Skip to main content

Advertisement

Log in

The Current Proceedings of PSC-Based Liver Fibrosis Therapy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Liver fibrosis was initially considered to be an irreversible process which will eventually lead to the occurrence of liver cancer. So far there has been no effective therapeutic approach to treat liver fibrosis although scientists have put tremendous efforts into the underlying mechanisms of this disease. Therefore, in-depth research on novel and safe treatments of liver fibrosis is of great significance to human health. Pluripotent stem cells (PSCs) play important roles in the study of liver fibrosis due to their unique features in self-renewal ability, pluripotency, and paracrine function. This article mainly reviews the applications of PSCs in the study of liver fibrosis in recent years. We discuss the role of PSC-derived liver organoids in the study of liver fibrosis, and the latest research advances on the differentiation of PSCs into hepatocytes or macrophages. We also highlight the importance of exosomes of PSCs for the treatment of liver fibrosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Dewidar, B., et al. (2019). TGF-beta in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells, 8(11), 1419.

  2. Bataller, R., & Brenner, D. A. (2005). Liver fibrosis. The Journal of Clinical Investigation, 115(2), 209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Friedman, S. L. (2008). Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews, 88(1), 125–172.

    Article  CAS  PubMed  Google Scholar 

  4. Trivedi, P., Wang, S., & Friedman, S. L. (2021). The power of plasticity-metabolic regulation of hepatic stellate cells. Cell Metabolism, 33(2), 242–257.

    Article  CAS  PubMed  Google Scholar 

  5. Arroyo, N., et al. (2021). GATA4 induces liver fibrosis regression by deactivating hepatic stellate cells. JCI Insight, 6(23), e150059.

  6. Troeger, J. S., et al. (2012). Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology, 143(4), 1073–83 e22.

    Article  CAS  PubMed  Google Scholar 

  7. Gao, J., et al. (2020). Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. Journal of Hepatology, 73(5), 1144–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Friedman, S. L., & Pinzani, M. (2022). Hepatic fibrosis 2022: Unmet needs and a blueprint for the future. Hepatology, 75(2), 473–488.

    Article  CAS  PubMed  Google Scholar 

  9. Yamanaka, S. (2020). Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell, 27(4), 523–531.

    Article  CAS  PubMed  Google Scholar 

  10. Thomson, J. A., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  11. Moriya, K., et al. (2007). Embryonic stem cells develop into hepatocytes after intrasplenic transplantation in CCl4-treated mice. World Journal of Gastroenterology, 13(6), 866–873.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moriya, K., et al. (2008). Embryonic stem cells reduce liver fibrosis in CCl4-treated mice. International Journal of Experimental Pathology, 89(6), 401–409.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lai, X., et al. (2022). Generation of functionally competent hepatic stellate cells from human stem cells to model liver fibrosis in vitro. Stem Cell Reports, 17(11), 2531–2547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  15. Yu, J., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  16. Park, I. H., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.

    Article  CAS  PubMed  Google Scholar 

  17. Espejel, S., et al. (2010). Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. The Journal of Clinical Investigation, 120(9), 3120–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coll, M., et al. (2018). Generation of hepatic stellate cells from human pluripotent stem cells enables in vitro modeling of liver fibrosis. Cell Stem Cell, 23(1), 101-113 e7.

    Article  CAS  PubMed  Google Scholar 

  19. Kiso, A., et al. (2020). Tolloid-Like 1 negatively regulates hepatic differentiation of human induced pluripotent stem cells through transforming growth factor beta signaling. Hepatology Communications, 4(2), 255–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koui, Y., et al. (2021). Development of human iPSC-derived quiescent hepatic stellate cell-like cells for drug discovery and in vitro disease modeling. Stem Cell Reports, 16(12), 3050–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vallverdu, J., et al. (2021). Directed differentiation of human induced pluripotent stem cells to hepatic stellate cells. Nature Protocols, 16(5), 2542–2563.

    Article  CAS  PubMed  Google Scholar 

  22. Corro, C., Novellasdemunt, L., & Li, V. S. W. (2020). A brief history of organoids. American Journal of Physiology Cell Physiology, 319(1), C151–C165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lancaster, M. A., & Huch, M. (2019). Disease modelling in human organoids. Disease Models & Mechanisms, 12(7), dmm039347.

  24. Lancaster, M. A., & Knoblich, J. A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345(6194), 1247125.

    Article  PubMed  Google Scholar 

  25. Nuciforo, S., & Heim, M. H. (2021). Organoids to model liver disease. JHEP Rep, 3(1), 100198.

    Article  PubMed  Google Scholar 

  26. Brovold, M., Keller, D., & Soker, S. (2020). Differential fibrotic phenotypes of hepatic stellate cells within 3D liver organoids. Biotechnology and Bioengineering, 117(8), 2516–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, S., et al. (2019). Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Research, 29(12), 1009–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsuchida, T., et al. (2018). A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. Journal of Hepatology, 69(2), 385–395.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bruck, R., et al. (2001). Halofuginone to prevent and treat thioacetamide-induced liver fibrosis in rats. Hepatology, 33(2), 379–386.

    Article  CAS  PubMed  Google Scholar 

  30. Tolba, R., et al. (2015). Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Laboratory Animals, 49(1 Suppl), 59–69.

    Article  CAS  PubMed  Google Scholar 

  31. van Os, E. A., et al. (2022). Modelling fatty liver disease with mouse liver-derived multicellular spheroids. Biomaterials, 290, 121817.

    Article  PubMed  Google Scholar 

  32. Wang, Y., et al. (2019). Splenectomy promotes macrophage polarization in a mouse model of Concanavalin A- (ConA-) induced liver fibrosis. BioMed Research International, 2019, 5756189.

    PubMed  PubMed Central  Google Scholar 

  33. Tsukamoto, H., Gaal, K., & French, S. W. (1990). Insights into the pathogenesis of alcoholic liver necrosis and fibrosis: Status report. Hepatology, 12(3 Pt 1), 599–608.

    Article  CAS  PubMed  Google Scholar 

  34. Li, R., et al. (2018). Polydatin attenuates diet-induced nonalcoholic steatohepatitis and fibrosis in mice. International Journal of Biological Sciences, 14(11), 1411–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, J. Y., et al. (2021). Multiparameter magnetic resonance imaging of liver fibrosis in a bile duct ligation mouse model. World Journal of Gastroenterology, 27(47), 8156–8165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bao, Y. L., et al. (2021). Animal and organoid models of liver fibrosis. Frontiers in Physiology, 12, 666138.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wu, X., et al. (2023). Modeling drug-induced liver injury and screening for anti-hepatofibrotic compounds using human PSC-derived organoids. Cell Regeneration, 12(1), 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ouchi, R., et al. (2019). Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metabolism, 30(2), 374-384 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shinozawa, T., et al. (2021). High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology, 160(3), 831-846 e10.

    Article  CAS  PubMed  Google Scholar 

  40. Han, L., et al. (2020). Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nature Communications, 11(1), 4158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCracken, K. W., et al. (2017). Wnt/beta-catenin promotes gastric fundus specification in mice and humans. Nature, 541(7636), 182–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spence, J. R., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332), 105–109.

    Article  PubMed  Google Scholar 

  43. Guan, Y., et al. (2017). Human hepatic organoids for the analysis of human genetic diseases. JCI Insight, 2(17), e94954.

  44. Jiang, S., et al. (2022). Development of a high-throughput micropatterned agarose scaffold for consistent and reproducible hPSC-derived liver organoids. Biofabrication, 15(1), 015006.

  45. Kim, H. J., et al. (2023). Generation of multilineage liver organoids with luminal vasculature and bile ducts from human pluripotent stem cells via modulation of Notch signaling. Stem Cell Research & Therapy, 14(1), 19.

    Article  CAS  Google Scholar 

  46. Tang, X. Y., et al. (2022). Human organoids in basic research and clinical applications. Signal Transduction and Targeted Therapy, 7(1), 168.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sgodda, M., et al. (2017). A scalable approach for the generation of human pluripotent stem cell-derived hepatic organoids with sensitive hepatotoxicity features. Stem Cells Dev, 26(20), 1490–1504.

    Article  CAS  PubMed  Google Scholar 

  48. Cheng, W., et al. (2022). Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids. Science of the Total Environment, 806(Pt 1), 150328.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng, W., et al. (2023). Combined effect of polystyrene microplastics and bisphenol A on the human embryonic stem cells-derived liver organoids: The hepatotoxicity and lipid accumulation. Science of The Total Environment, 854, 158585.

  50. Molenaar, M. R., Vaandrager, A. B., & Helms, J. B. (2017). Some lipid droplets are more equal than others: different metabolic lipid droplet pools in hepatic stellate cells. Lipid Insights, 10, 1178635317747281.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jing, X. Y., et al. (2013). Roles of the lipid metabolism in hepatic stellate cells activation big up tri, open. Chinese Medical Sciences Journal, 28(4), 233–236.

    Article  CAS  PubMed  Google Scholar 

  52. Hendriks, D., Clevers, H., & Artegiani, B. (2020). CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell, 27(5), 705–731.

    Article  CAS  PubMed  Google Scholar 

  53. Manghwar, H., et al. (2019). CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends in Plant Science, 24(12), 1102–1125.

    Article  CAS  PubMed  Google Scholar 

  54. Gupta, D., et al. (2019). CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sciences, 232, 116636.

    Article  CAS  PubMed  Google Scholar 

  55. Oh, H. T., et al. (2022). CD133-Src-TAZ signaling stimulates ductal fibrosis following DDC diet-induced liver injury. Journal of Cellular Physiology, 237(12), 4504–4516.

    Article  CAS  PubMed  Google Scholar 

  56. Artegiani, B., et al. (2020). Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nature Cell Biology, 22(3), 321–331.

    Article  CAS  PubMed  Google Scholar 

  57. Tsunoda, T., et al. (2019). Loss of fibrocystin promotes interleukin-8-dependent proliferation and CTGF production of biliary epithelium. Journal of Hepatology, 71(1), 143–152.

    Article  CAS  PubMed  Google Scholar 

  58. Alfaifi, M., et al. (2018). Mesenchymal stromal cell therapy for liver diseases. Journal of Hepatology, 68(6), 1272–1285.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, X., et al. (2023). Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cellular & Molecular Immunology, 20(6), 583–599.

  60. Kim, J., et al. (2021). sEVs from tonsil-derived mesenchymal stromal cells alleviate activation of hepatic stellate cells and liver fibrosis through miR-486-5p. Molecular Therapy, 29(4), 1471–1486.

    Article  CAS  PubMed  Google Scholar 

  61. Sauer, V., et al. (2014). Induced pluripotent stem cells as a source of hepatocytes. Current Pathobiology Reports, 2(1), 11–20.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen, Y., et al. (2021). Treatment of alpha-1 antitrypsin deficiency using hepatic-specified cells derived from human-induced pluripotent stem cells. American Journal of Translational Research, 13(4), 2710–2716.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang, P., et al. (2011). Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature, 475(7356), 386–389.

    Article  CAS  PubMed  Google Scholar 

  64. Park, S., et al. (2019). The therapeutic potential of induced hepatocyte-like cells generated by direct reprogramming on hepatic fibrosis. Stem Cell Research & Therapy, 10(1), 21.

    Article  Google Scholar 

  65. Lee, C. A., et al. (2018). Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine. Journal of Molecular Medicine (Berlin, Germany), 96(6), 469–481.

    Article  CAS  PubMed  Google Scholar 

  66. Choi, J. S., et al. (2020). HGF and IL-10 expressing ALB::GFP reporter cells generated from iPSCs show robust anti-fibrotic property in acute fibrotic liver model. Stem Cell Research & Therapy, 11(1), 332.

    Article  CAS  Google Scholar 

  67. Aghadi, M., Elgendy, R., & Abdelalim, E. M. (2022). Loss of FOXA2 induces ER stress and hepatic steatosis and alters developmental gene expression in human iPSC-derived hepatocytes. Cell Death & Disease, 13(8), 713.

    Article  CAS  Google Scholar 

  68. Moore, J. K., et al. (2015). Phenotypic and functional characterization of macrophages with therapeutic potential generated from human cirrhotic monocytes in a cohort study. Cytotherapy, 17(11), 1604–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haideri, S. S., et al. (2017). Injection of embryonic stem cell derived macrophages ameliorates fibrosis in a murine model of liver injury. NPJ Regen Med, 2, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pouyanfard, S., et al. (2021). Human induced pluripotent stem cell-derived macrophages ameliorate liver fibrosis. Stem Cells, 39(12), 1701–1717.

    Article  CAS  PubMed  Google Scholar 

  71. Cheng, D., et al. (2021). Hepatic macrophages: Key players in the development and progression of liver fibrosis. Liver International, 41(10), 2279–2294.

    Article  PubMed  Google Scholar 

  72. Kupffer, C. (1876). Ueber Sternzellen der Leber. Archiv für mikroskopische Anatomie, 12(1), 353–358.

    Article  Google Scholar 

  73. Tacke, F., & Zimmermann, H. W. (2014). Macrophage heterogeneity in liver injury and fibrosis. Journal of Hepatology, 60(5), 1090–1096.

    Article  CAS  PubMed  Google Scholar 

  74. Tasnim, F., et al. (2019). Generation of mature kupffer cells from human induced pluripotent stem cells. Biomaterials, 192, 377–391.

    Article  CAS  PubMed  Google Scholar 

  75. Lian, Q., et al. (2010). Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation, 121(9), 1113–1123.

    Article  PubMed  Google Scholar 

  76. Lian, Q., et al. (2022). Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model. Nature Communications, 13(1), 2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kou, M., et al. (2022). Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: A next generation therapeutic tool? Cell Death & Disease, 13(7), 580.

    Article  CAS  Google Scholar 

  78. Thakur, A., et al. (2022). The mini player with diverse functions: Extracellular vesicles in cell biology, disease, and therapeutics. Protein & Cell, 13(9), 631–654.

    Article  Google Scholar 

  79. Jeske, R., et al. (2020). Human pluripotent stem cell-derived extracellular vesicles: Characteristics and applications. Tissue Engineering. Part B, Reviews, 26(2), 129–144.

    Article  PubMed  PubMed Central  Google Scholar 

  80. van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213–228.

    Article  PubMed  Google Scholar 

  81. Valadi, H., et al. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.

    Article  CAS  PubMed  Google Scholar 

  82. Meckes, D. G., Jr., et al. (2010). Human tumor virus utilizes exosomes for intercellular communication. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20370–20375.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cheng, L., & Hill, A. F. (2022). Therapeutically harnessing extracellular vesicles. Nature Reviews. Drug Discovery, 21(5), 379–399.

    Article  CAS  PubMed  Google Scholar 

  84. Pegtel, D. M., & Gould, S. J. (2019). Exosomes. Annual Review of Biochemistry, 88, 487–514.

    Article  CAS  PubMed  Google Scholar 

  85. Colombo, M., Raposo, G., & Thery, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–289.

    Article  CAS  PubMed  Google Scholar 

  86. Ying, W., et al. (2021). MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metabolism, 33(4), 781-790 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, C., et al. (2021). Cancer associated-fibroblast-derived exosomes in cancer progression. Molecular Cancer, 20(1), 154.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Guo, M., et al. (2020). Microglial exosomes facilitate alpha-synuclein transmission in Parkinson’s disease. Brain, 143(5), 1476–1497.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang, T., et al. (2021). The emerging role of exosomes in Alzheimer’s disease. Ageing Research Reviews, 68, 101321.

    Article  CAS  PubMed  Google Scholar 

  90. Szabo, G. (2021). Exosomes and MicroRNA-223 at the Intersection of Inflammation and Fibrosis in NAFLD. Hepatology, 74(1), 5–8.

    Article  CAS  PubMed  Google Scholar 

  91. Bi, Y., et al. (2022). Systemic proteomics and miRNA profile analysis of exosomes derived from human pluripotent stem cells. Stem Cell Research & Therapy, 13(1), 449.

    Article  CAS  Google Scholar 

  92. Taheri, B., et al. (2019). Induced pluripotent stem cell-derived extracellular vesicles: A novel approach for cell-free regenerative medicine. Journal of Cellular Physiology, 234(6), 8455–8464.

    Article  CAS  PubMed  Google Scholar 

  93. Liu, S., et al. (2019). Highly purified human extracellular vesicles produced by stem cells alleviate aging cellular phenotypes of senescent human cells. Stem Cells, 37(6), 779–790.

    Article  CAS  PubMed  Google Scholar 

  94. Povero, D., et al. (2019). Human induced pluripotent stem cell-derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis. JCI Insight, 5(14),e125652.

  95. Wang, N., et al. (2021). 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFbetaRII-SMADS pathway. J Nanobiotechnology, 19(1), 437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Villa-Diaz, L. G., et al. (2012). Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells, 30(6), 1174–1181.

    Article  CAS  PubMed  Google Scholar 

  97. McGrath, M., et al. (2019). GMP-compatible and xeno-free cultivation of mesenchymal progenitors derived from human-induced pluripotent stem cells. Stem Cell Research & Therapy, 10(1), 11.

    Article  CAS  Google Scholar 

  98. Zhang, J., et al. (2021). Induced pluripotent stem cell-derived mesenchymal stem cells hold lower heterogeneity and great promise in biological research and clinical applications. Frontiers in Cell and Developmental Biology, 9, 716907.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Barberi, T., et al. (2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Medicine, 2(6), e161.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Olivier, E. N., Rybicki, A. C., & Bouhassira, E. E. (2006). Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells, 24(8), 1914–1922.

    Article  CAS  PubMed  Google Scholar 

  101. Sabapathy, V., & Kumar, S. (2016). hiPSC-derived iMSCs: NextGen MSCs as an advanced therapeutically active cell resource for regenerative medicine. Journal of Cellular and Molecular Medicine, 20(8), 1571–1588.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lotfinia, M., et al. (2016). Effect of secreted molecules of human embryonic stem cell-derived mesenchymal stem cells on acute hepatic failure model. Stem Cells and Development, 25(24), 1898–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Spitzhorn, L. S., et al. (2019). Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Research & Therapy, 10(1), 100.

    Article  CAS  Google Scholar 

  104. Qiu, C., et al. (2005). Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Experimental Hematology, 33(12), 1450–1458.

    Article  CAS  PubMed  Google Scholar 

  105. Hong, K. S., et al. (2015). A porous membrane-mediated isolation of mesenchymal stem cells from human embryonic stem cells. Tissue Engineering. Part C, Methods, 21(3), 322–329.

    Article  CAS  PubMed  Google Scholar 

  106. Liu, Y., et al. (2012). One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS ONE, 7(3), e33225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, Y. S., et al. (2012). Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells. Stem Cells Translational Medicine, 1(2), 83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang, B., et al. (2019). Transplantation of human ESC-derived mesenchymal stem cell spheroids ameliorates spontaneous osteoarthritis in rhesus macaques. Theranostics, 9(22), 6587–6600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Himeno, T., et al. (2013). Mesenchymal stem cell-like cells derived from mouse induced pluripotent stem cells ameliorate diabetic polyneuropathy in mice. BioMed Research International, 2013, 259187.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nachlas, A. L. Y., et al. (2018). Human iPSC-derived mesenchymal stem cells encapsulated in PEGDA hydrogels mature into valve interstitial-like cells. Acta Biomaterialia, 71, 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gong, M., et al. (2011). Immortalized mesenchymal stem cells: An alternative to primary mesenchymal stem cells in neuronal differentiation and neuroregeneration associated studies. Journal of Biomedical Science, 18(1), 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu, Q., et al. (2020). The sialylation profile of IgG determines the efficiency of antibody directed osteogenic differentiation of iMSCs by modulating local immune responses and osteoclastogenesis. Acta Biomaterialia, 114, 221–232.

    Article  CAS  PubMed  Google Scholar 

  113. Harding, J., & Mirochnitchenko, O. (2014). Preclinical studies for induced pluripotent stem cell-based therapeutics. Journal of Biological Chemistry, 289(8), 4585–4593.

    Article  CAS  PubMed  Google Scholar 

  114. Kim, S., et al. (2018). Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. International Journal of Molecular Sciences, 19(10), 3119.

  115. Zhu, Y., et al. (2017). Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Research & Therapy, 8(1), 64.

    Article  Google Scholar 

  116. Du, Y., et al. (2017). Exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs) protect liver against hepatic ischemia/ reperfusion injury via activating sphingosine kinase and Sphingosine-1-Phosphate signaling pathway. Cellular Physiology and Biochemistry, 43(2), 611–625.

    Article  CAS  PubMed  Google Scholar 

  117. Mardpour, S., et al. (2018). Extracellular vesicles derived from human embryonic stem cell-MSCs ameliorate cirrhosis in thioacetamide-induced chronic liver injury. Journal of Cellular Physiology, 233(12), 9330–9344.

    Article  CAS  PubMed  Google Scholar 

  118. Otsuka, R., et al. (2020). Immune reaction and regulation in transplantation based on pluripotent stem cell technology. Inflammation and Regeneration, 40, 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Haque, R., et al. (2012). Programming of regulatory T cells from pluripotent stem cells and prevention of autoimmunity. The Journal of Immunology, 189(3), 1228–1236.

    Article  CAS  PubMed  Google Scholar 

  120. Wang, D., et al. (2019). Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ-deer antler. Cell Death & Disease, 10(6), 443.

    Article  Google Scholar 

  121. Rong, X., et al. (2020). Antler stem cells as a novel stem cell source for reducing liver fibrosis. Cell and Tissue Research, 379(1), 195–206.

    Article  CAS  PubMed  Google Scholar 

  122. Le Berre, C., et al. (2020). Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology, 158(1), 76-94 e2.

    Article  PubMed  Google Scholar 

  123. Bannigan, P., et al. (2021). Machine learning directed drug formulation development. Advanced Drug Delivery Reviews, 175, 113806.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Wu Q was supported by Macau Science and Technology Development Fund (file number 0072/2019/A2). Tam PKH was supported by Research Grant Council Theme-based Research Scheme 2021–22 (T12-712/21-R), Health and Medical Research Fund (HMRF) (Project No. 08192376).

Author information

Authors and Affiliations

Authors

Contributions

Ma L and Wu Q completed most of the writing; Wu Q and Tam PKH revised the manuscript; Wu Q and Tam PKH conceived the idea, revised, and proofread the paper.

Corresponding authors

Correspondence to Qiang Wu or Paul Kwong-Hang Tam.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Wu, Q. & Tam, P.KH. The Current Proceedings of PSC-Based Liver Fibrosis Therapy. Stem Cell Rev and Rep 19, 2155–2165 (2023). https://doi.org/10.1007/s12015-023-10592-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10592-4

Keywords

Navigation