Skip to main content

Advertisement

Log in

Loss of Epidermal Homeostasis Underlies the Development of Squamous Cell Carcinoma

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Squamous cell carcinoma (SCC) is one of the most common skin cancers. To develop targeted therapies for SCC, a comprehensive understanding of the disease through a systems approach is required. Here, we have collated and analyzed the literature on SCC and pathways that maintain skin homeostasis. Since, the loss of the Notch and the overactivation of the Wnt pathways in the epidermis cause SCC, we focused on these two pathways. We found that the two pathways are critical in maintaining epidermal homeostasis. Further, we found that the cancer stem cell (CSC) marker CD44 causes the transcription of SOX2, another CSC marker of SCC, activates the Wnt pathway, and blocks the Notch pathway. Similarly, the Wnt pathway causes the transcription of CD44 and SOX2 and blocks the Notch pathway. In this paper, we have discussed how the notch and the Wnt pathways affect epidermal homeostasis and the three CSCs (CD44, SOX2, and LGR6) affect the two pathways, linking the CSCs with epidermal homeostasis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data are available in the manuscript and the supplementary information files.

Code Availability

Not applicable.

References

  1. Alam, M., & Ratner, D. (2009). Cutaneous Squamous-Cell. Carcinoma., 344(13), 975–983. https://doi.org/10.1056/NEJM200103293441306

    Article  Google Scholar 

  2. Gallagher, R. P., Ma, B., McLean, D. I., Yang, C. P., Ho, V., Carruthers, J. A., & Warshawski, L. M. (1990). Trends in basal cell carcinoma, squamous cell carcinoma, and melanoma of the skin from 1973 through 1987. Journal of the American Academy of Dermatology, 23(3), 413–421. https://doi.org/10.1016/0190-9622(90)70234-9

    Article  CAS  PubMed  Google Scholar 

  3. Stransky, N., Egloff, A. M., Tward, A. D., Kostic, A. D., Cibulskis, K., Sivachenko, A., …, & Grandis, J. R. (2011). The mutational landscape of head and neck squamous cell carcinoma. Science, 333(6046), 1157–1160. https://doi.org/10.1126/SCIENCE.1208130/SUPPL_FILE/TABLES6.XLSX

  4. Markopoulos, A. K. (2012). Current Aspects on Oral Squamous Cell Carcinoma. The Open Dentistry Journal, 6(1), 126. https://doi.org/10.2174/1874210601206010126

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jesse, R. H., & Sugarbaker, E. V. (1976). Squamous cell carcinoma of the oropharynx: Why we fail. The American Journal of Surgery, 132(4), 435–438. https://doi.org/10.1016/0002-9610(76)90314-7

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, D. E., Burtness, B., Leemans, C. R., Lui, V. W. Y., Bauman, J. E., & Grandis, J. R. (2020). Head and neck squamous cell carcinoma. Nature Reviews Disease Primers, 6(1), 1–22. https://doi.org/10.1038/s41572-020-00224-3

    Article  Google Scholar 

  7. Fahim, Y., Yousefi, M., Izadpanah, M. H., & Forghanifard, M. M. (2020). TWIST1 correlates with Notch signaling pathway to develop esophageal squamous cell carcinoma. Molecular and Cellular Biochemistry, 474(1–2), 181–188. https://doi.org/10.1007/S11010-020-03843-2/FIGURES/3

    Article  CAS  PubMed  Google Scholar 

  8. Li, T., Wen, H., Brayton, C., Das, P., Smithson, L. A., Fauq, A., …, & Wong, P. C. (2007). Epidermal growth factor receptor and notch pathways participate in the tumor suppressor function of γ-secretase. Journal of Biological Chemistry, 282(44), 32264–32273. https://doi.org/10.1074/jbc.M703649200

  9. Rhee, C. S., Sen, M., Lu, D., Wu, C., Leoni, L., Rubin, J., & Carson, D. A. (2002). Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene, 21(43), 6598–6605. https://doi.org/10.1038/sj.onc.1205920

    Article  CAS  PubMed  Google Scholar 

  10. Moghbeli, M., Abbaszadegan, M. R., Golmakani, E., & Forghanifard, M. M. (2016). Correlation of Wnt and NOTCH pathways in esophageal squamous cell carcinoma. Journal of Cell Communication and Signaling, 10(2), 129–135. https://doi.org/10.1007/S12079-016-0320-3/FIGURES/2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jaiswal, A., & Singh, R. (2022). Homeostases of epidermis and hair follicle, and development of basal cell carcinoma. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 188795. https://doi.org/10.1016/J.BBCAN.2022.188795

  12. White, A. C., Khuu, J. K., Dang, C. Y., Hu, J., Tran, K. v., Liu, A., …, Lowry, W. E. (2013). Stem cell quiescence acts as a tumour suppressor in squamous tumours. Nature Cell Biology, 16(1), 99–107. https://doi.org/10.1038/ncb2889

  13. White, A. C., Tran, K., Khuu, J., Dang, C., Cui, Y., Binder, S. W., & Lowry, W. E. (2011). Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7425–7430. https://doi.org/10.1073/PNAS.1012670108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jensen, K. B., Jones, J., & Watt, F. M. (2008). A stem cell gene expression profile of human squamous cell carcinomas. Cancer Letters, 272(1), 23–31. https://doi.org/10.1016/J.CANLET.2008.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watt, F. M., Estrach, S., & Ambler, C. A. (2008). Epidermal Notch signalling: Differentiation, cancer and adhesion. Current Opinion in Cell Biology, 20(2), 171–179. https://doi.org/10.1016/J.CEB.2008.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams, S. E., Beronja, S., Pasolli, H. A., & Fuchs, E. (2011). Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature, 470(7334), 353–358. https://doi.org/10.1038/nature09793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Demehri, S., & Kopan, R. (2009). Notch signaling in bulge stem cells is not required for selection of hair follicle fate. Development, 136(6), 891–896. https://doi.org/10.1242/DEV.030700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, J., Basak, J. M., Demehri, S., & Kopan, R. (2007). Bi-compartmental communication contributes to the opposite proliferative behavior of Notch1-deficient hair follicle and epidermal keratinocytes. Development, 134(15), 2795–2806. https://doi.org/10.1242/DEV.02868

    Article  CAS  PubMed  Google Scholar 

  19. Snippert, H. J., Haegebarth, A., Kasper, M., Jaks, V., van Es, J. H., Barker, N., …, & Clevers, H. (2010). Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science, 327(5971), 1385–1389. https://doi.org/10.1126/SCIENCE.1184733/SUPPL_FILE/SNIPPERT.SOM.PDF

  20. Füllgrabe, A., Joost, S., Are, A., Jacob, T., Sivan, U., Haegebarth, A., …, & Kasper, M. (2015). Dynamics of Lgr6+ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis. Stem Cell Reports, 5(5), 843–855. https://doi.org/10.1016/J.STEMCR.2015.09.013

  21. Lim, X., Tan, S. H., Koh, W. L. C., Chau, R. M. W., Yan, K. S., Kuo, C. J., …, & Nusse, R. (2013). Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science, 342(6163), 1226–1230. https://doi.org/10.1126/SCIENCE.1239730/SUPPL_FILE/LIM.SM.PDF

  22. Singh, R. (2022). Basal Cells in the Epidermis and Epidermal Differentiation. Stem Cell Reviews and Reports, 18(6), 1883–1891. https://doi.org/10.1007/S12015-021-10256-1/FIGURES/4

    Article  PubMed  Google Scholar 

  23. Oswald, F., Winkler, M., Cao, Y., Astrahantseff, K., Bourteele, S., Knöchel, W., & Borggrefe, T. (2005). RBP-Jκ/SHARP Recruits CtIP/CtBP Corepressors To Silence Notch Target Genes. Molecular and Cellular Biology, 25(23), 10379–10390. https://doi.org/10.1128/MCB.25.23.10379-10390.2005/ASSET/936D90A9-F2A3-408C-8EF8-862D2F08035F/ASSETS/GRAPHIC/ZMB0230555500007.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valenta, T., Lukas, J., & Korinek, V. (2003). HMG box transcription factor TCF-4’s interaction with CtBP1 controls the expression of the Wnt target Axin2/Conductin in human embryonic kidney cells. Nucleic Acids Research, 31(9), 2369–2380. https://doi.org/10.1093/NAR/GKG346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, M., Chang, A., Choi, M., Zhou, D., Anania, F. A., & Shin, C. H. (2014). Antagonistic interaction between Wnt and Notch activity modulates the regenerative capacity of a zebrafish fibrotic liver model. Hepatology, 60(5), 1753–1766. https://doi.org/10.1002/HEP.27285

    Article  CAS  PubMed  Google Scholar 

  26. Abbaszadegan, M. R., Riahi, A., Forghanifard, M. M., & Moghbeli, M. (2018). WNT and NOTCH signaling pathways as activators for epidermal growth factor receptor in esophageal squamous cell carcinoma. Cellular and Molecular Biology Letters, 23(1), 1–9. https://doi.org/10.1186/S11658-018-0109-X/FIGURES/2

    Article  Google Scholar 

  27. Katoh, M., & Katoh, M. (2006). NUMB is a break of WNT - Notch signaling cycle. International Journal of Molecular Medicine, 18(3), 517–521. https://doi.org/10.3892/IJMM.18.3.517/HTML

    Article  CAS  PubMed  Google Scholar 

  28. Cheng, C., Huang, Z., Zhou, R., An, H., Cao, G., Ye, J., …, & Wu, D. (2020). Numb negatively regulates the epithelial-to-mesenchymal transition in colorectal cancer through the Wnt signaling pathway. American Journal of Physiology - Gastrointestinal and Liver Physiology, 318(5), G841–G853. https://doi.org/10.1152/AJPGI.00178.2019/ASSET/IMAGES/LARGE/ZH30042077660006.JPEG

  29. Kim, W., Khan, S. K., Gvozdenovic-Jeremic, J., Kim, Y., Dahlman, J., Kim, H., …, & Yang, Y. (2017). Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. The Journal of Clinical Investigation, 127(1), 137–152. https://doi.org/10.1172/JCI88486

  30. Totaro, A., Castellan, M., Battilana, G., Zanconato, F., Azzolin, L., Giulitti, S., & Piccolo, S. (2017). YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nature Communications, 8(1), 1–13. https://doi.org/10.1038/ncomms15206

    Article  CAS  Google Scholar 

  31. Azzolin, L., Panciera, T., Soligo, S., Enzo, E., Bicciato, S., Dupont, S., …, & Piccolo, S. (2014). YAP/TAZ incorporation in the β-Catenin destruction complex orchestrates the Wnt response. Cell, 158(1), 157–170. https://doi.org/10.1016/J.CELL.2014.06.013

  32. Elbediwy, A., Vincent-Mistiaen, Z. I., Spencer-Dene, B., Stone, R. K., Boeing, S., Wculek, S. K., …, & Thompson, B. J. (2016). Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development (Cambridge), 143(10), 1674–1687. https://doi.org/10.1242/DEV.133728/263970/AM/INTEGRIN-SIGNALLING-REGULATES-YAP-TAZ-TO-CONTROL

  33. Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., …, & Ailles, L. E. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 973–978. https://doi.org/10.1073/PNAS.0610117104

  34. Grimm, M., Krimmel, M., Polligkeit, J., Alexander, D., Munz, A., Kluba, S., …, & Hoefert, S. (2012). ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. European Journal of Cancer, 48(17), 3186–3197. https://doi.org/10.1016/J.EJCA.2012.05.027

  35. Ghuwalewala, S., Ghatak, D., Das, P., Dey, S., Sarkar, S., Alam, N., …, & Roychoudhury, S. (2016). CD44highCD24low molecular signature determines the Cancer Stem Cell and EMT phenotype in Oral Squamous Cell Carcinoma. Stem Cell Research, 16(2), 405–417. https://doi.org/10.1016/J.SCR.2016.02.028

  36. Segre, J. A., Bauer, C., & Fuchs, E. (1999). Klf4 is a transcription factor required for establishing the barrier function of the skin. Nature Genetics, 22(4), 356–360. https://doi.org/10.1038/11926

    Article  CAS  PubMed  Google Scholar 

  37. Sen, G. L., Boxer, L. D., Webster, D. E., Bussat, R. T., Qu, K., Zarnegar, B. J., …, & Khavari, P. A. (2012). ZNF750 Is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Developmental Cell, 22(3), 669–677. https://doi.org/10.1016/J.DEVCEL.2011.12.001

  38. Yan, Y., Li, Z., Kong, X., Jia, Z., Zuo, X., Gagea, M., …, & Xie, K. (2016). KLF4-mediated suppression of CD44 signaling negatively impacts pancreatic cancer stemness and metastasis. Cancer Research, 76(8), 2419–2431. https://doi.org/10.1158/0008-5472.CAN-15-1691/652076/AM/KLF4-MEDIATED-SUPPRESSION-OF-CD44-SIGNALING

  39. Yuan, Y., Park, J., Feng, A., Awasthi, P., Wang, Z., Chen, Q., & Iglesias-Bartolome, R. (2020). YAP1/TAZ-TEAD transcriptional networks maintain skin homeostasis by regulating cell proliferation and limiting KLF4 activity. Nature Communications, 11(1), 1–14. https://doi.org/10.1038/s41467-020-15301-0

    Article  CAS  Google Scholar 

  40. Debaugnies, M., Sánchez-Danés, A., Rorive, S., Raphaël, M., Liagre, M., Parent, M.-A., … Blanpain, C. (2018). YAP and TAZ are essential for basal and squamous cell carcinoma initiation. EMBO Reports, 19(7), e45809. https://doi.org/10.15252/EMBR.201845809

  41. Li, J., Li, Z., Wu, Y., Wang, Y., Wang, D., Zhang, W., & Cheng, J. (2019). The Hippo effector TAZ promotes cancer stemness by transcriptional activation of SOX2 in head neck squamous cell carcinoma. Cell Death & Disease, 10(8), 1–15. https://doi.org/10.1038/s41419-019-1838-0

    Article  CAS  Google Scholar 

  42. Morath, I., Hartmann, T. N., & Orian-Rousseau, V. (2016). CD44: More than a mere stem cell marker. The International Journal of Biochemistry & Cell Biology, 81, 166–173. https://doi.org/10.1016/J.BIOCEL.2016.09.009

    Article  CAS  Google Scholar 

  43. Pachón-Peña, G., Donnelly, C., Ruiz-Cañada, C., Katz, A., Fernández-Veledo, S., Vendrell, J., …, & Fernandez-Veledo, S. (2017). A glycovariant of human CD44 is characteristically expressed on human mesenchymal stem cells. Stem Cells, 35(4), 1080–1092. https://doi.org/10.1002/STEM.2549

  44. Sackstein, R., Merzaban, J. S., Cain, D. W., Dagia, N. M., Spencer, J. A., Lin, C. P., & Wohlgemuth, R. (2008). Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nature Medicine, 14(2), 181–187. https://doi.org/10.1038/nm1703

    Article  CAS  PubMed  Google Scholar 

  45. Herrera, M. B., Bussolati, B., Bruno, S., Morando, L., Mauriello-Romanazzi, G., Sanavio, F., …, & Camussi, G. (2007). Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney International, 72(4), 430–441. https://doi.org/10.1038/SJ.KI.5002334

  46. Zhu, H., Mitsuhashi, N., Klein, A., Barsky, L. W., Weinberg, K., Barr, M. L., …, & Wu, G. D. (2006). The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells, 24(4), 928–935. https://doi.org/10.1634/STEMCELLS.2005-0186

  47. Aldridge, V., Garg, A., Davies, N., Bartlett, D. C., Youster, J., Beard, H., …, & Newsome, P. N. (2012). Human mesenchymal stem cells are recruited to injured liver in a β1-integrin and CD44 dependent manner. Hepatology, 56(3), 1063–1073. https://doi.org/10.1002/HEP.25716

  48. Gomez, K. E., Wu, F. L., Keysar, S. B., Jason Morton, J., Miller, B., Chimed, T. S., …, & Jimeno, A. (2020). Cancer cell CD44 mediates macrophage/ monocyte-driven regulation of head and neck cancer stem cells. Cancer Research, 80(19), 4185–4198. https://doi.org/10.1158/0008-5472.CAN-20-1079/654585/AM/CANCER-CELL-CD44-MEDIATES-MACROPHAGE-MONOCYTE

  49. Brown, R. L., Reinke, L. M., Damerow, M. S., Perez, D., Chodosh, L. A., Yang, J., & Cheng, C. (2011). CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. The Journal of Clinical Investigation, 121(3), 1064–1074. https://doi.org/10.1172/JCI44540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu, H., Tian, Y., Yuan, X., Liu, Y., Wu, H., Liu, Q., …, & Wu, K. (2016). Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis. OncoTargets and therapy, 9, 431. https://doi.org/10.2147/OTT.S97192

  51. Li, L., Qi, L., Liang, Z., Song, W., Liu, Y., Wang, Y., …, & Cao, W. (2015). Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. International Journal of Molecular Medicine, 36(1), 113–122. https://doi.org/10.3892/IJMM.2015.2222/HTML

  52. Bhattacharya, R., Mitra, T., Ray Chaudhuri, S., & Roy, S. S. (2018). Mesenchymal splice isoform of CD44 (CD44s) promotes EMT/invasion and imparts stem-like properties to ovarian cancer cells. Journal of Cellular Biochemistry, 119(4), 3373–3383. https://doi.org/10.1002/JCB.26504

    Article  CAS  PubMed  Google Scholar 

  53. Cho, S. H., Park, Y. S., Kim, H. J., Kim, C. H., Lim, S. W., Huh, J. W., …, & Kim, H. R. (2012). CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. International Journal of Oncology, 41(1), 211–218. https://doi.org/10.3892/IJO.2012.1453/HTML

  54. Wei, C. Y., Zhu, M. X., Yang, Y. W., Zhang, P. F., Yang, X., Peng, R., …, & Gu, J. Y. (2019). Downregulation of RNF128 activates Wnt/?-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. Journal of Hematology and Oncology, 12(1), 1–15. https://doi.org/10.1186/S13045-019-0711-Z/TABLES/2

  55. Schmitt, M., Metzger, M., Gradl, D., Davidson, G., & Orian-Rousseau, V. (2014). CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death & Differentiation, 22(4), 677–689. https://doi.org/10.1038/cdd.2014.156

    Article  CAS  Google Scholar 

  56. Nagano, O., & Saya, H. (2004). Mechanism and biological significance of CD44 cleavage. Cancer Science, 95(12), 930–935. https://doi.org/10.1111/J.1349-7006.2004.TB03179.X

    Article  CAS  PubMed  Google Scholar 

  57. Ortiz-Urda, S., Garcia, J., Green, C. L., Chen, L., Lin, Q., Veitch, D. P., …, & Khavari, P. A. (2005). Type VII collagen is required for ras-driven human epidermal tumorigenesis. Science, 307(5716), 1773–1776. https://doi.org/10.1126/SCIENCE.1106209/SUPPL_FILE/ORTIZ-URDA_SOM.PDF

  58. Liu, N., Matsumura, H., Kato, T., Ichinose, S., Takada, A., Namiki, T., …, & Nishimura, E. K. (2019). Stem cell competition orchestrates skin homeostasis and ageing. Nature, 568(7752), 344–350. https://doi.org/10.1038/S41586-019-1085-7

  59. Ng, Y. Z., Pourreyron, C., Salas-Alanis, J. C., Dayal, J. H. S., Cepeda-Valdes, R., Yan, W., …, & South, A. P. (2012). Fibroblast-derived dermal matrix drives development of aggressive cutaneous squamous cell carcinoma in patients with recessive dystrophic epidermolysis bullosa. Cancer Research, 72(14), 3522–3534. https://doi.org/10.1158/0008-5472.CAN-11-2996/650341/AM/FIBROBLAST-DERIVED-DERMAL-MATRIX-DRIVES

  60. Guerra, L., Odorisio, T., Zambruno, G., & Castiglia, D. (2017). Stromal microenvironment in type VII collagen-deficient skin: The ground for squamous cell carcinoma development. Matrix Biology, 63, 1–10. https://doi.org/10.1016/J.MATBIO.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  61. Govindaraju, P., Todd, L., Shetye, S., Monslow, J., & Puré, E. (2019). CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biology, 75–76, 314–330. https://doi.org/10.1016/J.MATBIO.2018.06.004

    Article  PubMed  Google Scholar 

  62. Boumahdi, S., Driessens, G., Lapouge, G., Rorive, S., Nassar, D., le Mercier, M., & Blanpain, C. (2014). SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature, 511(7508), 246–250. https://doi.org/10.1038/nature13305

    Article  CAS  PubMed  Google Scholar 

  63. Dabdoub, A., Puligilla, C., Jones, J. M., Fritzsch, B., Cheah, K. S. E., Pevny, L. H., & Kelley, M. W. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18395–18401. https://doi.org/10.1073/PNAS.0808175105

    Article  Google Scholar 

  64. Sasahira, T., Ueda, N., Yamamoto, K., Kurihara, M., Matsushima, S., Bhawal, U. K., …, & Kuniyasu, H. (2014). Prox1 and FOXC2 Act as Regulators of Lymphangiogenesis and Angiogenesis in Oral Squamous Cell Carcinoma. PLoS ONE, 9(3), e92534. https://doi.org/10.1371/JOURNAL.PONE.0092534

  65. Yokobori, T., Bao, P., Fukuchi, M., Altan, B., Ozawa, D., Rokudai, S., …, & Kuwano, H. (2015). Nuclear PROX1 is associated with hypoxia-inducible factor 1α expression and cancer progression in esophageal squamous cell carcinoma. Annals of Surgical Oncology, 22(3), 1566–1573. https://doi.org/10.1245/S10434-015-4831-6/FIGURES/3

  66. Forghanifard, M. M., Kasebi, P., & Abbaszadegan, M. R. (2021). SOX2/SALL4 stemness axis modulates Notch signaling genes to maintain self-renewal capacity of esophageal squamous cell carcinoma. Molecular and Cellular Biochemistry, 476(2), 921–929. https://doi.org/10.1007/S11010-020-03956-8/TABLES/3

    Article  CAS  PubMed  Google Scholar 

  67. Schwaederle, M., Elkin, S. K., Tomson, B. N., Carter, J. L., & Kurzrock, R. (2015). Squamousness: Next-generation sequencing reveals shared molecular features across squamous tumor types. Cell Cycle, 14(14), 2355–2361. https://doi.org/10.1080/15384101.2015.1053669/SUPPL_FILE/KCCY_A_1053669_SM3457.DOCX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Siegle, J. M., Basin, A., Sastre-Perona, A., Yonekubo, Y., Brown, J., Sennett, R., & Schober, M. (2014). SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nature Communications, 5(1), 1–12. https://doi.org/10.1038/ncomms5511

    Article  CAS  Google Scholar 

  69. Fukusumi, T., Guo, T. W., Ren, S., Haft, S., Liu, C., Sakai, A., …, & CALIFANO, J. A. (2021). Reciprocal activation of HEY1 and NOTCH4 under SOX2 control promotes EMT in head and neck squamous cell carcinoma. International Journal of Oncology, 58(2), 226–237. https://doi.org/10.3892/IJO.2020.5156/HTML

  70. Liu, X., Qiao, B., Zhao, T., Hu, F., Lam, A. K. Y., & Tao, Q. (2018). Sox2 promotes tumor aggressiveness and epithelial-mesenchymal transition in tongue squamous cell carcinoma. International Journal of Molecular Medicine, 42(3), 1418–1426. https://doi.org/10.3892/IJMM.2018.3742/HTML

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pastushenko, I., Mauri, F., Song, Y., de Cock, F., Meeusen, B., Swedlund, B., & Blanpain, C. (2020). Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature, 589(7842), 448–455. https://doi.org/10.1038/s41586-020-03046-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang, P. Y., Kandyba, E., Jabouille, A., Sjolund, J., Kumar, A., Halliwill, K., & Balmain, A. (2017). Lgr6 is a stem cell marker in mouse skin squamous cell carcinoma. Nature Genetics, 49(11), 1624–1632. https://doi.org/10.1038/ng.3957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chai, T., Shen, Z., Zhang, Z., Chen, S., Gao, L., Zhang, P., …, & Lin, J. (2020). LGR6 is a potential diagnostic and prognostic marker for esophageal squamous cell carcinoma. Journal of Clinical Laboratory Analysis, 34(4), e23121. https://doi.org/10.1002/JCLA.23121

  74. Jank, B. J., Kadletz, L., Dunkler, D., Haas, M., Schnoell, J., Kenner, L., & Heiduschka, G. (2020). Epithelial stem cell marker LGR6 expression identifies a low-risk subgroup in human papillomavirus positive oropharyngeal squamous cell carcinoma. Oral Oncology, 105, 104657. https://doi.org/10.1016/J.ORALONCOLOGY.2020.104657

    Article  CAS  PubMed  Google Scholar 

  75. Le, P. N., Keysar, S. B., Miller, B., Eagles, J. R., Chimed, T. S., Reisinger, J., …, & Jimeno, A. (2019). Wnt signaling dynamics in head and neck squamous cell cancer tumor-stroma interactions. Molecular Carcinogenesis, 58(3), 398–410. https://doi.org/10.1002/MC.22937

  76. Anzai, H., Yoshimoto, S., Okamura, K., Hiraki, A., & Hashimoto, S. (2022). IDO1-mediated Trp-kynurenine-AhR signal activation induces stemness and tumor dormancy in oral squamous cell carcinomas. Oral Science International, 19(1), 31–43. https://doi.org/10.1002/OSI2.1109

    Article  Google Scholar 

  77. Eguiarte-Solomon, F., Blazanin, N., Rho, O., Carbajal, S., Felsher, D. W., Tran, P. T., & DiGiovanni, J. (2021). Twist1 is required for the development of UVB-induced squamous cell carcinoma. Molecular Carcinogenesis, 60(5), 342–353. https://doi.org/10.1002/MC.23296

    Article  CAS  PubMed  Google Scholar 

  78. Reinhold, M. I., Kapadia, R. M., Liao, Z., & Naski, M. C. (2006). The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. Journal of Biological Chemistry, 281(3), 1381–1388. https://doi.org/10.1074/JBC.M504875200/ATTACHMENT/98E36582-07EF-4CE0-8C23-8AF13AD2DBC9/MMC1.PDF

    Article  CAS  PubMed  Google Scholar 

  79. Jensen, K. B., & Watt, F. M. (2006). Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regular of stem cell quiescence. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 11958–11963. https://doi.org/10.1073/PNAS.0601886103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Proweller, A., Tu, L., Lepore, J. J., Cheng, L., Lu, M. M., Seykora, J., …, & Parmacek, M. S. (2006). Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Research, 66(15), 7438–7444. https://doi.org/10.1158/0008-5472.CAN-06-0793

  81. Zhou, Y., Su, Y., Zhu, H., Wang, X., Li, X., Dai, C., …, & Chen, D. (2019). Interleukin-23 receptor signaling mediates cancer dormancy and radioresistance in human esophageal squamous carcinoma cells via the Wnt/Notch pathway. Journal of Molecular Medicine, 97(2), 177–188. https://doi.org/10.1007/S00109-018-1724-8/FIGURES/4

  82. Loganathan, S. K., Schleicher, K., Malik, A., Quevedo, R., Langille, E., Teng, K., … Schramek, D. (2020). Rare driver mutations in head and neck squamous cell carcinomas converge on NOTCH signaling. Science (New York, N.Y.), 367(6483), 1264–1269. https://doi.org/10.1126/SCIENCE.AAX0902/SUPPL_FILE/AAX0902-LOGANATHAN-TABLE-S7.XLSX

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors performed the literature search and analysis. RS wrote the manuscript.

Corresponding author

Correspondence to Raghvendra Singh.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors agree to publish the manuscript.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, A., Singh, R. Loss of Epidermal Homeostasis Underlies the Development of Squamous Cell Carcinoma. Stem Cell Rev and Rep 19, 667–679 (2023). https://doi.org/10.1007/s12015-022-10486-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10486-x

Keywords

Navigation