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Abstract

Mesenchymal stem cells (MSCs) are well known for their beneficial effects, differentiation capacity and regenerative poten-
tial. Dental-derived MSCs (DSCs) are more easily accessible and have a non-invasive isolation method rather than MSCs
isolated from other sources (umbilical cord, bone marrow, and adipose tissue). In addition, DSCs appear to have a relevant
neuro-regenerative potential due to their neural crest origin. However, it is now known that the beneficial effects of MSCs
depend, at least in part, on their secretome, referring to all the bioactive molecules (neurotrophic factors) released in the
conditioned medium (CM) or in the extracellular vesicles (EVs) in particular exosomes (Exos). In this review, we described
the similarities and differences between various DSCs. Our focus was on the secretome of DSCs and their applications in
cell therapy for neurological disorders. For neuro-regenerative purposes, the secretome of different DSCs has been tested.
Among these, the secretome of dental pulp stem cells and stem cells from human exfoliated deciduous teeth have been the
most widely studied. Both CM and Exos obtained from DSCs have been shown to promote neurite outgrowth and neuropro-
tective effects as well as their combination with scaffold materials (to improve their functional integration in the tissue). For
these reasons, the secretome obtained from DSCs in combination with scaffold materials may represent a promising tissue
engineering approach for neuroprotective and neuro-regenerative treatments.
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Abbreviations

SCs Stem cells

MSCs Mesenchymal stem cells

DSCs Dental-derived MSCs

DPSCs  Dental pulp stem cells

SHEDs  Stem cells from human exfoliated deciduous
teeth

PDLSCs Periodontal ligament stem cells

DFSCs Dental follicle stem cells

SCAPs  Stem cells from apical papilla

GMSCs  Gingival MSCs

CM Conditioned medium

Exos Exosomes

Introduction

Stem cells (SCs) are undifferentiated cell populations with
high self-renewal capabilities and unlimited differentiation
potential [1]. They are found during embryonic development
(Embryonic stem cells, ESCs) and in many adult tissues and
organs, where they replace dying cells and regenerate dam-
aged tissue. ESCs are pluripotent cells. This means that they
can differentiate into cell types belonging to each germ line
(ectoderm, mesoderm, and endoderm). Adult stem cells
(ASCs), are classified as mesenchymal stem cells (MSCs),
Neural stem cells (NSCs), Epithelial stem cells (EpSCs),
and Skin stem cells (SSCs) depending on the tissue which
they are isolated and have limited differentiation potential.
The most studied line of ASCs is the bone marrow-derived
line (BM-MSCs), as they were discovered to belong to the
hematopoietic niche in the 1970s [2]. However, also BM-
MSC:s have limited differentiation potential due to their mes-
odermal origin. This limitation is particularly relevant for the
eventual therapeutic application in organs mainly composed
of post-mitotic cells, such as the brain. Indeed, although
BM-MSCs may be induced to differentiate vs a neurogenic
phenotype, in this case they do not appear to be functionally
active [3]. Since their initial discovery, MSCs have been
isolated from a variety of tissues including dental tissues
and named human dental-derived mesenchymal stem cells
(DSCs). Gronthos et al., first isolated a population of MSCs
from dental pulp, with similar properties to BM-MSCs [4].
DSCs in teeth have been described and classified according
to their origin tissue, in dental pulp stem cells (DPSCs), stem
cells from human exfoliated deciduous teeth (SHEDs), peri-
odontal ligament stem cells (PDLSCs), dental follicle stem
cells (DFSCs), stem cells from apical papilla (SCAPs), and
gingival MSCs (GMSCs) [4-9]. Notably, DSCs are derived
from the neural crest, a transient population of cells derived
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from the ectoderm germ layer, the same one that gives rise
to mature neurons, and for this reason they show more potent
neurogenic capabilities compared to other MSCs [10]. Thus,
DSCs, may be a good source of MSCs for the treatment of
neurodegenerative disorders and neural regeneration thanks
to their differentiation potential and paracrine effects, [11,
12]. Indeed, most pharmacological approaches to nerv-
ous system disorders are directed against symptoms of the
pathology (e.g., neurodegenerative disorders, autoimmune
diseases) [13]. Thus, their beneficial effects on patients
are limited. For this reason, cell therapy (CT) is receiving
increased attention as a possible alternative approach to such
pathologies (Fig. 1). CT involves the application of autolo-
gous or allogeneic cells into a patient [14] in order to allevi-
ate symptoms, or to regenerate a tissue damage. Strikingly,
even the administration of material derived from SCs (i.e.,
secretome) has been proved beneficial in preclinical models
of nervous system diseases.

In this review, we summarize the most recent research
in the field of CT using human DSCs and their secretome.
Highlighting analogies and differences between different
types of DSCs, we recapitulate the main characteristics of
these cells and the content of their secretome, as well as
advances in materials to support and enable DSC growth. In
the future, the increased use of neural crest SCs will provide
invaluable therapeutic application and, ideally, the establish-
ment of a biobank of these cells to perform autologous CT
for the eradication of transplant rejection.

Dental Stem Cells

DSCs have the advantages of being easily accessible by min-
imally invasive procedures [15], being expandable and main-
taining relative genomic stability over a long period of time
and exhibiting immunomodulatory properties [16]. Moreo-
ver, they are also able to differentiate toward the mesodermal
lineage, but also show the ability to transdifferentiate into
ectodermal and endodermal lineages [17]. For these reasons,
DSCs have been considered a promising tool for therapeutic
applications [18] due in part to their ability to secrete multi-
ple factors essential for tissue regeneration and because they
are obtained with fewer ethical or legal problems compared
to other procedures [11, 19, 20]. All types of DSCs show dif-
ferent origins and characteristics, but at the same time, share
similar expression profiles of surface markers as shown in
Table 1. They express not only mesenchymal and embryonic
SCs markers, but also neuronal markers, as they are derived
from migrating neural crest cells, which originated from the
germ layer of the embryonic ectoderm [10].
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Fig. 1 Schematic representation of DSCs in tissue engineering application for CT. DSCs can release growth factors and extracellular vesicles or
be used directly with scaffolds for tissue engineering cell therapy in neurological disorders

Maintenance and Survival of DSCs

Differentiation Capabilities and Maintenance
of DPSCs’stemness

DPSCs have a high differentiating capacity. In fact, it
has been demonstrated that they can differentiate into
different cell lineages including endodermal, meso-
dermal, and ectodermal lineages, respectively [19, 23,
48-59]. Furthermore, with the identification of func-
tional markers and appropriate culture conditions for SC
selection, it will be possible to target DPSCs for clinical
applications [60]. In this regard, several authors have
demonstrated that there are biological factors (such as
tooth type, age, genetic background and lifestyle) that
should be considered before tooth selection, and have
compared traditional isolation, culture and storage tech-
niques with improved methods or protocols such as the
use of a serum/xenon-free culture medium to prolong
the stemness of DPSCs [61, 62]. Diomede et al., studied
the expression of proteins involved in cell proliferation/
senescence and embryonic stem cell markers during early
and late passages in MSCs obtained from dental pulp
tissues, suggesting that the presence of embryonic and
proliferation markers in late passages could potentially
support the application of DSCs in clinical trials based
on stem cell therapy [63].

Differentiation Capabilities and Maintenance
of SHEDs'stemness

SHED:s also have a high differentiation capacity [5, 64—68].
SHEDs have a greater self-renewal potential than DPSCs even
when subjected to adverse culture conditions [69, 70]. SHEDs,
in addition to expressing the neural crest marker just like DPSCs
[65], also express a wide range of lineage-specific markers and
genes as shown in Table 1 [71, 72]. During long-term culture,
SHEDs do not undergo spontaneous degeneration or differen-
tiation [73]. Furthermore, SHEDs have been shown to possess
higher proliferation rates and differentiation potential after
cryopreservation and long-term storage (for two years) than
DPSCs [29, 74] and retain similar properties to those obtained
from fresh tissue [70, 75] that can be used for cell-based therapy
[76]. It has been shown that the cell culture microenvironment
can also influence the secretion and differentiation potential
of pulp cells [77]. SHEDs and DPSCs, despite being SCs
originating from the same tissue source, but from two different
time points, show differences in their differentiation capacity
towards major lineages [5, 65, 78, 79]. Naz et al., demonstrated
that SHEDs have a better proliferation and self-renewal and
better osteogenic differentiation capacity compared to DPSCs
[80, 81]. Kanafi et al., further demonstrated that SHEDs have
greater differentiation potential towards insulin-producing cells
than DPSCs in the presence of appropriate inductive signals
[70]. DPSCs and SHEDs are capable of regenerating pulp and
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Table 1 (continued)

References

Characteristics

Origin

DSCs

[16, 36, 37, 40-43]

e Maintenance of root maturation

Isolated from the apical papilla, a soft tissue at the apices of developing perma-

SCAPs

e Formation of dentin-pulp-like complex

nent teeth

e They can form cementum/PDL-like complex in vivo

e They present self-renewal, proliferation, migration, differentiation, and immu-

nosuppression, which support the application of SCAPs in stem cell-based

therapy, including the immunotherapy and the regeneration of dental tissues,

bone, neural, and vascular tissues

e Positive markers: CD13, CD24, CD29, CD44, CD49, CD51, CD56, CD61,

CD73, CD90, CD105, CD106, CD146, CD166, STRO-1,

o Negative markers: CD14, CD18, CD34, CD45, CD117, CD150

e ESCs marker: OCT-4, Nanog, NOTCH-1, SOX-2

o Neural markers: OCT-4, SOX2, Nestin
e Easy to isolate, long-term stability

[37,44-47]

Isolated from healthy gingival tissues

GMSCs

o They exerted anti-proliferative and pro-apoptotic effects on oral cancer cells

both in vitro and in vivo

o Positive markers: CD13, CD29, CD44, CD73, CD90, CD105, CD146,

STRO-1
e Negative markers: CD34, CD45

o ESCs marker: SSEA-4, OCT-4, Nanog

o Neural markers: Nestin, SOX10, p3-tubulin, NFM, CNPase

dentin and therefore have the potential to be used as a source of
pluripotent stem cells for future cell therapies in medicine and
dentistry [78, 82, 83].

Differentiation Capabilities of Other DSC Types

PDLSCs and SCAPs possess the same in vitro multiline-
age differentiation potential like that of DPSCs and SHEDs
[8, 34, 35, 40, 43, 84], making them good candidates in
regenerative medicine to promote both dental and non-den-
tal tissue regeneration [84]. DFSCs can differentiate into
cementoblasts in vivo [85] and they can also be directed to
differentiate into conventional multidirectional lineages [8,
86]. Instead, GMSCs can be targeted for osteogenic, adipo-
genic, chondrogenic, neurogenic, endothelial-like, odonto-
genic, and myogenic differentiation [46, 47].

Development of 3D Models to Study
Neurological Disorders

Conventional in vitro models for studying SCs differen-
tiation are usually cultured in two dimensions (2D). The
in vitro three-dimensional (3D) model, which should ide-
ally mimic the SCs microenvironment in vivo, is poten-
tially useful for inducing stem cell-derived tissue forma-
tion. Biodegradable scaffolds play an important role in
creating 3D structures to guide tissue formation. Fur-
thermore, the diffusion of nutrients, oxygen, and bioac-
tive factors through the 3D constructs shows increased
efficiency for cell survival over long periods of time. Ide-
ally, the scaffold should have mechanical properties that
are consistent with the anatomical site where it is to be
implanted. Recently, progress has been made in the devel-
opment of natural and synthetic biomaterials for periph-
eral nerve (PN) repair to address the challenging clinical
problem of damaged PN regeneration. These materials can
be used as membranes useful in the repair of nerves and
nerve ducts. For example, Wang et al., in 2020 demon-
strated that collagen scaffold can promote the recovery
of the functional facial nerve [87]. Moreover, the use of
Silymarin nanoparticles loaded into the chitosan conduit
was shown to improve functional recovery of transected
sciatic nerve in rats [88]. On the same topic, Zorba Yildiz
et al., investigated the preparation of a biohybrid hydrogel
bioink containing graphene for use in peripheral tissue
engineering and demonstrated that using of this bioink
induced the neural differentiation of SCs [89]. Moreover,
Su and Pan demonstrated the possibility to induce SHEDs’
neural differentiation by using 3D polydimethylsiloxane
(PDMS) scaffolds in the perfusion system operating in the
high-concentration of a rat Schwann cell (RSC)-seeded
culture medium [90]. Other authors demonstrated that
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engineered Elastin-like proteins can support regeneration
of PN [91]. The main scaffolds utilized to support cells
involved in the repair process such as neurons, Schwann
cells, macrophages, and blood vessels can be divided
into biomaterials scaffold and biological scaffold. Both
synthetic (biomaterials scaffold) and natural (biological
scaffold) material show several tangible advantages and
disadvantages attributed to both options [92, 93]. Due to
their architectural structure, both types of scaffolds mimic
the native extracellular matrix (ECM). The main struc-
tural difference is that biomaterial scaffolds are made of
synthetic polymers or purified natural polymers, whereas
biological scaffolds are composed of decellularized mam-
malian tissue [94].

Structural Properties (Characteristics) of Scaffolds

In general, biomaterials scaffolds are considered better than
biological scaffolds for several characteristics such as precise
geometrical pattern, biocompatibility, porosity, and stiffness
to obtain a more easily and precise architecture and they can
be more easily adapted, to improve cell adhesion and tune
mechanical properties [95-97]. However, natural materials
possess innate cell binding motifs, produce harmless deg-
radation products, and effectively mimic physiological-like
tissue remodeling and activate repair pathways [98, 99].

Geometrical Pattern

Geometrical pattern is one of the features able to modulate
SCs differentiation. As reported by Das and Bellare also
DPSCs in Customized 3D Nanofibrous Scaffolds for regen-
eration of Peripheral Nervous System (PNS) can support
DPSC:s proliferation and their subsequent neural differen-
tiation [100]. Together with other studies, all authors dem-
onstrated that transplanted scaffold containing DPSCs may
provide a promising strategy for neuron repair, functional
recovery, and neural tissue regeneration [101, 102].

Stiffness

Stiffness is one of the characteristics that can affect in
a cell-specific way cells behavior during regeneration.
For example, Sridharan et al., demonstrated that upon
implantation of a biomaterial, MSCs and macrophages
both contribute to the regeneration cascade of events
[103]. Besides, Srinivanan et al., demonstrated that stiffer
substrates can modulate human neural crest derived stem
cell differentiation via CD44 mediated signaling [104].
Other studies reported that Schwann cells can develop nor-
mally on both stiff and soft hydrogels but activate different

@ Springer

intracellular pathways in response to different substrate
stiffness [105]. On this topic, Liu et al., demonstrated that
exosome-loaded hydrogel stiffness plays an important
role in tissue regeneration by regulating exosome release
behavior [106]. Also, Guo et al., fabricated highly vas-
cularized scaffolds embedded with human DPSCs, that
thanks to their paracrine-mediated angiogenic and neuro-
regenerative potentials were capable of augmenting and
modulating Spinal Cord Injurie (SCI) repair [107].

Porosity

Also, porosity is an important parameter affecting neu-
ral cell regeneration. For example, nanostructures surface
topographies have been developed to mimic microstruc-
tures for neuronal axons and Schwann cells also incorpo-
rating matrix proteins or peptides [108]. Injectable hydro-
gel systems have been quite extensively studied to deliver
therapeutic molecules in various neurological disorders.
This system has been mainly developed for the treatment
of tumors to maintain a therapeutic concentration of the
drug for a prolonged time in the local area and so to avoid
toxicity [109]. Also, hydrogels composite comprising of
dextran dialdehyde and gelatin, loaded with dopamine
have been used in animal models of Parkinson’s disease
(PD) to release neurotransmitters [94]. Hydrogel matri-
ces have also been used for embedding different neuro-
trophic factors by an affinity-based system. The negatively
charged sulfate groups present in heparin were capable of
immobilizing neurotrophic growth factors such as nerve
growth factor (NGF), glial cell derived neurotrophic factor
(GDNF) and Neurotrophin 3 (NT-3) that could be released
in the local area of treatment [110-112]. Ansari et al.,
demonstrated that PDLSCs and GMSCs promote nerve
regeneration when encapsulated in a 3D scaffold based
on alginate and hyaluronic acid hydrogels that, due to its
elasticity, was capable to sustain the release of NGF [113].
Ueda et al., demonstrated that chitosan scaffolds combined
with Basic fibroblast growth factor (bFGF) facilitated the
neural differentiation of DPSCs [114].

Viscosity

Viscous characteristics together with elastic properties are
also important in brain tissues that in a process of “stress-
relaxation” responds to mechanical perturbations [115]. For
example, hydrogel matrix allows to reproduce several fac-
tors that are required for the axonal growth such as mechan-
ical stress experienced by the neural membrane, neuronal
cytoskeletal dynamics, and mechano-sensing ability of
the neurons. Luo et al., developed a 10% GelMA hydrogel
mix with recombinant human bFGF and DPSCs to fill a
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cellulose/soy protein isolate composite membrane (CSM)
tube. They constructed a nerve-like conduit, demonstrat-
ing that CSM-GFD could be a promising tissue engineer-
ing approach to replace the conventional nerve autograft to
treat the large gap defect in peripheral nerve injuries [116].
Similarly, Li et al., demonstrated that dental follicle cells
(DFCs) seeded on Aligned electrospun PCL/PLGA mate-
rial (AEM) could stretch along the oriented fibers and pro-
liferate efficiently and transplanted in rats contributed to
restore the defect in rat spinal cord [117]. One of the goals
of tissue engineering is therefore to try to exploit the innate
regenerative capacity of SCs. Designing the scaffold in such
a way that the scaffold itself delivers regenerative signals
to cells could be a good model. In fact, in addition to the
biomechanical contribution, cellular behavior is strongly
influenced by biological and biochemical signals coming
from the ECM.

Conductivity

Another property able to influence the cellular behaviour
in response to a regenerative stimulus could be electrical
conductivity of scaffolds. Liu et al., demonstrated that a 3D
electroconductive gelatin methacryloyl-multiwalled carbon
nanotube/cobalt3D conductive hydrogel scaffolds acceler-
ated the neural differentiation of SCAPs. Considering these
aspects, the novel electroconductive GeIMA-MWCNTs/Co
hydrogel synergized with ES greatly promotes SCAPs neu-
ronal differentiation [118]. Therefore, the use of scaffolds as
delivery systems for growth factors, adhesion molecules and
cytokines has recently received attention [119]. This condi-
tion would be particularly interesting for stem cell models
such as DSCs. As reported so far, the combined applica-
tion of technologies such as scaffolding materials and SCs
is thought to have enormous potential for tissue regeneration
[18].

Table 2 Main factors found in DSCs’ secretome

DSCs Secretome

Currently, research is focusing on the therapeutic applica-
tions of DSCs, particularly in preventing and treating neu-
rological diseases and nerve injuries [37]. The role played
by these cells in the reparative process is mainly attributed
to paracrine mechanisms mediated by their secreted fac-
tors [53]. Gnecchi et al., demonstrated that MSCs mediate
their therapeutic effects through the secretion and release
of trophic molecules known as “secretome”. This evidence
allowed the development of the theory that the therapeutic
applicability of MSCs in regenerative medicine is based on
their ability to homing to the site of tissue injury and differ-
entiate into different functional cell types, leading to tissue
repair [120]. Interestingly, some studies also suggested the
superiority of the secretome obtained from DSCs compared
to other MSCs sources, such as BM-MSCs and adipose-
derived mesenchymal stem cells (AD-MSCs), for neuro-
protection [121]. The secreted factors can be found in the
cell culture medium called Conditioned Medium (CM) and
in the Exosomes (Exos) they secrete [122], representing an
attractive, noninvasive, and acellular tool for therapeutic
approaches against various disorders [123]. A summary of
the main factors found in the DSCs’ secretome is given in
Table 2.

Conditioned Media and Exosomes in Neurological
Disorders

DPSCs

It is important to note that donor age and in vitro micro-
environmental conditions may also influence secretome
composition. Indeed, DPSC-CM obtained under normoxic
conditions was reported to be enriched in molecules with
anti-inflammatory, tissue repair, and regenerative properties

DSCs Secretome Contained factors References
DPSCs CM Ang-2, EGF, Endoglin, Endothelin-1, Eotaxin-1, FGF-1, FGF-2, Flt-3L, Follistatin, G-CSF, GM-CSF, [124, 125]
GRO pan, HB-EGF, HGF, IFNa2, IFNy, IL-12(p40), IL-12(p70), IL-13, IL-15, IL-1B, IL-5, IL-8, IL-9,
1P-10, Leptin, MCP-1, MCP-3, PDGF-AA, PDGF-BB, PLGF, RANTES, TGF-a, TGF-p1, TGF-$2,
TGF-p3, TNFa, TNFp, VEGF-A, VEGF-C, VEGF-D, IGF-1, IL10, IGFBP-6, NT-3, BMP-4, MIP-15,
NAP-2, TGF-p3, TGF-p1, MIP-3a, TNF-a, TNF-p, ICAM-1, NT-4, I-TAC, TARC, Axl, THPO, TECK,
Acrp-30, ICAM-3, EGFR, AgRP, XCL-1, MIF
SHEDs CM FGF-2, IL-10, PDGF, SDF-1, Ang-1, TGF-p3, HGF, INF-y, VEGF, and IL-6 [126]
PDLSCs CM and Exos 99 proteins, including matrix proteins, enzymes, growth factors, cytokines, and angiogenic factors, IL-10, [127-132]
SDF-1a, TGF-p, IL-15, NT3, MCP-1 and MIP-1a
SCAPs CM 2046 proteins, included chemokines, angiogenic, immunomodulatory, antiapoptotic, and neuroprotective  [133]
factors, ECM proteins
GMSCs CM NGF, NT3, IL-10, and TGF-$ [134]
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compared to CM obtained under hypoxic conditions [135].
Confirming that hypoxia appears to promote neuronal dif-
ferentiation of DPSCs, Delle Monache et al. demonstrated
that administration of DPSC-CM under hypoxic conditions
resulted in neuronal differentiation of both SH-SYSY neuro-
blastoma cells and undifferentiated DPSCs [23]. DPSC-CM
promoted neurite outgrowth in dorsal root ganglion (DRG)
neurons. In particular, the total length and joint number of
neurites increased after CM treatment. Furthermore, DPSC-
CM promotes Schwann cell viability and myelin formation
[136]. DPSCs’ secretome also showed beneficial effects
in models of neurodegenerative diseases. Ahmed et al.,
described that treatment with DPSCs’secretome reduced
amyloid p (AP) cytotoxicity in an in vitro model of Alzhei-
mer’s disease (AD), increasing cell viability and reducing
apoptosis [137]. Wang et al., demonstrated for the first time
the therapeutic benefits of DPSC-CM in amyotrophic lateral
sclerosis (ALS) with beneficial effects on direct motor neu-
ron protection and lifespan prolongation [138]. The protec-
tive effect of DPSC-CM has also been demonstrated in the
treatment of experimental autoimmune encephalomyelitis
(EAE), the main murine model of multiple sclerosis (MS).
Shimojima et al., showed that DPSC-CM administration
reduced the expression of inflammatory cytokines in the
spinal cord, inhibited demyelination, and improved clini-
cal scores of EAE [139]. DPSC-Exos may be more suitable
for the treatment of neurodegenerative diseases than MSCs
derived from mesodermal tissues [138]. They may be an
effective drug carrier for the treatment of various diseases,
especially neurological disorders such as PD [140, 141].

SHEDs

The SHED-CM strongly promoted the expression of anti-
inflammatory cytokines, angiogenic and anti-apoptotic fac-
tors [142], making this a potential therapeutic tool in neuro-
logical disorders. Different studies reported beneficial effects
of SHED-CM both in vitro and in vivo PD models [143].
Mita et al., demonstrated that SHED-CM attenuated pro-
inflammatory responses induced by p-amyloid plaques and
generated an anti-inflammatory/tissue regeneration environ-
ment, which was accompanied by the induction of M2-like
anti-inflammatory microglia, suggesting that SHED-CM
can provide significant therapeutic benefits for AD [144].
Matsubara et al., demonstrated that SHED-CM, adminis-
tered intrathecally into injured spinal cord in the rat during
the acute postinjury period, caused a remarkable functional
recovery related to the induction of anti-inflammatory M2
macrophage [145]. Miura-Yura et al., described that SHED-
CM significantly promoted neurite outgrowth of dorsal root
ganglion neurons compared to basal DMEM indicating that
SHED-CM might have a therapeutic effect on diabetic poly-
neuropathy through the promotion of neurite outgrowth, and
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the increase in capillaries may contribute to the improve-
ment of neural function [146]. In an animal model of supe-
rior laryngeal nerve injury, the systemic administration
of SHED-CM induced functional recovery, increasing the
degree of myelination, and promoted axonal regeneration
shifting macrophages toward the M2 phenotype [147]. Li
et al., injected SHED-Exos into a traumatic brain injury
(TBI) rat model and observed that SHED-Exos contrib-
uted to rat motor functional restoration and cortical lesion
reduction by shifting microglia polarization [148]. Narbute
et al., showed that SHED-Exos significantly improved the
gait impairments and contralateral rotations in the unilateral
6-hydroxydopamine (6-OHDA) rat model of PD [149]. In
terms of anti-inflammatory effect, SHED-Exos significantly
suppressed the carrageenan-induced acute inflammation
in vivo [150]. Similarly, Luo et al., showed that SHED-Exos
markedly reduced the inflammation in chondrocytes derived
from the temporomandibular joint through delivering miR-
100-5p [151].

PDLSCs

PDLSCs secretome can reduce oxidative stress and inflam-
mation in injured neurons and can increase the functional-
ity of the PI3K/Akt/mTOR axis which results in restoring
BDNF production. Moreover, the CM has a neuroprotec-
tive effect due to containing NT-3, and IL-10, and the pres-
ence of growth factors and immunomodulatory cytokines
[152]. PDLSC-CM is useful in enhancing long-term neu-
ronal regeneration in spinal cord injury [153]. Rajan et al.,
showed that PDLSCs-CM obtained from patients with
relapsing-remitting MS (RR-MS) showed anti-inflammatory
and antiapoptotic effects when injected in a mouse model
of MS [129]. Interestingly, CM obtained from PDLSCs cul-
tured under hypoxic conditions was efficacious in amelio-
rating clinical and histological disease scores in EAE mice.
This treatment reduced inflammatory cell infiltration and
increased remyelination in the spinal cord.

SCAPs

Yu et al., profiled the secretome of human SCAPs by com-
paring it to that of BM-MSCs. A total of 2,046 proteins were
detected in the SCAP-CM. Chemokines were included as
well as angiogenic, immunomodulatory, anti-apoptotic and
neuroprotective factors and ECM proteins [133]. In another
study, Yu et al., compared the osteo/odontogenic, angio-
genic, and neurogenic effects of soluble factors released
from SCAPs and BM-MSCs in vitro on the proliferation
and differentiation of dental pulp cells (DPCs). They dem-
onstrated that CM released from SCAPs had a greater osteo/
odontogenic and neurogenic inductive effect on DPCs than
BM-MSCs-CM. This indicates that SCAPs-CM may serve
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as an additive to enhance pulp tissue repair and regenera-
tion [154].

GMSCs

Rajan et al., demonstrated the presence of NGF, NT-3,
IL-10 and TGF-p in GMSC-CM, which provide neuro-
protection in scratch-damaged motor-neuron-like NSC-
34 cells suggesting a potential therapeutic application of
GMSC-CM in motor neuron degenerative diseases [134].
Although few studies are currently available on the poten-
tial therapeutic applications of GMSC-Exos, they hold a
great promise for tissue regeneration. Jiang and Xu dem-
onstrated that GMSC-Exos facilitated the osteogenic
differentiation of MC3T3-El cells [155]. In a high-lipid
microenvironment, GMSC-Exos suppressed lipid accumu-
lation, transformed pro-inflammatory macrophages to an
anti-inflammatory phenotype, and decrease the secretion
and expression of inflammatory factors including IL-6,
IL-1pB, TNF-a, and cluster of differentiation [156]. Rao
et al., showed that GMSC-Exos enhanced the proliferation
of Schwann cells and the growth of the dorsal root ganglion
neuron axon as well as promoting the formation of nerve
fibers and myelin, which subsequently contributed to the
recovery of motor skills, nerve conduction function, and
muscle movement [157].

Conclusion

DSCs, have been shown to possess a remarkable neurore-
generative potential due to their neural crest origin. Not only
the cells but also their secretome exhibit the same enhanced
neuroprotective and neuroregenerative properties. The stud-
ies evaluated in this review have shown that both CM and
Exos contain neurotrophins and molecules with neuroprotec-
tive action, even at higher levels than other MSCs. DSC-CM
and DSC-Exos stimulated neurite outgrowth and exhibited
neuroprotective effects in preclinical models of neurologi-
cal disease and neuronal injury. DSC-CM represent an
attractive, non-invasive, and acellular tool for therapeutic
approaches against various disorders. DSC-Exos possesses
unique advantages such as high drug loading capacity, high
specificity, low immunogenicity, excellent biocompatibility,
ease of obtaining, low side effects and nanometer size. DSC-
Exos is emerging as a promising and practical therapeutic
approach for tissues repair and regeneration. Currently,
DPSC and SHED secretomes are the most studied. How-
ever, several studies have also highlighted the neuroprotec-
tive effects of PDLSC and GMSC secretomes. Interestingly,
some studies have also suggested the superiority of DSCs
derived secretome over other MSCs sources, such as BM-
MSCs and AD-MSC:s, for neuroprotection. Furthermore, the

mechanical properties of the substrate to which the cells are
attached are fundamental fin regulating cellular mechano-
transduction and the subsequent cellular behavior, espe-
cially when further technologies allow the substrate itself to
become biologically active. This has important implications
for development, differentiation, disease, and regeneration.
The proliferation, paracrine effect, and multidirectional dif-
ferentiation potential of DSCs support the application of
DSCs in regenerative medicine [18]. In conclusion, DSC
secretomes in combination or not with biomaterials and
biological scaffold are emerging as a promising and practi-
cal therapeutic approach for the repair and regeneration of
different tissues, especially in the neuroregenerative field. It
is thought to be useful for the development of new neuro-
protective therapies.
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