Skip to main content
Log in

KLF2 Regulates Neural Differentiation of Dental Pulp-derived Stem Cells by Modulating Autophagy and Mitophagy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Transplantation of stem cells for treating neurodegenerative disorders is a promising future therapeutic approach. However, the molecular mechanism underlying the neuronal differentiation of dental pulp-derived stem cells (DPSC) remains inadequately explored. The current study aims to define the regulatory role of KLF2 (Kruppel-like factor 2) during the neural differentiation (ND) of DPSC.

Methods

We first investigated the transcriptional and translational expression of KLF2, autophagy, and mitophagy-associated markers during the ND of DPSC by using quantitative RT-PCR and western blot methods. After that, we applied the chemical-mediated loss- and gain-of-function approaches using KLF2 inhibitor, GGPP (geranylgeranyl pyrophosphate), and KLF2 activator, GGTI-298 (geranylgeranyl transferase inhibitor-298) to delineate the role of KLF2 during ND of DPSC. The western blot, qRT-PCR, and immunocytochemistry were performed to determine the molecular changes during ND after KLF2 deficiency and KLF2 sufficiency. We also analyzed the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) using the Seahorse XFe24 analyzer.

Results

Our study demonstrated that the expression level of KLF2, autophagy, and mitophagy-associated markers were significantly elevated during the ND of DPSC. Next, we found that the KLF2 inhibitor, GGPP significantly reduced the ND of DPSC. Inversely, KLF2 overexpression accelerated the molecular phenomenon of DPSC’s commitment towards ND, indicating the crucial role of KLF2 in neurogenesis. Moreover, we found that the KLF2 positively regulated autophagy, mitophagy, and the Wnt5a signaling pathway during neurogenesis. Seahorse XFe24 analysis revealed that the ECAR and OCR parameters were significantly increased during ND, and inhibition of KLF2 marginally reversed them towards DPSC’s cellular bioenergetics. However, KLF2 overexpression shifted the cellular energy metabolism toward the quiescent stage.

Conclusion

Collectively, our findings provide the first evidence that the KLF2 critically regulates the neurogenesis of DPSC by inducing autophagy and mitophagy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

CNS:

Central nervous system

DPSC:

Dental pulp-derived stem cells

ECAR:

Extracellular acidification rate

GGPP:

Geranylgeranyl pyrophosphate

GGTI-298:

Geranylgeranyl transferase inhibitor-298

HBSS:

Hanks’ balanced salt solution

KLF2:

Krüppel-like factor 2

KLFs:

Krüppel-like factors

MEME:

Minimum essential medium eagle

MSCs:

Mesenchymal stem cells

ND:

Neural differentiation

NDM:

Neural differentiation medium

OCR:

Oxygen consumption rate

ROS:

Reactive oxygen species

References

  1. Gao, H. M., & Hong, J. S. (2008). Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends In Immunology, 29(8), 357–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lindvall, O., Kokaia, Z., & Martinez-Serrano, A. (2004). Stem cell therapy for human neurodegenerative disorders–how to make it work. Nature medicine, 10(7), S42–S50.

    PubMed  Google Scholar 

  3. Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., & Nolta, J. A. (2010). Mesenchymal stem cells for the treatment of neurodegenerative disease. Regenerative medicine, 5(6), 933–946.

    PubMed  Google Scholar 

  4. Reboussin, É., Buffault, J., Brignole-Baudouin, F., Goazigo, R. L., Riancho, L., Olmiere, C., et al. (2022). Evaluation of neuroprotective and immunomodulatory properties of mesenchymal stem cells in an ex vivo retinal explant model. Journal of neuroinflammation, 19(1), 1–17.

    Google Scholar 

  5. Kim, Y. J., Park, H. J., Lee, G., Bang, O. Y., Ahn, Y. H., Joe, E., et al. (2009). Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia, 57(1), 13–23.

    PubMed  Google Scholar 

  6. Giacomelli, E., Vahsen, B. F., Calder, E. L., Xu, Y., Scaber, J., Gray, E., et al. (2022). Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell, 29(1), 11–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Puranik, N., Arukha, A. P., Yadav, S. K., Yadav, D., & Jin, J. O. (2022). Exploring the role of stem cell therapy in treating neurodegenerative diseases: Challenges and current perspectives. Current Stem Cell Research & Therapy, 17(2), 113–125.

    CAS  Google Scholar 

  8. Rolph, D. N., Deb, M., Kanji, S., Greene, C. J., Das, M., Joseph, M. (2018). Ferutinin directs dental pulp-derived stem cells towards the osteogenic lineage by epigenetically regulating canonical wnt signaling. Biochim Biophys Acta Mol Basis Dis. :165314.

  9. Ledesma-Martínez, E., Mendoza-Núñez, V. M., & Santiago-Osorio, E. (2016). Mesenchymal stem cells derived from dental pulp: a review. Stem cells international. ;2016.

  10. Lan, X., Sun, Z., Chu, C., Boltze, J., & Li, S. (2019). Dental pulp stem cells: An attractive alternative for cell therapy in ischemic stroke. Frontiers in neurology, 10, 824.

    PubMed  PubMed Central  Google Scholar 

  11. Mortada, I., Mortada, R., & Al Bazzal, M. (2018). Dental pulp stem cells and the management of neurological diseases: An update. Journal of Neuroscience Research, 96(2), 265–272.

    CAS  PubMed  Google Scholar 

  12. Heng, B. C., Lim, L. W., Wu, W., & Zhang, C. (2016). An overview of protocols for the neural induction of dental and oral stem cells in vitro. Tissue Engineering Part B: Reviews, 22(3), 220–250.

    PubMed  Google Scholar 

  13. Wang, F., Jia, Y., Liu, J., Zhai, J., Cao, N., Yue, W., et al. (2017). Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer’s disease. Cell Biology International, 41(6), 639–650.

    CAS  PubMed  Google Scholar 

  14. Sharma, Y., Shobha, K., Sundeep, M., Pinnelli, V. B., Parveen, S., & Dhanushkodi, A. (2022). Neural basis of Dental Pulp Stem cells and its potential application in Parkinson’s disease. CNS & neurological Disorders-Drug targets (formerly current drug Targets-CNS & neurological Disorders). ;21(1):62–76.

  15. Mead, B., Logan, A., Berry, M., Leadbeater, W., & Scheven, B. A. (2017). Concise review: Dental pulp stem cells: A novel cell therapy for retinal and central nervous system repair. Stem Cells, 35(1), 61–67.

    CAS  PubMed  Google Scholar 

  16. Abeysinghe, H. C., Bokhari, L., Quigley, A., Choolani, M., Chan, J., Dusting, G. J., et al. (2015). Pre-differentiation of human neural stem cells into GABAergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke. Stem Cell Research & Therapy, 6, 186.

    Google Scholar 

  17. Bonaventura, G., Munafo, A., Bellanca, C. M., La Cognata, V., Iemmolo, R., Attaguile, G. A. (2021). Stem Cells: Innovative Therapeutic Options for Neurodegenerative Diseases? Cells. ;10(8).

  18. Osathanon, T., Sawangmake, C., Nowwarote, N., & Pavasant, P. (2014). Neurogenic differentiation of human dental pulp stem cells using different induction protocols. Oral diseases, 20(4), 352–358.

    CAS  PubMed  Google Scholar 

  19. Chang, C. C., Chang, K. C., Tsai, S. J., Chang, H. H., & Lin, C. P. (2014). Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. Journal of the Formosan Medical Association, 113(12), 956–965.

    CAS  PubMed  Google Scholar 

  20. Heng, B. C., Jiang, S., Yi, B., Gong, T., Lim, L. W., & Zhang, C. (2019). Small molecules enhance neurogenic differentiation of dental-derived adult stem cells. Archives of oral biology, 102, 26–38.

    CAS  PubMed  Google Scholar 

  21. Chang, N. C. (2020). Autophagy and stem cells: Self-eating for self-renewal. Frontiers in Cell and Developmental Biology, 8, 138.

    PubMed  PubMed Central  Google Scholar 

  22. Onishi, M., Yamano, K., Sato, M., Matsuda, N., & Okamoto, K. (2021). Molecular mechanisms and physiological functions of mitophagy. The EMBO journal, 40(3), e104705.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, Q., Chen, J., Gu, L., Dan, X., Zhang, C., & Yang, Y. (2021). New insights into mitophagy and stem cells. Stem cell research & therapy, 12(1), 1–14.

    Google Scholar 

  24. Fleming, A., & Rubinsztein, D. C. (2020). Autophagy in neuronal development and plasticity. Trends in neurosciences, 43(10), 767–779.

    CAS  PubMed  Google Scholar 

  25. Doxaki, C., & Palikaras, K. (2021). Neuronal mitophagy: Friend or foe? Frontiers in cell and developmental biology, 8, 611938.

    PubMed  PubMed Central  Google Scholar 

  26. Sotthibundhu, A., Muangchan, P., Phonchai, R., Promjantuek, W., Chaicharoenaudomrung, N., Kunhorm, P., et al. (2021). Autophagy promoted neural differentiation of human placenta-derived mesenchymal stem cells. in vivo, 35(5), 2609–2620.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Das, H., Kumar, A., Lin, Z., Patino, W. D., Hwang, P. M., Feinberg, M. W., et al. (2006). Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci U S A, 103(17), 6653–6658.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rolph, D., & Das, H. (2020). Transcriptional regulation of Osteoclastogenesis: The emerging role of KLF2. Frontiers In Immunology, 11, 937.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jha, P., & Das, H. (2017). KLF2 in regulation of NF-kappaB-mediated Immune cell function and inflammation. International Journal Of Molecular Sciences. ;18(11).

  30. Sen-Banerjee, S., Mir, S., Lin, Z., Hamik, A., Atkins, G. B., Das, H., et al. (2005). Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation, 112(5), 720–726.

    CAS  PubMed  Google Scholar 

  31. Laha, D., Deb, M., & Das, H. (2019). KLF2 (kruppel-like factor 2 [lung]) regulates osteoclastogenesis by modulating autophagy. Autophagy, 15(12), 2063–2075.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Winkelmann, R., Sandrock, L., Porstner, M., Roth, E., Mathews, M., Hobeika, E., et al. (2011). B cell homeostasis and plasma cell homing controlled by Krüppel-like factor 2. Proceedings of the National Academy of Sciences, 108(2), 710–715.

    CAS  Google Scholar 

  33. Feinberg, M. W., Lin, Z., Fisch, S., & Jain, M. K. (2004). An emerging role for Kruppel-like factors in vascular biology. Trends In Cardiovascular Medicine, 14(6), 241–246.

    CAS  PubMed  Google Scholar 

  34. Maity, J., Barthels, D., Sarkar, J., Prateeksha, P., Deb, M., Rolph, D., et al. (2022). Ferutinin induces osteoblast differentiation of DPSCs via induction of KLF2 and autophagy/mitophagy. Cell Death And Disease, 13(5), 1–12.

    Google Scholar 

  35. Wu, F., & Li, C. (2022). KLF2 up-regulates IRF4/HDAC7 to protect neonatal rats from hypoxic-ischemic brain damage. Cell death discovery, 8(1), 1–10.

    Google Scholar 

  36. Zhang, J. H. (2013). Autophagy and mitophagy in cellular damage control. Redox Biology, 1(1), 19–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Parmar, K. M., Nambudiri, V., Dai, G., Larman, H. B., Gimbrone, M. A. Jr., & Garcia-Cardena, G. (2005). Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. Journal Of Biological Chemistry, 280(29), 26714–26719.

    CAS  PubMed  Google Scholar 

  38. Maity, J., Deb, M., Greene, C., & Das, H. (2020). KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism. Redox Biology, 36, 101622.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kondo, T., Matsuoka, A. J., Shimomura, A., Koehler, K. R., Chan, R. J., Miller, J. M., et al. (2011). Wnt signaling promotes neuronal differentiation from mesenchymal stem cells through activation of Tlx3. Stem cells, 29(5), 836–846.

    CAS  PubMed  Google Scholar 

  40. Lorzadeh, S., Kohan, L., Ghavami, S., & Azarpira, N. (2021). Autophagy and the wnt signaling pathway: A focus on Wnt/β-catenin signaling. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1868(3), 118926.

    CAS  PubMed  Google Scholar 

  41. Ozgen, S., Krigman, J., Zhang, R., & Sun, N. (2022). Significance of mitochondrial activity in neurogenesis and neurodegenerative diseases. Neural Regeneration Research, 17(4), 741.

    CAS  PubMed  Google Scholar 

  42. Brunetti, D., Dykstra, W., Le, S., Zink, A., & Prigione, A. (2021). Mitochondria in neurogenesis: Implications for mitochondrial diseases. Stem Cells, 39(10), 1289–1297.

    CAS  PubMed  Google Scholar 

  43. Kuntz, E. M., Baquero, P., Michie, A. M., Dunn, K., Tardito, S., Holyoake, T. L., et al. (2017). Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nature medicine, 23(10), 1234–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng, X., Boyer, L., Jin, M., Mertens, J., Kim, Y., Ma, L., et al. (2016). Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. elife, 5, e13374.

    PubMed  PubMed Central  Google Scholar 

  45. Birket, M. J., Orr, A. L., Gerencser, A. A., Madden, D. T., Vitelli, C., Swistowski, A., et al. (2011). A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. Journal Of Cell Science, 124(Pt 3), 348–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Birket, M. J., Orr, A. L., Gerencser, A. A., Madden, D. T., Vitelli, C., Swistowski, A., et al. (2011). A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. Journal of cell science, 124(3), 348–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, C., Skamagki, M., Liu, Z., Ananthanarayanan, A., Zhao, R., Li, H., et al. (2017). Biological significance of the suppression of oxidative phosphorylation in induced pluripotent stem cells. Cell reports, 21(8), 2058–2065.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Zijuan Liu, from TTUHSC core facility for her help in procuring some of the confocal images. The core facility is being supported by a Core Facility Support Award (grant number RP200572) from the Cancer Prevention and Research Institute of Texas (CPRIT) to the Imaging Core, Texas Tech University Health Sciences Center at Amarillo.

Funding

This work was supported in part by National Institutes of Health grants, R01AR068279 (NIAMS), STTR R42EY031196 (NEI), and STTR 1R41AG057242 (NIA). The funders had no role in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Study conception, design, and manuscript writing: PP and HD. Acquisition of data: PP, PN, MD, DB Analysis and interpretation of data: PP and HD.

Corresponding author

Correspondence to Hiranmoy Das.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Authors provide the consent for publication.

Competing Interests

Authors do not have any potential conflict of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prateeksha, P., Naidu, P., Das, M. et al. KLF2 Regulates Neural Differentiation of Dental Pulp-derived Stem Cells by Modulating Autophagy and Mitophagy. Stem Cell Rev and Rep 19, 2886–2900 (2023). https://doi.org/10.1007/s12015-023-10607-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10607-0

Keywords

Navigation