
tion times will improve our understanding and knowledge for 
ASC immunomodulatory effects in vitro and factors mediat-
ing their actions over time in culture. Such recommended 
research would help to get data that can be systemically com-
pared from different laboratories to draw solid conclusions.

ASCs may exert immunosuppressive potential in vitro; 
however, the real functionality should be ascertained in a 
disease model due to the significant differences b/w in vitro 
and in vivo conditions. Thus, there remains a need for com-
plementary preclinical then clinical studies to identify dif-
ferent conditions affecting ASC immunomodulatory effects 
in vivo. In summary, the hASC immunomodulatory capaci-
ties in vitro widely vary depending on experimental setup, as 
well as donor-related factors. The above-mentioned microen-
vironemental determinants are recommended to be standard-
ized by experts in the field to establish an effective hASCs 
immunosuppressive coculture setting.
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