Skip to main content
Log in

Mesenchymal Stem Cell—Macrophage Crosstalk Provides Specific Exosomal Cargo to Direct Immune Response Licensing of Macrophages during Inflammatory Responses

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases (NDDs) continue to be a significant healthcare problem. The economic and social implications of NDDs increase with longevity. NDDs are linked to neuroinflammation and activated microglia and astrocytes play a central role. There is a growing interest for stem cell-based therapy to deliver genes, and for tissue regeneration. The promise of mesenchymal stem cells (MSC) is based on their availability as off-the-shelf source, and ease of expanding from discarded tissues. We tested the hypothesis that MSC have a major role of resetting activated microglial cells. We modeled microglial cell lines by using U937 cell-derived M1 and M2 macrophages. We studied macrophage types, alone, or in a non-contact culture with MSCs. MSCs induced significant release of exosomes from both types of macrophages, but significantly more of the M1 type. RNA sequencing showed enhanced gene expression within the exosomes with the major changes linked to the inflammatory response, including cytokines and the purinergic receptors. Computational analyses of the transcripts supported the expected effect of MSCs in suppressing the inflammatory response of M1 macrophages. The inflammatory cargo of M1 macrophage-derived exosomes revealed involvement of cytokines and purinergic receptors. At the same time, the exosomes from MSC-M2 macrophages were able to reset the classical M2 macrophages to more balanced inflammation. Interestingly, we excluded transfer of purinergic receptor transcripts from the co-cultured MSCs by analyzing these cells for the identified purinergic receptors. Since exosomes are intercellular communicators, these findings provide insights into how MSCs may modulate tissue regeneration and neuroinflammation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hanslik, K. L., Marino, K. M., & Ulland, T. K. (2021). Modulation of glial function in health, aging, and neurodegenerative disease. Frontiers in Cellular Neuroscience, 15, 718324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kovacs, G. G. (2016). Molecular pathological classification of neurodegenerative diseases: Turning towards precision medicine. International Journal of Molecular Sciences, 17, 189.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gabor, G. (2014). Kovacs current concepts of neurodegenerative diseases. European Medical Journal Neurology, 1, 78–86.

    Google Scholar 

  4. Perry, V. H., & Teeling, J. (2013). Microglia and macrophages of the central nervous system: The contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Seminars in Immunopathology, 35, 601–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ransohoff, R. M., & Perry, V. H. (2009). Microglial physiology: Unique stimuli, specialized responses. Annual Review of Immunology, 27, 119–145.

    Article  CAS  PubMed  Google Scholar 

  6. Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: Biology and pathology. Acta neuropathologica, 119, 7–35.

    Article  PubMed  Google Scholar 

  7. Noh, H., Jeon, J., & Seo, H. (2014). Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochemistry International, 69, 35–40.

    Article  CAS  PubMed  Google Scholar 

  8. Henkel, J. S., Engelhardt, J. I., Siklós, L., Simpson, E. P., Kim, S. H., Pan, T., Goodman, J. C., Siddique, T., Beers, D. R., & Appel, S. H. (2004). Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 55, 221–235.

    Article  CAS  Google Scholar 

  9. Mrak, R. E., & Griffin, W. S. T. (2005). Glia and their cytokines in progression of neurodegeneration. Neurobiology of Aging, 26, 349–354.

    Article  CAS  PubMed  Google Scholar 

  10. González, H., Elgueta, D., Montoya, A., & Pacheco, R. (2014). Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. Journal of Neuroimmunology, 274, 1–13.

    Article  PubMed  Google Scholar 

  11. Gordon, R., Anantharam, V., Kanthasamy, A. G., & Kanthasamy, A. (2012). Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation. Journal of Neuroinflammation, 9, 1–18.

    Article  Google Scholar 

  12. Qian, L., Tan, K. S., Wei, S.-J., Wu, H.-M., Xu, Z., Wilson, B., Lu, R.-B., Hong, J.-S., & Flood, P. M. (2007). Microglia-mediated neurotoxicity is inhibited by morphine through an opioid receptor-independent reduction of NADPH oxidase activity. The Journal of Immunology, 179, 1198–1209.

    Article  CAS  PubMed  Google Scholar 

  13. Mrinal, K. P., Apala, C., & Soumyabrata, B. (2021). Neurodegeneration: Diagnosis, Prevention, and Therapy. In M. Mahmoud Ahmed (Ed.), Oxidoreductase (p. Ch. 9). Rijeka: IntechOpen.

    Google Scholar 

  14. Sakthiswary, R., & Raymond, A. A. (2012). Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regeneration Research, 7, 1822.

    PubMed  PubMed Central  Google Scholar 

  15. Rameshwar, P., Patel, J., & Aleynik, A. (2017). Stem Cells for Therapeutic Delivery of Mediators and Drugs. In: Toward the Future: The New Challenges of the Cell Therapy and Potential of Regenerative Medicine (pp. 157–157). Bentham Science.

  16. Patel, S. A., Sherman, L., Munoz, J., & Rameshwar, P. (2008). Immunological properties of mesenchymal stem cells and clinical implications. Archivum Immunologiae et Therapiae Experimentalis, 56, 1–8.

    Article  CAS  PubMed  Google Scholar 

  17. Walker, N. D., Elias, M., Guiro, K., Bhatia, R., Greco, S. J., Bryan, M., Gergues, M., Sandiford, O. A., Ponzio, N. M., Leibovich, S. J., & Rameshwar, P. (2019). Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Cell Death & Disease, 10, 59.

    Article  CAS  Google Scholar 

  18. Sherman, L. S., Munoz, J., Patel, S. A., Dave, M. A., Paige, I., & Rameshwar, P. (2011). Moving from the laboratory bench to patients’ bedside: Considerations for effective therapy with stem cells. Clinical and Translational Science, 4, 380–386.

    Article  PubMed  PubMed Central  Google Scholar 

  19. El-Kheir, W. A., Gabr, H., Awad, M. R., Ghannam, O., Barakat, Y., Farghali, H. A., Maadawi, Z. M. E., Ewes, I., & Sabaawy, H. E. (2014). Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transplantation, 23, 729–745.

    Article  PubMed  Google Scholar 

  20. Akiyama, Y., Radtke, C., & Kocsis, J. D. (2002). Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. Journal of Neuroscience, 22, 6623–6630.

    Article  CAS  PubMed  Google Scholar 

  21. Dezawa, M., Kanno, H., Hoshino, M., Cho, H., Matsumoto, N., Itokazu, Y., Tajima, N., Yamada, H., Sawada, H., & Ishikawa, H. (2004). Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. The Journal of Clinical Investigation, 113, 1701–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mahmood, A., Lu, D., Wang, L., & Chopp, M. (2002). Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. Journal of Neurotrauma, 19, 1609–1617.

    Article  PubMed  Google Scholar 

  23. Zhang, J., Li, Y., Chen, J., Cui, Y., Lu, M., Elias, S. B., Mitchell, J. B., Hammill, L., Vanguri, P., & Chopp, M. (2005). Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Experimental Neurology, 195, 16–26.

    Article  CAS  PubMed  Google Scholar 

  24. Sharma, A. (2018). Role of stem cell derived exosomes in tumor biology. International Journal of Cancer, 142, 1086–1092.

    Article  CAS  PubMed  Google Scholar 

  25. Illes, P., Rubini, P., Ulrich, H., Zhao, Y., & Tang, Y. (2020). Regulation of microglial functions by purinergic mechanisms in the healthy and diseased CNS. Cells, 9, 1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, J., Takemura, N., & Saitoh, T. (2021). Macrophage response driven by extracellular ATP. Biological and Pharmaceutical Bulletin, 44, 599–604.

    Article  CAS  PubMed  Google Scholar 

  27. Merz, J., Nettesheim, A., von Garlen, S., Albrecht, P., Saller, B., Engelmann, J., Hertle, L., Schäfer, I., Dimanski, D., & König, S. (2021). Pro-and anti-inflammatory macrophages express a sub-type specific purinergic receptor profile. Purinergic Signalling, 17, 481–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grassivaro, F., Menon, R., Acquaviva, M., Ottoboni, L., Ruffini, F., Bergamaschi, A., Muzio, L., Farina, C., & Martino, G. (2020). Convergence between microglia and peripheral macrophages phenotype during development and neuroinflammation. Journal of Neuroscience, 40, 784–795.

    Article  CAS  PubMed  Google Scholar 

  29. Sinha, G., Ferrer, A. I., Ayer, S., El-Far, M. H., Pamarthi, S. H., Naaldijk, Y., Barak, P., Sandiford, O. A., Bibber, B. M., Yehia, G., Greco, S. J., Jiang, S. G., Bryan, M., Kumar, R., Ponzio, N. M., Etchegaray, J. P., & Rameshwar, P. (2021). Specific N-cadherin-dependent pathways drive human breast cancer dormancy in bone marrow. Life Sci Alliance, 4(7), e202000969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bliss, S. A., Sinha, G., Sandiford, O. A., Williams, L. M., Engelberth, D. J., Guiro, K., Isenalumhe, L. L., Greco, S. J., Ayer, S., Bryan, M., Kumar, R., Ponzio, N. M., & Rameshwar, P. (2016). Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Research, 76, 5832–5844.

    Article  CAS  PubMed  Google Scholar 

  31. Sandiford, O. A., Donnelly, R. J., El-Far, M. H., Burgmeyer, L. M., Sinha, G., Pamarthi, S. H., Sherman, L. S., Ferrer, A. I., DeVore, D. E., Patel, S. A., Naaldijk, Y., Alonso, S., Barak, P., Bryan, M., Ponzio, N. M., Narayanan, R., Etchegaray, J. P., Kumar, R., & Rameshwar, P. (2021). Mesenchymal stem cell-secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Cancer Research, 81, 1567–1582.

    Article  CAS  PubMed  Google Scholar 

  32. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J.-M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., … Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7, 1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Greco, S. J., Ayer, S., Guiro, K., Sinha, G., Donnelly, R. J., Markos, H., Sherman, L. S., Kenfack, Y., Pamarthi, S. H., & Gergues, M. (2021). Restoration of aged hematopoietic cells by their young counterparts through instructive microvesicles release. Aging (Albany NY), 13, 23981.

    Article  CAS  PubMed  Google Scholar 

  34. Eruslanov, E., & Kusmartsev, S. (2010). Identification of ROS Using Oxidized DCFDA and Flow-Cytometry. In D. Armstrong (Ed.), Advanced Protocols in Oxidative Stress II (pp. 57–72). Humana Press.

    Chapter  Google Scholar 

  35. Dello Russo, C., Cappoli, N., Coletta, I., Mezzogori, D., Paciello, F., Pozzoli, G., Navarra, P., & Battaglia, A. (2018). The human microglial HMC3 cell line: Where do we stand? A systematic literature review. Journal of Neuroinflammation, 15, 259.

    Article  Google Scholar 

  36. Jeong, H. K., Ji, K., Min, K., & Joe, E. H. (2013). Brain inflammation and microglia: Facts and misconceptions. Experimental Neurobiology, 22, 59–67.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gabrusiewicz, K., Ellert-Miklaszewska, A., Lipko, M., Sielska, M., Frankowska, M., & Kaminska, B. (2011). Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS ONE, 6, e23902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Janabi, N., Peudenier, S., Héron, B., Ng, K. H., & Tardieu, M. (1995). Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen. Neuroscience Letters, 195, 105–108.

    Article  CAS  PubMed  Google Scholar 

  39. Streit, W. J. (2001). Microglia and macrophages in the developing CNS. Neurotoxicology, 22, 619–624.

    Article  CAS  PubMed  Google Scholar 

  40. Sharp, B. M. (2013). Conversion of the U937 monocyte into “Macrophage-Like” populations exhibiting M1 or M2 characteristics. Master thesis, Wright State University

  41. Bertram, C., von Neuhoff, N., Skawran, B., Steinemann, D., Schlegelberger, B., & Hass, R. (2008). The differentiation/retrodifferentiation program of human U937 leukemia cells is accompanied by changes of VCP/p97. BMC Cell Biology, 9, 1–16.

    Article  Google Scholar 

  42. Fanger, N. A., Wardwell, K., Shen, L., Tedder, T. F., & Guyre, P. M. (1996). Type I (CD64) and type II (CD32) Fc gamma receptor-mediated phagocytosis by human blood dendritic cells. The Journal of Immunology, 157, 541–548.

    Article  CAS  PubMed  Google Scholar 

  43. Morrison, T. J., Jackson, M. V., Cunningham, E. K., Kissenpfennig, A., McAuley, D. F., O’Kane, C. M., & Krasnodembskaya, A. D. (2017). Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. American Journal of Respiratory and Critical Care Medicine, 196, 1275–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lo Sicco, C., Reverberi, D., Balbi, C., Ulivi, V., Principi, E., Pascucci, L., Becherini, P., Bosco, M. C., Varesio, L., Franzin, C., Pozzobon, M., Cancedda, R., & Tasso, R. (2017). Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Translational Medicine, 6, 1018–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cekic, C., & Linden, J. (2016). Purinergic regulation of the immune system. Nature Reviews Immunology, 16, 177–192.

    Article  CAS  PubMed  Google Scholar 

  46. Dosch, M., Gerber, J., Jebbawi, F., & Beldi, G. (2018). Mechanisms of ATP release by inflammatory cells. International Journal of Molecular Sciences, 19, 1222.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N., Timmers, L., van Rijen, H. V., Doevendans, P. A., & Pasterkamp, G. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10, 301–312.

    Article  CAS  PubMed  Google Scholar 

  48. Drago, F., Lombardi, M., Prada, I., Gabrielli, M., Joshi, P., Cojoc, D., Franck, J., Fournier, I., Vizioli, J., & Verderio, C. (2017). ATP modifies the proteome of extracellular vesicles released by microglia and influences their action on astrocytes. Frontiers in Pharmacology, 8, 910.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lister, M. F., Sharkey, J., Sawatzky, D. A., Hodgkiss, J. P., Davidson, D. J., Rossi, A. G., & Finlayson, K. (2007). The role of the purinergic P2X 7 receptor in inflammation. Journal of Inflammation, 4, 1–14.

    Article  Google Scholar 

  50. Cohen, S., Harpaz, Z., Farbstein, M., Fishman, S., Barer, F., & Fishman, P. (2015). THU0064 the A3 Adenosine Receptor (A3AR): Therapeutic target and predictive biological marker in rheumatoid arthritis. BMJ Publishing Group Ltd.

  51. Erb, L., & Weisman, G. A. (2012). Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling, 1, 789–803.

    CAS  PubMed  Google Scholar 

  52. Aydin, D., Weyer, S. W., & Müller, U. C. (2012). Functions of the APP gene family in the nervous system: Insights from mouse models. Experimental Brain Research, 217, 423–434.

    Article  CAS  PubMed  Google Scholar 

  53. Volkman, R., & Offen, D. (2017). Concise review: Mesenchymal stem cells in neurodegenerative diseases. Stem Cells, 35, 1867–1880.

    Article  PubMed  Google Scholar 

  54. Aleynik, A., Gernavage, K. M., Mourad, Y., Sherman, L. S., Liu, K., Gubenko, Y. A., & Rameshwar, P. (2014). Stem cell delivery of therapies for brain disorders. Clinical and Translational Medicine, 3, 24.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kwon, S., Yoo, K. H., Sym, S. J., & Khang, D. (2019). Mesenchymal stem cell therapy assisted by nanotechnology: A possible combinational treatment for brain tumor and central nerve regeneration. International Journal of Nanomedicine, 14, 5925–5942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de la Rosa, G., Gómez, A. I., Baños, M. C., & Pelegrín, P. (2020). Signaling through purinergic receptor p2y2 enhances macrophage il-1β production. International Journal of Molecular Sciences, 21, 4686.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Klaver, D., & Thurnher, M. (2021). Control of macrophage inflammation by P2Y purinergic receptors. Cells, 10, 1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kreckler, L. M., Wan, T. C., Ge, Z.-D., & Auchampach, J. A. (2006). Adenosine inhibits tumor necrosis factor-α release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. Journal of Pharmacology and Experimental Therapeutics, 317, 172–180.

    Article  CAS  PubMed  Google Scholar 

  59. Csóka, B., Németh, Z. H., Virág, L., Gergely, P., Leibovich, S. J., Pacher, P., Sun, C.-X., Blackburn, M. R., Vizi, E. S., & Deitch, E. A. (2007). A2A adenosine receptors and C/EBPβ are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood, the Journal of the American Society of Hematology, 110, 2685–2695.

    Google Scholar 

  60. Németh, Z. H., Lutz, C. S., Csóka, B., Deitch, E. A., Leibovich, S. J., Gause, W. C., Tone, M., Pacher, P., Vizi, E. S., & Haskó, Gr. (2005). Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. The Journal of Immunology, 175, 8260–8270.

    Article  PubMed  Google Scholar 

  61. Niemi, K., Teirilä, L., Lappalainen, J., Rajamäki, K., Baumann, M. H., Öörni, K., Wolff, H., Kovanen, P. T., Matikainen, S., & Eklund, K. K. (2011). Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. The Journal of Immunology, 186, 6119–6128.

    Article  CAS  PubMed  Google Scholar 

  62. Pelegrin, P., Barroso-Gutierrez, C., & Surprenant, A. (2008). P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage. The Journal of Immunology, 180, 7147–7157.

    Article  CAS  PubMed  Google Scholar 

  63. Lee, B. H., Hwang, D. M., Palaniyar, N., Grinstein, S., Philpott, D. J., & Hu, J. (2012). Activation of P2X7 receptor by ATP plays an important role in regulating inflammatory responses during acute viral infection. PLoS ONE, 7, e35812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Clayton, A., Al-Taei, S., Webber, J., Mason, M. D., & Tabi, Z. (2011). Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. The Journal of Immunology, 187, 676–683.

    Article  CAS  PubMed  Google Scholar 

  65. Zhai, X., Chen, K., Yang, H., Li, B., Zhou, T., Wang, H., Zhou, H., Chen, S., Zhou, X., & Wei, X. (2021). Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury. Journal of Nanobiotechnology, 19, 1–20.

    Article  Google Scholar 

  66. Oliveira-Giacomelli, Á., Albino, C. M., de Souza, H. D. N., Corrêa-Velloso, J., de Jesus Santos, A. P., Baranova, J., & Ulrich, H. (2019). P2Y6 and P2X7 receptor antagonism exerts neuroprotective/neuroregenerative effects in an animal model of Parkinson’s disease. Frontiers in Cellular Neuroscience, 13, 476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Quintas, C., Vale, N., Gonçalves, J., & Queiroz, G. (2018). Microglia P2Y13 receptors prevent astrocyte proliferation mediated by P2Y1 receptors. Frontiers in Pharmacology, 9, 418.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pérez-Sen, R., Queipo, M. J., Morente, V., Ortega, F., Delicado, E. G., & Miras-Portugal, M. T. (2015). Neuroprotection mediated by P2Y13 nucleotide receptors in neurons. Computational and Structural Biotechnology Journal, 13, 160–168.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Maeda, J., Minamihisamatsu, T., Shimojo, M., Zhou, X., Ono, M., Matsuba, Y., Ji, B., Ishii, H., Ogawa, M., & Akatsu, H. (2021). Distinct microglial response against Alzheimer’s amyloid and tau pathologies characterized by P2Y12 receptor. Brain Communications, 3, fcab011.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schilling, U., Dingemanse, J., & Ufer, M. (2020). Pharmacokinetics and pharmacodynamics of approved and investigational P2Y12 receptor antagonists. Clinical Pharmacokinetics, 59, 545–566.

    Article  CAS  PubMed  Google Scholar 

  71. Merighi, S., Travagli, A., Nigro, M., Pasquini, S., Cappello, M., Contri, C., Varani, K., Vincenzi, F., Borea, P. A., & Gessi, S. (2023). Caffeine for prevention of Alzheimer’s disease: Is the A2A adenosine receptor its target? Biomolecules, 13, 967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Siniscalco, D., Giordano, C., Galderisi, U., Luongo, L., de Novellis, V., Rossi, F., & Maione, S. (2011). Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Frontiers in Integrative Neuroscience, 5, 79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ti, D., Hao, H., Tong, C., Liu, J., Dong, L., Zheng, J., Zhao, Y., Liu, H., Fu, X., & Han, W. (2015). LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. Journal of Translational Medicine, 13, 1–14.

    Article  Google Scholar 

  74. Kim, J., & Hematti, P. (2009). Mesenchymal stem cells convert human macrophages to a novel type of alternatively activated macrophages. Blood, 114, 3632.

    Article  Google Scholar 

  75. Chen, B., Ni, Y., Liu, J., Zhang, Y., & Yan, F. (2018). Bone marrow-derived mesenchymal stem cells exert diverse effects on different macrophage subsets. Stem Cells International, 2018, 8348121.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pu, J., Zhang, Y., Wang, A., Qin, Z., Zhuo, C., Li, W., Xu, Z., Tang, Q., Wang, J., & Wei, H. (2021). ADORA2A-AS1 restricts hepatocellular carcinoma progression via binding HuR and repressing FSCN1/AKT axis. Frontiers in Oncology, 11, 754835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

HU acknowledges grant support for his work on purinergic signaling by the São Paulo Research Foundation [(FAPESP) Project No. 2018/07366-4 and 2012/50880-4] and the National Institute of Science and Technology in Regenerative Medicine (INCT-REGENERA), Brazil, as well as by the National Council of Scientific and Technological Development (CNPq Project No. 406396/2021 and 308012/2021-6). YN was supported by FAPESP fellowship (Project No. 2017/23604-0 and 2015/14343-2) and NT acknowledges a doctoral fellowship from FAPESP (Project No 2020/10725-6). H.U. was awarded with a Fulbright Chair in Global Health Brazil at Rutgers New Jersey Medical School.

Author information

Authors and Affiliations

Authors

Contributions

YN conducted the experiments, analyzed the data, provided the concepts, and prepare the first draft of the manuscript. LSS cultured MSCs, conducted experiments, wrote the manuscript, and analyzed the data. NT wrote the manuscript and performed data analyses. YK wrote the manuscript and performed data analyses. MZR provided intellectual input into the overall design, edited the paper and analyzed the data. NS provided reagents, edited the manuscript, and provided intellectual input. PR wrote and edited the final version of the manuscript and is responsible for the ethics of using human bone marrow aspirates, and provided the concepts for the experimental design. HU wrote and edited the final version of the manuscript and provided the conceptualized overall hypothesis.

Corresponding authors

Correspondence to Pranela Rameshwar or Henning Ulrich.

Ethics declarations

Ethics Committee Approval

Rutgers Institutional Review Board approved this study (see method section).

Consent to Participate

Participating subjects signed the informed consent forms (see method section).

Consent for Publication

All authors have read the final version of this manuscript and agree with its publication.

Conflicts of Interest/Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 43 kb)

Supplementary file2 (DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naaldijk, Y., Sherman, L.S., Turrini, N. et al. Mesenchymal Stem Cell—Macrophage Crosstalk Provides Specific Exosomal Cargo to Direct Immune Response Licensing of Macrophages during Inflammatory Responses. Stem Cell Rev and Rep 20, 218–236 (2024). https://doi.org/10.1007/s12015-023-10612-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10612-3

Keywords

Navigation