Skip to main content
Log in

Induction of Corneal Epithelial Differentiation of Induced Pluripotent and Orbital Fat-Derived Stem Cells Seeded on Decellularized Human Corneas

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Up to 40% of donor corneas are deemed unsuitable for transplantation, aggravating the shortage of graft tissue. In most cases, the corneal extracellular matrix is intact. Therefore, their decellularization followed by repopulation with autologous cells may constitute an efficient alternative to reduce the amount of discarded tissue and the risk of immune rejection after transplantation. Although induced pluripotent (hiPSCs) and orbital fat-derived stem cells (OFSCs) hold great promise for corneal epithelial (CE) reconstruction, no study to date has evaluated the capacity of decellularized corneas (DCs) to support the attachment and differentiation of these cells into CE-like cells. Here, we recellularize DCs with hiPSCs and OFSCs and evaluate their differentiation potential into CE-like cells using animal serum-free culture conditions. Cell viability and adhesion on DCs were assessed by calcein-AM staining and scanning electron microscopy. Cell differentiation was evaluated by RT-qPCR and immunofluorescence analyses. DCs successfully supported the adhesion and survival of hiPSCs and OFSCs. The OFSCs cultured under differentiation conditions could not express the CE markers, TP63, KRT3, PAX6, and KRT12, while the hiPSCs gave rise to cells expressing high levels of these markers. RT-qPCR data suggested that the DCs provided an inductive environment for CE differentiation of hiPSCs, supporting the expression of PAX6 and KRT12 without the need for any soluble induction factors. Our results open the avenue for future studies regarding the in vivo effects of DCs as carriers for autologous cell transplantation for ocular surface reconstruction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability (data transparency)

Not applicable.

Code Availability (software application or custom code)

Not applicable.

References

  1. Cotsarelis, G., Cheng, S. Z., Dong, G., et al. (1989). Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell, 57(2), 201–209.

    Article  CAS  PubMed  Google Scholar 

  2. Yazdanpanah, G., Haq, Z., Kang, K., et al. (2019). Strategies for reconstructing the limbal stem cell niche. The Ocular Surface, 17(2), 230–240.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oliva, J., Bardag-Gorce, F., & Niihara, Y. (2020). Clinical trials of limbal stem cell deficiency treated with oral mucosal epithelial cells. International Journal of Molecular Sciences, 21(2), 411.

    Article  PubMed Central  Google Scholar 

  4. Rahman, I., Said, D. G., Maharajan, V. S., et al. (2009). Amniotic membrane in ophthalmology: Indications and limitations. Eye (London, England), 23(10), 1954–1961.

    Article  CAS  Google Scholar 

  5. Nguyen, K. N., Bobba, S., Richardson, A., et al. (2018). Native and synthetic scaffolds for limbal epithelial stem cell transplantation. Acta Biomaterialia, 65, 21–35.

    Article  CAS  PubMed  Google Scholar 

  6. Kiritoshi, S., Oie, Y., Nampei, K., et al. (2019). Anterior segment optical coherence tomography angiography in patients following cultivated oral mucosal epithelial transplantation. American Journal of Ophthalmology, 208, 242–250.

    Article  PubMed  Google Scholar 

  7. Borderie, V. M., Ghoubay, D., Georgeon, C., et al. (2019). Long-term results of cultured limbal stem cell versus limbal tissue transplantation in stage III limbal deficiency. Stem Cells Translational Medicine, 8, 1230–1241.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saghizadeh, M., Kramerov, A. A., Svendsen, C. N., et al. (2017). Concise review: Stem cells for corneal wound healing. Stem Cells, 35(10), 2105–2114.

    Article  PubMed  Google Scholar 

  9. Ghareeb, A. E., Lako, M., & Figueiredo, F. C. (2020). Recent advances in stem cell therapy for limbal stem cell deficiency: A narrative review. Ophthalmology and therapy, 9(4), 809–831.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mikhailova, A., Ilmarinen, T., Ratnayake, A., et al. (2016). Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction. Experimental Eye Research, 146, 26–34.

    Article  CAS  PubMed  Google Scholar 

  11. Bray, L. J., George, K. A., Hutmacher, D. W., et al. (2012). A dual-layer silk fibroin scaffold for reconstructing the human corneal limbus. Biomaterials, 33(13), 3529–3538.

    Article  CAS  PubMed  Google Scholar 

  12. Liang, Y., Xu, W., Han, B., et al. (2014). Tissue-engineered membrane based on chitosan for repair of mechanically damaged corneal epithelium. Journal of Materials Science: Materials in Medicine, 25(9), 2163–2171.

    CAS  PubMed  Google Scholar 

  13. Yañez-Soto, B., Liliensiek, S. J., Murphy, C. J., et al. (2013). Biochemically and topographically engineered poly(ethylene glycol) diacrylate hydrogels with biomimetic characteristics as substrates for human corneal epithelial cells. Journal of Biomedical Materials Research Part A, 101(4), 1184–1194.

    Article  PubMed  CAS  Google Scholar 

  14. Sharifi, R., Yang, Y., Adibnia, Y., et al. (2019). Finding an optimal corneal xenograft using comparative analysis of corneal matrix proteins across species. Scientific Reports, 9(1), 1876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Palchesko, R. N., Carrasquilla, S. D., & Feinberg, A. W. (2018). Natural biomaterials for corneal tissue engineering, repair, and regeneration. Advanced Healthcare Materials, 7(16), e1701434.

    Article  PubMed  CAS  Google Scholar 

  16. El Zarif, M., Alió, J. L., Alió Del Barrio, J. L., et al. (2021). Corneal stromal regeneration: A review of human clinical studies in keratoconus treatment. Frontiers in Medicine (Lausanne), 8, 650724.

    Article  Google Scholar 

  17. Polisetti, N., Schmid, A., Schlötzer-Schrehardt, U., et al. (2021). A decellularized human corneal scaffold for anterior corneal surface reconstruction. Scientific Reports, 11(1), 2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alio, J. L., Alio Del Barrio, J. L., El Zarif, M., et al. (2019). Regenerative surgery of the corneal stroma for advanced keratoconus: 1-year outcomes. American Journal of Ophthalmology, 203, 53–68.

    Article  PubMed  Google Scholar 

  19. Shafiq, M. A., Gemeinhart, R. A., Yue, B. Y., et al. (2012). Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Engineering Part C: Methods, 18(5), 340–348.

    Article  CAS  Google Scholar 

  20. Rock, T., Hofmann, J., Thaler, S., et al. (2016). Factors that influence the suitability of human organ-cultured corneas. Graefe's Archive for Clinical and Experimental Ophthalmology, 254(1), 135–141.

    Article  CAS  PubMed  Google Scholar 

  21. Gavrilov, J. C., Borderie, V. M., Laroche, L., et al. (2010). Influencing factors on the suitability of organ-cultured corneas. Eye (London, England), 24(7), 1227–1233.

    Article  Google Scholar 

  22. Wilson, S. L., Sidney, L. E., Dunphy, S. E., et al. (2016). Corneal decellularization: A method of recycling unsuitable donor tissue for clinical translation? Current Eye Research, 41(6), 769–782.

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez-Perez, J., & Ahearne, M. (2019). Decellularization and recellularization of cornea: Progress towards a donor alternative. Methods, 171, 86–96.

    Article  PubMed  CAS  Google Scholar 

  24. Liu, J., Li, Z., Li, J., et al. (2019). Application of benzonase in preparation of decellularized lamellar porcine corneal stroma for lamellar keratoplasty. Journal of Biomedical Materials Research Part A, 107(11), 2547–2555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Isidan, A., Liu, S., Chen, A. M., et al. (2021). Comparison of porcine corneal decellularization methods and importance of preserving corneal limbus through decellularization. PLoS One, 16(3), e0243682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hashimoto, Y., Funamoto, S., Sasaki, S., et al. (2019). Re-epithelialization and remodeling of decellularized corneal matrix in a rabbit corneal epithelial wound model. Materials Science & Engineering, C: Materials for Biological Applications, 102, 238–246.

    Article  CAS  PubMed  Google Scholar 

  27. Sánchez-Porras, D., Caro-Magdaleno, M., González-Gallardo, C., et al. (2021). Generation of a biomimetic substitute of the corneal limbus using decellularized scaffolds. Pharmaceutics, 13(10), 1718.

  28. Fernández-Pérez, J., Madden, P. W., Brady, R. T., et al. (2021). The effect of prior long-term recellularization with keratocytes of decellularized porcine corneas implanted in a rabbit anterior lamellar keratoplasty model. PLoS One, 16(6), e0245406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. da Mata Martins, T. M., da Silva Cunha, P., Rodrigues, M. A., et al. (2020). Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. Materials Science & Engineering, C: Materials for Biological Applications, 116, 111215.

    Article  CAS  Google Scholar 

  30. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  31. Calonge, M., Pérez, I., Galindo, S., et al. (2019). A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Translational Research, 206, 18–40.

    Article  PubMed  Google Scholar 

  32. Chakrabarty, K., Shetty, R., & Ghosh, A. (2018). Corneal cell therapy: With iPSCs, it is no more a far-sight. Stem Cell Research & Therapy, 9(1), 287.

    Article  CAS  Google Scholar 

  33. Bandeira, F., Goh, T. W., Setiawan, M., et al. (2020). Cellular therapy of corneal epithelial defect by adipose mesenchymal stem cell-derived epithelial progenitors. Stem Cell Research & Therapy, 11(1), 14.

    Article  CAS  Google Scholar 

  34. Theerakittayakorn, K., Thi Nguyen, H., Musika, J., et al. (2020). Differentiation induction of human stem cells for corneal epithelial regeneration. International Journal of Molecular Sciences, 21(21), 7834.

    Article  CAS  PubMed Central  Google Scholar 

  35. Nieto-Nicolau, N., Martín-Antonio, B., Müller-Sánchez, C., et al. (2020). In vitro potential of human mesenchymal stem cells for corneal epithelial regeneration. Regenerative Medicine, 15(3), 1409–1426.

    Article  CAS  PubMed  Google Scholar 

  36. Sikora, B., Skubis-Sikora, A., Kimsa-Furdzik, M., et al. (2019). Adipose-derived stem cells undergo differentiation after co-culture with porcine limbal epithelial stem cells. Stem Cell Research, 41, 101609.

    Article  CAS  PubMed  Google Scholar 

  37. Ho, J. H., Ma, W. H., Tseng, T. C., et al. (2011). Isolation and characterization of multi-potent stem cells from human orbital fat tissues. Tissue Engineering Part A, 17(1–2), 255–266.

    Article  CAS  PubMed  Google Scholar 

  38. Lin, K. J., Loi, M. X., Lien, G. S., et al. (2013). Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration. Stem Cell Research & Therapy, 4(3), 72.

    Article  CAS  Google Scholar 

  39. Chien, M. H., Bien, M. Y., Ku, C. C., et al. (2012). Systemic human orbital fat-derived stem/stromal cell transplantation ameliorates acute inflammation in lipopolysaccharide-induced acute lung injury. Critical Care Medicine, 40(4), 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  40. Torricelli, A. A., Singh, V., Santhiago, M. R., et al. (2013). The corneal epithelial basement membrane: Structure, function, and disease. Investigative Ophthalmology & Visual Science, 54(9), 6390–6400.

    Article  CAS  Google Scholar 

  41. Paula, A. C., Martins, T. M. M., Zonari, A., et al. (2015). Human adipose tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC expression increasing proliferation but bypassing spontaneous cell transformation. Stem Cell Research & Therapy, 6, 76.

    Article  CAS  Google Scholar 

  42. Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martins, T. M. M., de Paula, A. C., Gomes, D. A., et al. (2014). Alkaline phosphatase expression/activity and multilineage differentiation potential are the differences between fibroblasts and orbital fat-derived stem cells-a study in animal serum-free culture conditions. Stem Cell Reviews and Reports, 10(5), 697–711.

  44. Ahmad, S., Stewart, R., Yung, S., et al. (2007). Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells, 25(5), 1145–1155.

    Article  CAS  PubMed  Google Scholar 

  45. Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.

    Article  CAS  PubMed  Google Scholar 

  46. Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Benetz, B. A., Stoeger, C. G., Patel, S. V., et al. (2019). Comparison of donor cornea endothelial cell density determined by eye banks and by a central reading center in the cornea preservation time study. Cornea, 38(4), 426–432.

    Article  PubMed  Google Scholar 

  48. Wilson, S. L., Sidney, L. E., Dunphy, S. E., et al. (2013). Keeping an eye on decellularized corneas: A review of methods, characterization and applications. Journal of Functional Biomaterials, 4(3), 114–161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. El Zarif, M., Alió, J. L., Alió Del Barrio, J. L., et al. (2021). Corneal stromal regeneration therapy for advanced keratoconus: Long-term outcomes at 3 years. Cornea, 40(6), 741–754.

    Article  PubMed  Google Scholar 

  50. Li, Q., Wang, H., Dai, Z., et al. (2017). Preparation and biomechanical properties of an acellular porcine corneal stroma. Cornea, 36(11), 1343–1351.

    Article  PubMed  Google Scholar 

  51. Zhou, Q., Guaiquil, V. H., Wong, M., et al. (2021). Hydrogels derived from acellular porcine corneal stroma enhance corneal wound healing. Acta Biomaterialia, 134, 177–189.

    Article  CAS  PubMed  Google Scholar 

  52. Aslan, B., Guler, S., Tevlek, A., et al. (2018). Evaluation of collagen foam, poly(l-lactic acid) nanofiber mesh, and decellularized matrices for corneal regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(6), 2157–2168.

    Article  CAS  PubMed  Google Scholar 

  53. Lin, H. J., Wang, T. J., Li, T. W., et al. (2019). Development of decellularized cornea by organic acid treatment for corneal regeneration. Tissue Engineering Part A, 25(7–8), 652–662.

    Article  CAS  PubMed  Google Scholar 

  54. Nara, S., Chameettachal, S., Midha, S., et al. (2016). Preservation of biomacromolecular composition and ultrastructure of a decellularized cornea using a perfusion bioreactor. RSC Advances, 6(3), 2225–2240.

    Article  CAS  Google Scholar 

  55. Kasimir, M. T., Rieder, E., Seebacher, G., et al. (2006). Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. The Journal of Heart Valve Disease, 15(2), 278–286.

  56. Gottipamula, S., Muttigi, M. S., Chaansa, S., et al. (2016). Large-scale expansion of pre-isolated bone marrow mesenchymal stromal cells in serum-free conditions. Journal of Tissue Engineering and Regenerative Medicine, 10(2), 108–119.

    Article  CAS  PubMed  Google Scholar 

  57. Heiskanen, A., Satomaa, T., Tiitinen, S., et al. (2007). N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells, 25(1), 197–202.

    Article  CAS  PubMed  Google Scholar 

  58. Dong, X., Hara, H., Wang, Y., et al. (2017). Initial study of α1,3-galactosyltransferase gene-knockout/CD46 pig full-thickness corneal xenografts in rhesus monkeys. Xenotransplantation, 24(1), e12282.

  59. Chen, L., Wei, L., Shao, A., et al. (2020). Immune risk assessment of residual αGal in xenogeneic decellularized cornea using GTKO mice. Regenerative Biomaterials, 7(4), 427–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Elsheikh, A., Alhasso, D., & Rama, P. (2008). Biomechanical properties of human and porcine corneas. Experimental Eye Research, 86(5), 783–790.

    Article  CAS  PubMed  Google Scholar 

  61. Gouveia, R. M., Lepert, G., Gupta, S., et al. (2019). Assessment of corneal substrate biomechanics and its effect on epithelial stem cell maintenance and differentiation. Nature Communications, 10, 1496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Heichel, J., Wilhelm, F., Kunert, K. S., et al. (2016). Topographic findings of the porcine cornea. Medical Hypothesis, Discovery and Innovation in Ophthalmology, 5(4), 125–131.

    PubMed Central  Google Scholar 

  63. Jay, L., Brocas, A., Singh, K., et al. (2008). Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy. Optics Express, 16(21), 16284–16293.

    Article  CAS  PubMed  Google Scholar 

  64. Loike, J. D., & Kadish, A. (2018). Ethical rejections of xenotransplantation? The potential and challenges of using human-pig chimeras to create organs for transplantation. EMBO Reports, 19(8), e46337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tonarova, P., Lochovska, K., Pytlik, R., et al. (2021). The impact of various culture conditions on human mesenchymal stromal cells metabolism. Stem Cells International, 2021, 6659244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. de Paula, A. C., Zonari, A. A., Martins, T. M. M., et al. (2013). Human serum is a suitable supplement for the osteogenic differentiation of human adipose-derived stem cells seeded on poly-3-hydroxibutyrate-co-3-hydroxyvalerate scaffolds. Tissue Engineering Part A, 19(1–2), 277–289.

    Article  PubMed  CAS  Google Scholar 

  67. Guiotto, M., Raffoul, W., Hart, A. M., et al. (2020). Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: A systematic review. Journal of Translational Medicine, 18(1), 351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bourin, P., Bunnell, B. A., Casteilla, L., et al. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6), 641–648.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lin, Y., Zheng, Q., Hua, S., et al. (2017). Cross-linked decellularized porcine corneal graft for treating fungal keratitis. Scientific Reports, 7(1), 9955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Islam, M. M., Sharifi, R., Mamodaly, S., et al. (2019). Effects of gamma radiation sterilization on the structural and biological properties of decellularized corneal xenografts. Acta Biomaterialia, 96, 330–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shibata, S., Hayashi, R., Kudo, Y., et al. (2020). Cell-type-specific adhesiveness and proliferation propensity on laminin isoforms enable purification of iPSC-derived corneal epithelium. Stem Cell Reports, 14(4), 663–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hayashi, R., Ishikawa, Y., Katori, R., et al. (2017). Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nature Protocols, 12(4), 683–696.

    Article  CAS  PubMed  Google Scholar 

  73. Foster, J. W., Wahlin, K., Adams, S. M., et al. (2017). Cornea organoids from human induced pluripotent stem cells. Scientific Reports, 7, 41286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Susaimanickam, P. J., Maddileti, S., Pulimamidi, V. K., et al. (2017). Generating minicorneal organoids from human induced pluripotent stem cells. Development, 144(13), 2338–2351.

    CAS  PubMed  Google Scholar 

  75. Cieslar-Pobuda, A., Rafat, M., Knoflach, V., et al. (2016). Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget, 7(27), 42314–42329.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shibata, S., Hayashi, R., Okubo, T., et al. (2018). Selective laminin-directed differentiation of human induced pluripotent stem cells into distinct ocular lineages. Cell Reports, 25(6), 1668–1679.e5.

    Article  CAS  PubMed  Google Scholar 

  77. Kamarudin, T. A., Bojic, S., Collin, J., et al. (2018). Differences in the activity of endogenous bone morphogenetic protein signaling impact on the ability of induced pluripotent stem cells to differentiate to corneal epithelial-like cells. Stem Cells, 36(3), 337–348.

    Article  CAS  PubMed  Google Scholar 

  78. Vattulainen, M., Ilmarinen, T., Koivusalo, L., et al. (2019). Modulation of Wnt/BMP pathways during corneal differentiation of hPSC maintains ABCG2-positive LSC population that demonstrates increased regenerative potential. Stem Cell Research & Therapy, 10(1), 236.

    Article  CAS  Google Scholar 

  79. Grant, R., Hallett, J., Forbes, S., et al. (2019). Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Scientific Reports, 9(1), 6293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhang, Y., He, Y., Bharadwaj, S., et al. (2009). Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials, 30(23–24), 4021–4028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jaramillo, M., Yeh, H., Yarmush, M. L., et al. (2018). Decellularized human liver extracellular matrix (hDLM)-mediated hepatic differentiation of human induced pluripotent stem cells (hIPSCs). Journal of Tissue Engineering and Regenerative Medicine, 12(4), e1962–e1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cortiella, J., Niles, J., Cantu, A., et al. (2010). Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Engineering Part A, 16(8), 2565–2580.

    Article  CAS  PubMed  Google Scholar 

  83. French, K. M., Boopathy, A. V., DeQuach, J. A., et al. (2012). A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomaterialia, 8(12), 4357–4364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Agmon, G., & Christman, K. L. (2016). Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Current Opinion in Solid State & Materials Science, 20(4), 193–201.

    Article  CAS  Google Scholar 

  85. Pati, F., Jang, J., Ha, D. H., et al. (2014). Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications, 5, 3935.

    Article  CAS  PubMed  Google Scholar 

  86. Di Iorio, E., Barbaro, V., Ruzza, A., et al. (2005). Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9523–9528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rama, P., Matuska, S., Paganoni, G., et al. (2010). Limbal stem-cell therapy and long-term corneal regeneration. The New England Journal of Medicine, 363(2), 147–155.

    Article  CAS  PubMed  Google Scholar 

  88. García, M., de la Torre, R. A., Nieto-Nicolau, N., Morales-Pastor, A., et al. (2017). Determination of the culture time point to induce corneal epithelial differentiation in induced pluripotent stem cells. Transplantation Proceedings, 49(10), 2292–2295.

    Article  Google Scholar 

  89. Ouyang, H., Xue, Y., Lin, Y., et al. (2014). WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature, 511(7509), 358–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Beeken, L. J., Ting, D. S. J., & Sidney, L. E. (2021). Potential of mesenchymal stem cells as topical immunomodulatory cell therapies for ocular surface inflammatory disorders. Stem Cells Translational Medicine, 10(1), 39–49.

    Article  PubMed  Google Scholar 

  91. Galindo, S., Herreras, J. M., López-Paniagua, M., et al. (2017). Therapeutic effect of human adipose tissue-derived mesenchymal stem cells in experimental corneal failure due to limbal stem cell niche damage. Stem Cells, 35(10), 2160–2174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank MG Transplantes Eye Tissue Bank/FHEMIG and Sociedade Oftamológica-MG. The microscopic data was obtained using the microscopes of “Centro de Aquisição e Processamento de Imagens” (CAPI-ICB/UFMG) and Center of Microscopy/UFMG (http://www.microscopia.ufmg.br).

Funding

This work was supported by CAPES, CNPq (167447/2017–3/404326/2012–9/471732/2012–5, 304188/2019–0), FAPEMIG (RED-00570-16, APQ-03132-18), INCT-Regenera (Brazil).

Author information

Authors and Affiliations

Authors

Contributions

Thaís Martins: Conceptualization, Methodology, Formal analysis, Investigation, Writing-original Draft. Juliana Carvalho: Conceptualization, Resources, Writing-review & editing. Pricila Cunha: Investigation, Formal analysis. Dawidson Gomes: Resources, Writing – review & editing. Alfredo Goes: Supervision, Conceptualization, Project administration, Resources. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Thaís Maria da Mata Martins.

Ethics declarations

Ethics Approval

The Research Ethics Committee of the Universidade Federal de Minas Gerais approved the study (ETIC-UFMG n° 49967715.0.0000.5149), and it was conducted in accordance with the Declaration of Helsinki.

Consent to Participate

Informed consent was obtained from the donors’ relatives to use corneal tissue for research purposes. The orbital fat tissues and blood were collected after obtaining informed consent from the donors.

Consent for Publication

Not applicable.

Conflict of Interest

The authors indicate no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Mata Martins, T.M., de Carvalho, J.L., da Silva Cunha, P. et al. Induction of Corneal Epithelial Differentiation of Induced Pluripotent and Orbital Fat-Derived Stem Cells Seeded on Decellularized Human Corneas. Stem Cell Rev and Rep 18, 2522–2534 (2022). https://doi.org/10.1007/s12015-022-10356-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10356-6

Keywords

Navigation