Skip to main content

Advertisement

Log in

Natural Scaffolds Used for Liver Regeneration: A Narrative Update

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Annually chronic liver diseases cause two million death worldwide. Although liver transplantation (LT) is still considered the best therapeutic option, the limited number of donated livers and lifelong side effects of LT has led researchers to seek alternative therapies. Tissue engineering (TE) as a promising method is considered for liver repair and regeneration. TE uses natural or synthetic scaffolds, functional somatic cells, multipotent stem cells, and growth factors to develop new organs. Biological scaffolds are notable in TE because of their capacity to mimic extracellular matrices, biodegradability, and biocompatibility. Moreover, natural scaffolds are classified based on their source and function in three separate groups. Hemostat-based scaffolds as the first group were reviewed for their application in coagulation in liver injury or surgery. Furthermore, recent studies showed improvement in the function of biological hydrogels in liver regeneration and vascularity. In addition, different applications of natural scaffolds were discussed and compared with synthetic scaffolds. Finally, we focused on the efforts to improve the performance of decellularized extracellular matrixes for liver implantation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

OLT:

Orthotopic Liver Transplant

MSCs:

Mesenchymal Stem Cells

ESCs:

Embryonic Stem Cells

iPSCs:

Induced Pluripotent Stem Cells

ECM:

Extracellular Matrices

dECM:

Decellularized Extracellular Matrices

MACS:

Microchanneled Alkylated Chitosan Sponge

PGMs:

Porous Gelatin Microspheres

mTG:

Microbial Transglutaminase Enzyme

GMA:

Gelatin Methacryloyl

HA:

Hyaluronic Acid

HAMA:

Cross-Linked Methacrylated HA

GHA:

Galactosylated HA

EGF:

Epidermal Growth Factor

VEGF:

Vascular Endothelial Growth Factor

PCL:

Polycaprolactone

PEO:

Polyethylene Oxide

References

  1. Acun, A., Oganesyan, R., Uygun, K., Yeh, H., Yarmush, M. L., & Uygun, B. E. (2021). Liver donor age affects hepatocyte function through age-dependent changes in decellularized liver matrix. Biomaterials, 270, 120689. https://doi.org/10.1016/j.biomaterials.2021.120689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agarwal, T., Subramanian, B., & Maiti, T. K. (2019). Liver tissue engineering: Challenges and opportunities. Acs Biomaterials Science & Engineering, 5, 4167–4182. https://doi.org/10.1515/biolog-2016-0056

    Article  CAS  Google Scholar 

  3. Alaribe, F. N., Manoto, S. L., & Motaung, S. C. (2016). Scaffolds from biomaterials: Advantages and limitations in bone and tissue engineering. Biologia, 71, 353–366. https://doi.org/10.1515/biolog-2016-0056

    Article  Google Scholar 

  4. Armstrong, J. P., & Stevens, M. M. (2019). Emerging technologies for tissue engineering: From gene editing to personalized medicine. Tissue Engineering Part A, 25, 688–692. https://doi.org/10.1089/ten.tea.2019.0026

    Article  PubMed  Google Scholar 

  5. Asrani, S. K., Devarbhavi, H., Eaton, J., & Kamath, P. S. (2019). Burden of liver diseases in the world. Journal of hepatology, 70, 151–171. https://doi.org/10.1016/j.jhep.2018.09.014

    Article  PubMed  Google Scholar 

  6. Bao, J., Shi, Y., Sun, H., Yin, X., Yang, R., Li, L., Chen, X., & Bu, H. (2011). Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell transplantation, 20, 753–766. https://doi.org/10.3727/096368910X536572

    Article  PubMed  Google Scholar 

  7. Boerman, M. A., Roozen, E., Sánchez-Fernández, M. J., Keereweer, A. R., Félix Lanao, R. P., Bender, J. C., Hoogenboom, R., Leeuwenburgh, S. C., Jansen, J. A., & Van Goor, H. (2017). Next generation hemostatic materials based on NHS-ester functionalized poly (2-oxazoline) s. Biomacromolecules, 18, 2529–2538. https://doi.org/10.1021/acs.biomac.7b00683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bram, Y., Nguyen, D.-H. T., Gupta, V., Park, J., Richardson, C., & Schwartz, R. E. (2021). Cell and Tissue Therapy for the Treatment of Chronic Liver Disease. Annual Review of Biomedical Engineering, 23. https://doi.org/10.1146/annurev-bioeng-112619-044026

  9. Bu, Y., Zhang, L., Liu, J., Zhang, L., Li, T., Shen, H., Wang, X., Yang, F., Tang, P., & Wu, D. (2016). Synthesis and properties of hemostatic and bacteria-responsive in situ hydrogels for emergency treatment in critical situations. ACS applied materials & interfaces, 8, 12674–12683. https://doi.org/10.1021/acsami.6b03235

    Article  CAS  Google Scholar 

  10. Bual, R., Kimura, H., Ikegami, Y., Shirakigawa, N., & Ijima, H. (2018). Fabrication of liver-derived extracellular matrix nanofibers and functional evaluation in in vitro culture using primary hepatocytes. Materialia, 4, 518–528. https://doi.org/10.1016/j.mtla.2018.11.014

    Article  CAS  Google Scholar 

  11. Caires-Júnior, L. C., Goulart, E., Telles-Silva, K. A., Araujo, B. H. S., Musso, C. M., Kobayashi, G., Oliveira, D., Assoni, A., Carvalho, V. M., & Ribeiro-Jr, A. F. (2021). Pre-coating decellularized liver with HepG2-conditioned medium improves hepatic recellularization. Materials Science and Engineering: C, 121, 111862. https://doi.org/10.1016/j.msec.2020.111862

    Article  CAS  Google Scholar 

  12. Camci-Unal, G., Cuttica, D., Annabi, N., Demarchi, D., & Khademhosseini, A. (2013). Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromolecules, 14, 1085–1092. https://doi.org/10.1021/bm3019856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang, S. H., Huang, H. H., Kang, P. L., Wu, Y. C., Chang, M.-H., & Kuo, S. M. (2017). In vitro and in vivo study of the application of volvox spheres to co-culture vehicles in liver tissue engineering. Acta Biomaterialia, 63, 261–273. https://doi.org/10.1016/j.actbio.2017.09.028

    Article  CAS  PubMed  Google Scholar 

  14. Cheemerla, S., & Balakrishnan, M. (2021). Global epidemiology of Chronic liver Disease. Clinical Liver Disease, 17, 365. https://doi.org/10.1002/cld.1061

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen, F., Tian, M., Zhang, D., Wang, J., Wang, Q., Yu, X., Zhang, X., & Wan, C. (2012). Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Materials Science and Engineering: C, 32, 310–320. https://doi.org/10.1016/j.msec.2011.10.034

    Article  CAS  Google Scholar 

  16. Chen, G., Yu, Y., Wu, X., Wang, G., Ren, J., & Zhao, Y. (2018). Bioinspired multifunctional hybrid hydrogel promotes wound healing. Advanced Functional Materials, 28, 1801386. https://doi.org/10.1002/adfm.201801386

    Article  CAS  Google Scholar 

  17. Chu, T. L., Tripathi, G., Bae, S. H., & Lee, B.-T. (2021). In-vitro and in-vivo hemostat evaluation of decellularized liver extra cellular matrix loaded chitosan/gelatin spongy scaffolds for liver injury. International Journal of Biological Macromolecules, 193, 638–646. https://doi.org/10.1016/j.ijbiomac.2021.10.128

    Article  CAS  PubMed  Google Scholar 

  18. Chu, T. L., Tripathi, G., Bae, S. H., & Lee, B.-T. (2021). Physico-mechanical and biological evaluation of an injectable m-TG cross-linked thrombin loaded amended gelatin hemostat to heal liver trauma. International Journal of Biological Macromolecules, 181, 339–348. https://doi.org/10.1016/j.ijbiomac.2021.03.114

    Article  CAS  PubMed  Google Scholar 

  19. Cooper, D. K., Dou, K.-F., Tao, K.-S., Yang, Z.-X., Tector, A. J., & Ekser, B. (2016). Pig liver xenotransplantation: A review of progress towards the clinic. Transplantation, 100, 2039. https://doi.org/10.1097/TP.0000000000001319

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deineka, V., Sulaieva, O., Pernakov, M., Korniienko, V., Husak, Y., Yanovska, A., Yusupova, A., Tkachenko, Y., Kalinkevich, O., & Zlatska, A. (2021). Hemostatic and Tissue Regeneration Performance of Novel Electrospun Chitosan-Based Materials. Biomedicines, 9, 588. https://doi.org/10.3390/biomedicines9060588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Di Filippo, M. F., Panzavolta, S., Albertini, B., Bonvicini, F., Gentilomi, G. A., Orlacchio, R., Passerini, N., Bigi, A., & Dolci, L. S. (2020). Functional properties of chitosan films modified by snail mucus extract. International Journal of Biological Macromolecules, 143, 126–135. https://doi.org/10.1016/j.ijbiomac.2019.11.230

    Article  CAS  PubMed  Google Scholar 

  22. Dimitroulis, D., Antoniou, E., Karidis, N. P., Kontzoglou, K., & Kouraklis, G. (2012). Surgical control of life-threatening post-ERCP bleeding with a gelatin matrix-thrombin hemostatic agent. International journal of surgery case reports, 3, 471–473. https://doi.org/10.1016/j.ijscr.2012.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ding, C.-M., Zhou, Y., He, Y.-N., & Tan, W.-S. (2008). Perfusion seeding of collagen–chitosan sponges for dermal tissue engineering. Process Biochemistry, 43, 287–296. https://doi.org/10.1016/j.procbio.2007.12.005

    Article  CAS  Google Scholar 

  24. Du, C., Narayanan, K., Leong, M. F., & Wan, A. C. (2014). Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials, 35, 6006–6014. https://doi.org/10.1016/j.biomaterials.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  25. Du, X., Liu, Y., Wang, X., Yan, H., Wang, L., Qu, L., Kong, D., Qiao, M., & Wang, L. (2019). Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing. Materials Science and Engineering: C, 104, 109930. https://doi.org/10.1016/j.msec.2019.109930

    Article  CAS  Google Scholar 

  26. Du, X., Liu, Y., Yan, H., Rafique, M., Li, S., Shan, X., Wu, L., Qiao, M., Kong, D., & Wang, L. (2020). Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure. Biomacromolecules, 21, 1243–1253. https://doi.org/10.1021/acs.biomac.9b01707

    Article  CAS  PubMed  Google Scholar 

  27. Du, X., Wu, L., Yan, H., Jiang, Z., Li, S., Li, W., Bai, Y., Wang, H., Cheng, Z., & Kong, D. (2021). Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing. Nature communications, 12, 1–16. https://doi.org/10.1038/s41467-021-24972-2

    Article  CAS  Google Scholar 

  28. Dvir-Ginzberg, M., Gamlieli-Bonshtein, I., Agbaria, R., & Cohen, S. (2003). Liver tissue engineering within alginate scaffolds: Effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue engineering, 9, 757–766. https://doi.org/10.1089/107632703768247430

    Article  CAS  PubMed  Google Scholar 

  29. Ebrahim, N., Badr, O. A., Yousef, M. M., Hassouna, A., Sabry, D., Farid, A. S., Mostafa, O., Saihati, H. A. A., Seleem, Y., & Abd El Aziz, E. (2021). Functional Recellularization of Acellular Rat Liver Scaffold by Induced Pluripotent Stem Cells: Molecular Evidence for Wnt/B-Catenin Upregulation. Cells, 10, 2819. https://doi.org/10.3390/cells10112819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eke, G., Mangir, N., Hasirci, N., MacNeil, S., & Hasirci, V. (2017). Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials, 129, 188–198. https://doi.org/10.1016/j.biomaterials.2017.03.021

    Article  CAS  PubMed  Google Scholar 

  31. Erro, E., Bundy, J., Massie, I., Chalmers, S.-A., Gautier, A., Gerontas, S., Hoare, M., Sharratt, P., Choudhury, S., & Lubowiecki, M. (2013). Bioengineering the liver: Scale-up and cool chain delivery of the liver cell biomass for clinical targeting in a bioartificial liver support system. BioResearch Open Access, 2, 1–11. https://doi.org/10.1089/biores.2012.0286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan, J., & Yang, J. (2017). Preparation and characterization of a chitosan/galactosylated hyaluronic acid/heparin scaffold for hepatic tissue engineering. Journal of Biomaterials science, Polymer edition, 28(6), 569–581. https://doi.org/10.1080/09205063.2017.1288076

    Article  CAS  Google Scholar 

  33. Feng, Z.-Q., Chu, X., Huang, N.-P., Wang, T., Wang, Y., Shi, X., Ding, Y., & Gu, Z.-Z. (2009). The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials, 30, 2753–2763. https://doi.org/10.1016/j.biomaterials.2009.01.053

    Article  CAS  PubMed  Google Scholar 

  34. Fisher, J. P., Mikos, A. G., Bronzino, J. D., & Peterson, D. R. (2012). Tissue engineering: Principles and practices. CRC Press.

    Book  Google Scholar 

  35. Fodor, W. L. (2003). Tissue engineering and cell based therapies, from the bench to the clinic: The potential to replace, repair and regenerate. Reproductive Biology and Endocrinology, 1, 1–6. https://doi.org/10.3390/cells10112819

    Article  CAS  Google Scholar 

  36. Fu, F., Chen, Z., Zhao, Z., Wang, H., Shang, L., Gu, Z., & Zhao, Y. (2017). Bio-inspired self-healing structural color hydrogel. Proceedings of the National Academy of Sciences, 114, 5900–5905. https://doi.org/10.1073/pnas.1703616114

    Article  CAS  Google Scholar 

  37. Ghahremanzadeh, F., Alihosseini, F., & Semnani, D. (2021). Investigation and comparison of new galactosylation methods on PCL/chitosan scaffolds for enhanced liver tissue engineering. International Journal of Biological Macromolecules, 174, 278–288. https://doi.org/10.1016/j.ijbiomac.2021.01.158

    Article  CAS  PubMed  Google Scholar 

  38. Grigoryan, B., Paulsen, S. J., Corbett, D. C., Sazer, D. W., Fortin, C. L., Zaita, A. J., Greenfield, P. T., Calafat, N. J., Gounley, J. P., & Ta, A. H. (2019). Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 364(6439), 458–464. https://doi.org/10.1126/science.aav9750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gyles, D. A., Castro, L. D., Silva, J. O. C., Jr., & Ribeiro-Costa, R. M. (2017). A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. European Polymer Journal, 88, 373–392. https://doi.org/10.1016/j.eurpolymj.2017.01.027

    Article  CAS  Google Scholar 

  40. Haddad-Mashadrizeh, A., Matin, M. M., Shahabipour, F., Ensandost, S., Zomorodipour, A., & Bahrami, A. R. (2021). Effects of chitosan-glycerol phosphate hydrogel on the maintenance and homing of hAd-MSCs after xenotransplantation into the rat liver. Emergent Materials, 1-10. https://doi.org/10.1007/s42247-021-00167-9

  41. Hajilou, H., Farahpour, M. R., & Hamishehkar, H. (2020). Polycaprolactone nanofiber coated with chitosan and Gamma oryzanol functionalized as a novel wound dressing for healing infected wounds. International Journal of Biological Macromolecules, 164, 2358–2369. https://doi.org/10.1016/j.ijbiomac.2020.08.079

    Article  CAS  PubMed  Google Scholar 

  42. Hammond, J. S., Beckingham, I. J., & Shakesheff, K. M. (2006). Scaffolds for liver tissue engineering. Expert review of medical devices, 3, 21–27. https://doi.org/10.1016/j.ijbiomac.2020.08.079

    Article  CAS  PubMed  Google Scholar 

  43. Hasan, A., Morshed, M., Memic, A., Hassan, S., Webster, T. J., & Marei, H.E.-S. (2018). Nanoparticles in tissue engineering: Applications, challenges and prospects. International Journal of Nanomedicine, 13, 5637. https://doi.org/10.2147/IJN.S153758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He, L., Liu, B., Xipeng, G., Xie, G., Liao, S., Quan, D., Cai, D., Lu, J., & Ramakrishna, S. (2009). Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. European cells & materials, 18, 63–74. https://doi.org/10.22203/ecm.v018a06

    Article  CAS  Google Scholar 

  45. Hjortnaes, J., Camci-Unal, G., Hutcheson, J. D., Jung, S. M., Schoen, F. J., Kluin, J., Aikawa, E., & Khademhosseini, A. (2015). Directing valvular interstitial cell myofibroblast-like differentiation in a hybrid hydrogel platform. Advanced Healthcare Materials, 4, 121–130. https://doi.org/10.1002/adhm.201400029

    Article  CAS  PubMed  Google Scholar 

  46. Huang, Y., Zhao, X., Zhang, Z., Liang, Y., Yin, Z., Chen, B., Bai, L., Han, Y., & Guo, B. (2020). Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing. Chemistry of Materials, 32, 6595–6610. https://doi.org/10.1021/acs.chemmater.0c02030

    Article  CAS  Google Scholar 

  47. Hussein, K. H., Park, K.-M., Kang, K.-S., & Woo, H.-M. (2016). Heparin-gelatin mixture improves vascular reconstruction efficiency and hepatic function in bioengineered livers. Acta biomaterialia, 38, 82–93. https://doi.org/10.1016/j.actbio.2016.04.042

    Article  CAS  PubMed  Google Scholar 

  48. Ikada, Y. (2006). Challenges in tissue engineering. Journal of the Royal Society Interface, 3, 589–601. https://doi.org/10.1098/rsif.2006.0124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Imani, R., Rafienia, M., & Hojjati Emami, S. (2013). Synthesis and characterization of glutaraldehyde-based crosslinked gelatin as a local hemostat sponge in surgery: An in vitro study. Bio-medical materials and engineering, 23, 211–224. https://doi.org/10.3233/BME-130745

    Article  CAS  PubMed  Google Scholar 

  50. Janani, G., Nandi, S. K., & Mandal, B. B. (2018). Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta biomaterialia, 67, 167–182. https://doi.org/10.1016/j.actbio.2017.11.053

    Article  CAS  PubMed  Google Scholar 

  51. Ji, S., & Guvendiren, M. (2017). Recent advances in bioink design for 3D bioprinting of tissues and organs. Frontiers in bioengineering and biotechnology, 5, 23. https://doi.org/10.3389/fbioe.2017.00023

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jiang, Q., Xu, J., Li, T., Qiao, C., & Li, Y. (2014). Synthesis and antibacterial activities of quaternary ammonium salt of gelatin. Journal of Macromolecular Science, Part B, 53, 133–141. https://doi.org/10.1080/00222348.2013.808518

    Article  CAS  Google Scholar 

  53. Jiang, W.-C., Cheng, Y.-H., Yen, M.-H., Chang, Y., Yang, V. W., & Lee, O. K. (2014). Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials, 35, 3607–3617. https://doi.org/10.1016/j.biomaterials.2014.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kabiri, M., Emami, S. H., Rafinia, M., & Tahriri, M. (2011). Preparation and characterization of absorbable hemostat crosslinked gelatin sponges for surgical applications. Current Applied Physics, 11, 457–461. https://doi.org/10.1016/j.cap.2010.08.031

    Article  Google Scholar 

  55. Kao, H.-H., Kuo, C.-Y., Chen, K.-S., & Chen, J.-P. (2019). Preparation of gelatin and gelatin/hyaluronic acid cryogel scaffolds for the 3D culture of mesothelial cells and mesothelium tissue regeneration. International Journal of Molecular Sciences, 20, 4527. https://doi.org/10.3390/ijms20184527

    Article  CAS  PubMed Central  Google Scholar 

  56. Karin, M., & Clevers, H. (2016). Reparative inflammation takes charge of tissue regeneration. Nature, 529, 307–315. https://doi.org/10.1038/nature17039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karsdal, M. A., Manon-Jensen, T., Genovese, F., Kristensen, J. H., Nielsen, M. J., Sand, J. M. B., Hansen, N.-U.B., Bay-Jensen, A.-C., Bager, C. L., & Krag, A. (2015). Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 308, G807–G830. https://doi.org/10.1152/ajpgi.00447.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ko, I. K., Peng, L., Peloso, A., Smith, C. J., Dhal, A., Deegan, D. B., Zimmerman, C., Clouse, C., Zhao, W., & Shupe, T. D. (2015). Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials, 40, 72–79. https://doi.org/10.1016/j.biomaterials.2014.11.027

    Article  CAS  PubMed  Google Scholar 

  59. Kukla, D. A., Stoppel, W. L., Kaplan, D. L., & Khetani, S. R. (2020). Assessing the compatibility of primary human hepatocyte culture within porous silk sponges. RSC Advances, 10, 37662–37674. https://doi.org/10.1039/D0RA04954A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuo, Y.-C., & Chen, Y.-C. (2016). Regeneration of neurite-like cells from induced pluripotent stem cells in self-assembled hyaluronic acid-gelatin microhydrogel. Journal of the Taiwan Institute of Chemical Engineers, 67, 74–87. https://doi.org/10.1016/j.jtice.2016.07.045

    Article  CAS  Google Scholar 

  61. Landsman, T., Touchet, T., Hasan, S., Smith, C., Russell, B., Rivera, J., . . . Cosgriff-Hernandez, E. (2017). A shape memory foam composite with enhanced fluid uptake and bactericidal properties as a hemostatic agent. Acta Biomaterialia, 47, 91-99. https://doi.org/10.1016/j.actbio.2016.10.008

  62. Lee, A., Hudson, A., Shiwarski, D., Tashman, J., Hinton, T., Yerneni, S., . . . Feinberg, A. (2019). 3D bioprinting of collagen to rebuild components of the human heart. Science, 365, 482-487. https://doi.org/10.1126/science.aav9051

  63. Lee, B. H., Shirahama, H., Kim, M. H., Lee, J. H., Cho, N.-J., & Tan, L. P. (2017). Colloidal templating of highly ordered gelatin methacryloyl-based hydrogel platforms for three-dimensional tissue analogues. NPG Asia Materials, 9, e412–e412. https://doi.org/10.1038/am.2017.126

    Article  CAS  Google Scholar 

  64. Lee, H.-S., Byun, S.-H., Cho, S.-W., & Yang, B.-E. (2019). Past, present, and future of regeneration therapy in oral and periodontal tissue: A review. Applied Sciences, 9, 1046. https://doi.org/10.3390/app9061046

    Article  CAS  Google Scholar 

  65. León-Mancilla, B., Martínez-Castillo, M., Guerrero-Bustos, R., Montesinos, J., & Hernández-Estévez, E. (2021). Human Mesenchymal Stem Cells seeded in 3D Collagen Matrix Scaffolds as a Therapeutic Alternative in Tissue Regeneration. Journal of Regenerative Medicine, 10, 5–8.

    Google Scholar 

  66. Li, L., Du, Y., Yin, Z., Li, L., Peng, H., Zheng, H., . . . Lv, G. (2020). Preparation and the hemostatic property study of porous gelatin microspheres both in vitro and in vivo. Colloids and Surfaces B: Biointerfaces, 187, 110641. https://doi.org/10.1016/j.colsurfb.2019.110641

  67. Liu, X., Holzwarth, J. M., & Ma, P. X. (2012). Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromolecular Bioscience, 12, 911–919. https://doi.org/10.1002/mabi.201100466

    Article  CAS  PubMed  Google Scholar 

  68. Liu, X. J., Li, H. Q., Lin, X. Y., Liu, H. Y., & Gao, G. H. (2015). Synthesis of siloxane-modified melamine-formaldehyde microsphere and its heavy metal ions adsorption by coordination effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 491–499. https://doi.org/10.1016/j.colsurfa.2015.06.051

    Article  CAS  Google Scholar 

  69. Liu, Z., Takeuchi, M., Nakajima, M., Hu, C., Hasegawa, Y., Huang, Q., & Fukuda, T. (2017). Three-dimensional hepatic lobule-like tissue constructs using cell-microcapsule technology. Acta Biomaterialia, 50, 178–187. https://doi.org/10.1016/j.actbio.2016.12.020

    Article  CAS  PubMed  Google Scholar 

  70. Loessner, D., Meinert, C., Kaemmerer, E., Martine, L. C., Yue, K., Levett, P. A., . . . Hutmacher, D. W. (2016). Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Natare Protocol, 11, 727-746. https://doi.org/10.1038/nprot.2016.037

  71. Maghsoudlou, P., Georgiades, F., Smith, H., Milan, A., Shangaris, P., Urbani, L., . . . Hagen, C. (2016). Optimization of liver decellularization maintains extracellular matrix micro-architecture and composition predisposing to effective cell seeding. PloS One, 11, e0155324https://doi.org/10.1371/journal.pone.0155324

  72. Masters, K. S., Shah, D. N., Leinwand, L. A., & Anseth, K. S. (2005). Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials, 26, 2517–2525. https://doi.org/10.1016/j.biomaterials.2004.07.018

    Article  CAS  PubMed  Google Scholar 

  73. Matou-Nasri, S., Gaffney, J., Kumar, S., & Slevin, M. (2009). Oligosaccharides of hyaluronan induce angiogenesis through distinct CD44 and RHAMM-mediated signalling pathways involving Cdc2 and γ-adducin. International Journal of Oncology, 35, 761–773. https://doi.org/10.3892/ijo_00000389

    Article  CAS  PubMed  Google Scholar 

  74. Mazzocchi, A., Devarasetty, M., Huntwork, R., Soker, S., & Skardal, A. (2018). Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication, 11, 015003. https://doi.org/10.1088/1758-5090/aae543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Minami, T., Ishii, T., Yasuchika, K., Fukumitsu, K., Ogiso, S., Miyauchi, Y., . . . Oshima, Y. (2019). Novel hybrid three-dimensional artificial liver using human induced pluripotent stem cells and a rat decellularized liver scaffold. Regenerative Therapy, 10, 127-133. https://doi.org/10.1016/j.reth.2019.03.002

  76. Mohammadkazemi, F., Barangenani, R. K., & Koosha, M. (2019). Development of organic–inorganic oxidized bacterial cellulose nanobiocomposites: Ternary complexes. Cellulose, 26, 6009–6022. https://doi.org/10.1007/s10570-019-02514-w

    Article  CAS  Google Scholar 

  77. Mondal, D., Griffith, M., & Venkatraman, S. S. (2016). Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials, 65, 255–265. https://doi.org/10.1080/00914037.2015.1103241

    Article  CAS  Google Scholar 

  78. Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32, 773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  79. Nadi, A., Moradi, L., Ai, J., & Asadpour, S. (2020). Stem Cells and Hydrogels for Liver Tissue Engineering: Synergistic Cure for Liver Regeneration. Stem Cell Reviews and Reports, 1-13. https://doi.org/10.1007/s12015-020-10060-3

  80. Nakamura, S., & Ijima, H. (2013). Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture. Journal of Bioscience and Bioengineering, 116, 746–753. https://doi.org/10.1016/j.jbiosc.2013.05.031

    Article  CAS  PubMed  Google Scholar 

  81. Navarro-Tableros V, Herrera Sanchez MB, Figliolini F, Romagnoli R, Tetta C, Camussi G. Recellularization of rat liver scaffolds by human liver stem cells. Tissue Engineering Part A. 2015 Jun 1;21(11-12):1929-39.

  82. Ng, S. S., Saeb-Parsy, K., Blackford, S. J., Segal, J. M., Serra, M. P., Horcas-Lopez, M., . . . Cho, N. J. (2018). Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. Biomaterials, 182, 299-311. https://doi.org/10.1016/j.biomaterials.2018.07.043

  83. Nichols, J. E., Niles, J., Riddle, M., Vargas, G., Schilagard, T., Ma, L., . . . Vega, S. (2013). Production and assessment of decellularized pig and human lung scaffolds. Tissue Engineering Part A, 19, 2045-2062. https://doi.org/10.1089/ten.TEA.2012.0250

  84. World Health Organization, (2021). Hepatitis, Retrieved from https://www.who.int/health-topics/hepatitis#tab=tab_1.

  85. Osorio, M., Fernández-Morales, P., Gañán, P., Zuluaga, R., Kerguelen, H., Ortiz, I., & Castro, C. (2019). Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area. Journal of Biomedical Materials Research Part A, 107, 348–359. https://doi.org/10.1002/jbm.a.36532

    Article  CAS  PubMed  Google Scholar 

  86. Palakkan, A. A., Hay, D. C., PR, A. K., TV, K., & Ross, J. A. (2013). Liver tissue engineering and cell sources: issues and challenges. Liver International, 33, 666-676https://doi.org/10.1111/liv.12134

  87. Pang, Y., Horimoto, Y., Sutoko, S., Montagne, K., Shinohara, M., Mathiue, D., . . . Sakai, Y. (2016). Novel integrative methodology for engineering large liver tissue equivalents based on three-dimensional scaffold fabrication and cellular aggregate assembly. Biofabrication, 8, 035016. https://doi.org/10.1088/1758-5090/8/3/035016

  88. Pang, Y., Montagne, K., Shinohara, M., Komori, K., & Sakai, Y. (2012). Liver tissue engineering based on aggregate assembly: Efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres. Biofabrication, 4, 045004. https://doi.org/10.1088/1758-5082/4/4/045004

    Article  CAS  PubMed  Google Scholar 

  89. Park, K.-M., Hussein, K. H., Hong, S.-H., Ahn, C., Yang, S.-R., Park, S.-M., . . . Woo, H.-M. (2016). Decellularized liver extracellular matrix as promising tools for transplantable bioengineered liver promotes hepatic lineage commitments of induced pluripotent stem cells. Tissue Engineering Part A, 22, 449-460. https://doi.org/10.1089/ten.TEA.2015.0313

  90. Rajalekshmi, R., Shaji, A. K., Joseph, R., & Bhatt, A. (2021). Scaffold for liver tissue engineering: Exploring the potential of fibrin incorporated alginate dialdehyde–gelatin hydrogel. International Journal of Biological Macromolecules, 166, 999–1008. https://doi.org/10.1016/j.ijbiomac.2020.10.256

    Article  CAS  PubMed  Google Scholar 

  91. Ranjbar-Mohammadi, M., & Bahrami, S. H. (2015). Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Materials Science and Engineering: C, 48, 71–79. https://doi.org/10.1016/j.msec.2014.10.020

    Article  CAS  Google Scholar 

  92. Ranjbar-Mohammadi, M., & Bahrami, S. H. (2016). Electrospun curcumin loaded poly (ε-caprolactone)/gum tragacanth nanofibers for biomedical application. International Journal of Biological Macromolecules, 84, 448–456. https://doi.org/10.1016/j.ijbiomac.2015.12.024

    Article  CAS  PubMed  Google Scholar 

  93. Ranjbar, J., Koosha, M., Chi, H., Ghasemi, A., Zare, F., Abdollahifar, M. A., . . . Li, T. (2021). Novel chitosan/gelatin/oxidized cellulose sponges as absorbable hemostatic agents. Cellulose, 28, 3663-3675. https://doi.org/10.1007/s10570-021-03699-9

  94. Richards, D., Jia, J., Yost, M., Markwald, R., & Mei, Y. (2017). 3D bioprinting for vascularized tissue fabrication. Annals of Biomedical Engineering, 45, 132–147. https://doi.org/10.1007/s10439-016-1653-z

    Article  PubMed  Google Scholar 

  95. Robertson, M. J., Dries-Devlin, J. L., Kren, S. M., Burchfield, J. S., & Taylor, D. A. (2014). Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS ONE, 9, e90406. https://doi.org/10.1371/journal.pone.0090406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shang, Y., Tamai, M., Ishii, R., Nagaoka, N., Yoshida, Y., Ogasawara, M., . . . Tagawa, Y.-i. (2014). Hybrid sponge comprised of galactosylated chitosan and hyaluronic acid mediates the co-culture of hepatocytes and endothelial cells. Journal of Bioscience and Bioengineering, 117, 99-106https://doi.org/10.1016/j.jbiosc.2013.06.015

  97. Sharifzadeh, G., & Hosseinkhani, H. (2017). Biomolecule-responsive hydrogels in medicine. Advanced Healthcare Materials, 6, 1700801. https://doi.org/10.1002/adhm.201700801

    Article  CAS  Google Scholar 

  98. Sharma, A., Rawal, P., Tripathi, D. M., Alodiya, D., Sarin, S. K., Kaur, S., & Ghosh, S. (2021). Upgrading Hepatic Differentiation and Functions on 3D Printed Silk–Decellularized Liver Hybrid Scaffolds. Acs Biomaterials Science & Engineering, 7, 3861–3873. https://doi.org/10.1021/acsbiomaterials.1c00671

    Article  CAS  Google Scholar 

  99. Sharma, S., & Tiwari, S. (2020). A review on biomacromolecular hydrogel classification and its applications. International Journal of Biological Macromolecules, 162, 737–747. https://doi.org/10.1016/j.ijbiomac.2020.06.110

    Article  CAS  PubMed  Google Scholar 

  100. She, Z., Liu, W., & Feng, Q. (2009). Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds. Biomedical Materials, 4, 045014. https://doi.org/10.1088/1748-6041/4/4/045014

    Article  CAS  PubMed  Google Scholar 

  101. Shi, X., Fang, Q., Ding, M., Wu, J., Ye, F., Lv, Z., & Jin, J. (2016). Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study. Journal of Biomaterials Applications, 30, 1092–1102. https://doi.org/10.1177/0885328215618354

    Article  CAS  PubMed  Google Scholar 

  102. Sk, M. M., Das, P., Panwar, A., & Tan, L. P. (2021). Synthesis and characterization of site selective photo-crosslinkable glycidyl methacrylate functionalized gelatin-based 3D hydrogel scaffold for liver tissue engineering. Materials Science and Engineering: C, 123, 111694. https://doi.org/10.1016/j.msec.2020.111694

    Article  CAS  Google Scholar 

  103. Souza, G. R., Molina, J. R., Raphael, R. M., Ozawa, M. G., Stark, D. J., Levin, C. S., . . . Georgescu, M.-M. (2010). Three-dimensional tissue culture based on magnetic cell levitation. Nature Nanotechnology, 5, 291-296. https://doi.org/10.1038/nnano.2010.23

  104. Starokozhko, V., & Groothuis, G. M. (2018). Challenges on the road to a multicellular bioartificial liver. Journal of Tissue Engineering and Regenerative Medicine, 12, e227–e236. https://doi.org/10.1002/term.2385

    Article  CAS  PubMed  Google Scholar 

  105. Sun, Y., Yang, C., Zhu, X., Wang, J. J., Liu, X. Y., Yang, X. P., . . . Jiang, W. (2019). 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. Journal of Biomedical Materials Research Part A, 107, 1898-1908. https://doi.org/10.1002/jbm.a.36675

  106. Suo, H., Zhang, J., Xu, M., & Wang, L. (2021). Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Materials Science and Engineering: C, 123, 111963. https://doi.org/10.1016/j.msec.2021.111963

    Article  CAS  Google Scholar 

  107. Taddei, P., Chiono, V., Anghileri, A., Vozzi, G., Freddi, G., & Ciardelli, G. (2013). Silk Fibroin/G elatin Blend Films Crosslinked with Enzymes for Biomedical Applications. Macromolecular Bioscience, 13, 1492–1510. https://doi.org/10.1002/mabi.201300156

    Article  CAS  PubMed  Google Scholar 

  108. Taheri, P., Jahanmardi, R., Koosha, M., & Abdi, S. (2020). Physical, mechanical and wound healing properties of chitosan/gelatin blend films containing tannic acid and/or bacterial nanocellulose. International Journal of Biological Macromolecules, 154, 421–432. https://doi.org/10.1016/j.ijbiomac.2020.03.114

    Article  CAS  PubMed  Google Scholar 

  109. Taylor, D. A., Sampaio, L. C., Ferdous, Z., Gobin, A. S., & Taite, L. J. (2018). Decellularized matrices in regenerative medicine. Acta Biomaterialia, 74, 74–89. https://doi.org/10.1016/j.actbio.2018.04.044

    Article  CAS  PubMed  Google Scholar 

  110. Uygun, B. E., Soto-Gutierrez, A., Yagi, H., Izamis, M.-L., Guzzardi, M. A., Shulman, C., . . . Berthiaume, F. (2010). Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine, 16, 814-820. https://doi.org/10.1038/nm.2170

  111. Velasco-Rodriguez, B., Diaz-Vidal, T., Rosales-Rivera, L. C., García-González, C. A., Alvarez-Lorenzo, C., Al-Modlej, A., . . . Soltero Martínez, J. F. A. (2021). Hybrid Methacrylated Gelatin and Hyaluronic Acid Hydrogel Scaffolds. Preparation and Systematic Characterization for Prospective Tissue Engineering Applications. International Journal of Molecular Sciences, 22, 6758. https://doi.org/10.3390/ijms22136758

  112. Vishwakarma, S. K., Bardia, A., Lakkireddy, C., Raju, N., Paspala, S. A. B., Habeeb, M. A., & Khan, A. A. (2019). Intraperitoneal transplantation of bioengineered humanized liver grafts supports failing liver in acute condition. Materials Science and Engineering: C, 98, 861–873. https://doi.org/10.1016/j.msec.2019.01.045

    Article  CAS  Google Scholar 

  113. Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16, 229–241. https://doi.org/10.1016/j.mattod.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  114. Wei, G., Wang, J., Lv, Q., Liu, M., Xu, H., Zhang, H., . . . Wang, X. (2018). Three‐dimensional coculture of primary hepatocytes and stellate cells in silk scaffold improves hepatic morphology and functionality in vitro. Journal of Biomedical Materials Research Part A, 106, 2171-2180. https://doi.org/10.1186/s40824-021-00206-w

  115. Wolf, M. T., Dearth, C. L., Sonnenberg, S. B., Loboa, E. G., & Badylak, S. F. (2015). Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 84, 208–221. https://doi.org/10.1016/j.addr.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  116. Xie, X., Li, D., Chen, Y., Shen, Y., Yu, F., Wang, W., . . . Mo, X. (2021). Conjugate Electrospun 3D Gelatin Nanofiber Sponge for Rapid Hemostasis. Advanced Healthcare Materials, 2100918. https://doi.org/10.1002/adhm.202100918

  117. Yajima, Y., Lee, C. N., Yamada, M., Utoh, R., & Seki, M. (2018). Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers. Journal of Bioscience and Bioengineering, 126, 111–118. https://doi.org/10.1016/j.jbiosc.2018.01.022

    Article  CAS  PubMed  Google Scholar 

  118. Yang, X., Liu, W., Shi, Y., Xi, G., Wang, M., Liang, B., . . . Shi, C. (2019). Peptide-immobilized starch/PEG sponge with rapid shape recovery and dual-function for both uncontrolled and noncompressible hemorrhage. Acta Biomaterialia, 99, 220-235https://doi.org/10.1016/j.actbio.2019.08.039

  119. Yap, K. K., Dingle, A. M., Palmer, J. A., Dhillon, R. S., Lokmic, Z., Penington, A. J., . . . Mitchell, G. M. (2013). Enhanced liver progenitor cell survival and differentiation in vivo by spheroid implantation in a vascularized tissue engineering chamber. Biomaterials, 34, 3992-4001https://doi.org/10.1016/j.biomaterials.2013.02.011

  120. Yin, J., & Xu, L. (2020). Batch preparation of electrospun polycaprolactone/chitosan/aloe vera blended nanofiber membranes for novel wound dressing. International Journal of Biological Macromolecules, 160, 352–363. https://doi.org/10.1016/j.ijbiomac.2020.05.211

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, H., Siegel, C. T., Li, J., Lai, J., Shuai, L., Lai, X., . . . Bai, L. (2018). Functional liver tissue engineering by an adult mouse liver‐derived neuro‐glia antigen 2‐expressing stem/progenitor population. Journal of Tissue Engineering and Regenerative Medicine, 12, e190-e202. https://doi.org/10.1002/term.2311

  122. Zhang, S., Li, J., Chen, S., Zhang, X., Ma, J., & He, J. (2020). Oxidized cellulose-based hemostatic materials. Carbohydrate Polymers, 230, 115585. https://doi.org/10.1016/j.carbpol.2019.115585

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, Y.-Q., Shen, Y., Liao, M.-M., Mao, X., Mi, G.-J., You, C., . . . Lin, N. (2019). Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: Enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine: Nanotechnology, Biology and Medicine, 15, 86-97. https://doi.org/10.1016/j.nano.2018.09.002

  124. Zhang, Y. S., & Khademhosseini, A. (2017). Advances in engineering hydrogels. Science, 356(6337). https://doi.org/10.1126/science.aaf3627

  125. Zhao, C., Li, Y., Peng, G., Lei, X., Zhang, G., & Gao, Y. (2020). Decellularized liver matrix-modified chitosan fibrous scaffold as a substrate for C3A hepatocyte culture. Journal of Biomaterials Science, Polymer Edition, 31, 1041–1056. https://doi.org/10.1080/09205063.2020.1738690

    Article  CAS  Google Scholar 

  126. Zhao, X., Guo, B., Wu, H., Liang, Y., & Ma, P. X. (2018). Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nature Communications, 9, 1–17. https://doi.org/10.1038/s41467-018-04998-9

    Article  CAS  Google Scholar 

  127. Zhong, S., Zhang, Y., & Lim, C. (2010). Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2, 510–525. https://doi.org/10.1002/wnan.100

    Article  CAS  PubMed  Google Scholar 

  128. Zhu, J., & Marchant, R. E. (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices, 8, 607–626. https://doi.org/10.1586/erd.11.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Massoud Vosough or Kamran Ghaedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazirzadeh, M., Azarpira, N., Davoodi, P. et al. Natural Scaffolds Used for Liver Regeneration: A Narrative Update. Stem Cell Rev and Rep 18, 2262–2278 (2022). https://doi.org/10.1007/s12015-022-10362-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10362-8

Keywords

Navigation