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Abstract
Scar is a common way of healing after tissue injury. The poor scar healing will not only cause dysfunction of tissues and 
organs but also affect the appearance of the patients’ body surface, which causes the pressure of life and spirit to the patients. 
However, the formation of scar tissue is an extremely complex process and its mechanism is not fully understood. At present, 
there is no treatment method to eliminate scars completely. Fibroblasts are the most abundant cells in the dermis, which 
have the ability to synthesize and remodel extracellular matrix (ECM). Myofibroblasts actively participate in the wound 
healing process and influence the outcome. Therefore, both of them play important roles in wound healing and scar forma-
tion. Adipose tissue-derived stem cells (ADSCs) are pluripotent stem cells that can act on target cells by paracrine. Adipose 
tissue stem cell-derived exosomes (ADSC-Exos) are important secretory substances of ADSCs. They are nanomembrane 
vesicles that can transport a variety of cellular components and fuse with target cells. In this review, we will discuss the 
effects of ADSCs and ADSC-Exos on the behavior of fibroblasts and myofibroblasts during wound healing and scarring 
stage in combination with recent studies.
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Introduction

Scar formation is related to individual race, gender, age, 
as well as wound tension, location, and injury pattern [1]. 
Besides, the forming of an abnormal scar is due to severe 
inflammatory response, poor blood supply, and the imbal-
ance of fibroblasts, keratinocytes, cytokines, etc., which lead 
to excessive deposition of ECM in the process of wound 
healing [2–5]. Billions of dollars are spent every year to treat 
wounds and scars [6], even severe scars can cause mental 
problems [7].

Fibroblasts play an important role in wound healing and 
scar formation [8], which are essential for ECM production, 
but overproduction may be detrimental to the outcome of 
scarring [9]. Myofibroblasts are considered to be the main 
fibrogenic cells in wound healing [10]. The regulation of 
some signaling pathways in fibroblasts and myofibroblasts 
is beneficial to reduce scar formation. For example, angi-
otensin-converting enzyme inhibitors (ACEI) have shown 
anti-fibrotic properties in scar formation by inhibiting the 
TGF-β1/Smad and TGF-β1/TAK1 signaling pathways [11], 
and rapamycin inhibits PI3K/Akt/mTOR pathway to pro-
mote cell apoptosis and reduce keloid activity [12]. The 
reprogramming of myofibroblasts into other cells in scar 

 * Zhiguo Wang 
 qyfywzg@126.com

 Cong Li 
 2020021003@qdu.edu.cn

 Shuqiang Wei 
 wsqdoctor@163.com

 Quanchen Xu 
 qyfyxqc@126.com

 Yu Sun 
 978141467@qq.com

 Xuchao Ning 
 ningxuchao1992@163.com

1 The Affiliated Hospital of Qingdao University, 
Qingdao University, Qingdao 266021, Shan Dong, 
People’s Republic of China

2 The Second Affiliated Hospital of Qingdao University 
(Qingdao Central Hospital), Qingdao 266021, Shan Dong, 
People’s Republic of China

3 Department of Burn and Plastic Surgery, the Affiliated 
Hospital of Qingdao University, Qingdao 266021, 
Shan Dong, People’s Republic of China

/ Published online: 12 September 2021

Stem Cell Reviews and Reports (2022) 18:952–967

https://orcid.org/0000-0002-2694-1517
https://orcid.org/0000-0002-4502-0211
https://orcid.org/0000-0003-0484-0878
https://orcid.org/0000-0002-4266-5233
https://orcid.org/0000-0002-0024-7252
http://orcid.org/0000-0003-4401-4079
http://crossmark.crossref.org/dialog/?doi=10.1007/s12015-021-10252-5&domain=pdf


tissue is also a potential treatment. Plikus et al. demonstrated 
that myofibroblasts can be transformed into adipocytes under 
the action of BMP4 [13]. Therefore, the regulation of fibro-
blasts and myofibroblasts is a very important target in scar 
treatment.

Considerable research efforts have indicated that stem 
cell therapy is effective and promising for many diseases 
that cannot be treated with traditional methods [14]. Recent 
tissue engineering and cell therapy strategies have demon-
strated the significance of ADSCs in regenerative medicine 
[15–19]. In terms of wound healing, ADSCs showed posi-
tive impact in promoting wound healing and scar treatment 
[20]. For example, ADSCs can accelerate the healing of 
diabetic wound via the recruitment and differentiation of 
endothelial progenitor cells [21]. Specifically, ADSCs can 
play an important role in wound healing and scar formation 
by reducing inflammation, promoting angiogenesis, reduc-
ing apoptosis, transporting mitochondria, and secreting 
exosomes in damaged tissues [17, 22].

ADSC-Exos are derived from ADSCs, so they have simi-
lar effects and also have positive impact in wound healing 
and scar treatment. Hu et al. found that mice wounds with 
adipose tissue healed more quickly and efficiently. Besides, 
CD63, an exosomal specific marker, was more expressed 
[23]. In the process of wound healing, many studies have 
shown that exosomes play a strong part in angiogenesis, 
immune regulation, and the reduction of ischemia-reperfu-
sion injury [24].

It is very important for patients to reduce scar formation 
after skin injury. Fibroblasts and myofibroblasts perform 
a decisive role in wound healing outcomes. So, based on 
current research, the purpose of this review is to discuss 
the effect of ADSCs and ADSC-Exos on reducing scar 
formation by regulating the behavior of fibroblasts and 
myofibroblasts.

Scar Formation Process

From the Wound to the Scar

Skin wound healing mainly includes four stages: inflam-
matory response, cell proliferation, migration, and ECM 
remodeling [7]. The initial inflammatory phase prevents 
blood loss, infection and clears debris, while the subsequent 
proliferative phase supports keratinocyte proliferation and 
migration to reseal the epithelium. In the remodeling phase, 
adipocytes, fibroblasts, and ECM fill the wound area to form 
scars [25]. In normal wound healing, the fibrin clot releases 
chemokines and initiates the migration of white blood cells 
to the injured area. Neutrophils are the first cells to enter 
the wound tissue in the early stages of inflammation. Mac-
rophages replace neutrophils in the late inflammatory stage. 

During abnormal wound healing, a large number of mac-
rophages release cytokines inappropriately between the late 
inflammatory stage and the proliferative stage, which pro-
mote the formation of the pathological scar. In remodeling 
phase, new ECM molecules, such as fibulin, Type III col-
lagen (Col-III), and Col-I, are deposited sequentially. Col-
lagen remodeling gradually increases the strength of scar 
tissue and reaches a plateau about 7 weeks after trauma [5]. 
Many factors determine the complexity and diversity of scar 
formation [2].

When skin and blood vessels are damaged, a temporary 
matrix, made up mainly of fibrin, triggers an inflammatory 
response. Fibroblasts migrate to wound surface, where they 
acquire myofibroblast phenotypes and contribute to granu-
lation tissue formation. ECM components are synthesized 
and deposited by myofibroblast, which gradually replace the 
temporary matrix. In the later remodeling process, the syn-
thesis of ECM is greatly reduced, and Col-I replaces Col-III. 
Finally, the apoptosis of fibroblasts and blood vessel cells 
greatly reduce the cellular component of scar tissue [26]. 
Dermal fibroblasts produce elastin and fibrin, eventually 
forming elastic fibers, which then give the skin some elastic-
ity and participate in the recovery of dermal structure [27]. 
Meanwhile, the biological behavior of skin fibroblasts are 
affected by the skin tension in the process of scarring. Stud-
ies have shown that skin fibroblasts show stronger hyper-
trophic scar changes at 10–15% stretch [28, 29].

Furthermore, scar formation has a relationship with 
EMT. EMT refers to the biological process in which differ-
ent types of epithelial cells are transformed into mesenchy-
mal cells through a series of biological changes under the 
influence of different factors. EMT is necessary for normal 
re-epithelialization and ECM deposition: the continued and 
uncontrolled transformation from epithelial cells to fibro-
blasts and myofibroblasts may result in pathological scar. In 
the process of EMT, pseudopodia appear in the front end of 
cuboidal keratinocytes and the cells transform into a spindle 
shape, which promote cell migration. After epithelialization, 
keratinocytes restore epithelial phenotype and reestablish 
tight cell connection and barrier functions. Simultaneously, 
EMT-derived myofibroblasts contract and secrete ECM 
during the early stages of skin wound healing. In the later 
stage, unresolved inflammation can affect EMT and lead to 
abnomal scar [7].

The Characteristics of Pathological Scar

Excessive scar is thought to be the result of the accumulation 
of inflammatory cells and fibroblasts in wound areas. Scars 
can be divided into two types according to the color, texture, 
and patients’ feeling: immature and mature. Scars can be 
classified as HTS, keloids, atrophic scars, and scar cancer 
on the basis of anatomy [2]. Pathological scar mainly refers 
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to HTS and keloid. HTS is defined as abnormal deposition 
and remodeling of ECM, which is usually caused by skin 
lesions (trauma, deep burns, and surgery) [30]. The most 
prominent feature of HTS is the differentiation of fibroblasts 
into myofibroblasts [30], which is controlled by the changed 
chemical and mechanical microenvironment of the repaired 
tissue [31]. In HTS and keloids, excessive ECM accumu-
lation is caused by fibroblast proliferation, apoptosis and 
its subsequent imbalance of protein products. In keloids, 
fibroblast proliferation is more pronounced and resistant to 
FAS-mediated apoptosis [5]. HTS, which usually occurs in 
areas where the skin has been stretched, grows rapidly from 
4 to 12 weeks before flattening and subsiding over time. 
However, keloids protrude from the wound site and grow 
invasiely, rarely subsiding [32]. In keloids, there is a severe 
inflammatory response and fibroblasts show high sensitivity 
to TGF-1. In HTS, the ratio between Col-I and Col-III (6:1) 
is lower than in keloids (17:1), but the ratio in normal skin 
is 5:1 [32].

Characteristics of Fibroblasts 
and Myofibroblasts and their Role in Scar 
Formation

Fibroblasts

Pedigree analysis experiments in mice and chickens showed 
that embryonic dermal fibroblasts originated in different 
parts of the embryo [33]. Dermal fibroblasts are a heteroge-
neous population of cells whose specificity depends mainly 
on their position relative to the layers of the dermis [34]. 
Papillary dermal progenitor cells give rise to papillary der-
mal fibroblasts (PF) and dermal papilla (DP), while reticu-
lar dermal fibroblast progenitor cells give rise to reticular 
fibroblasts (RF) and dermal white adipose tissue (DWAT). 
PF and DP are involved in hair follicle morphogenesis and 
follicle cycle [33]. The papillary layer has more fibroblasts 
with high enzyme activity than the reticular layer [34]. The 
ability to synthesize Type I collagen (Col-I) is a major char-
acteristic of fibroblasts. Fibroblasts contribute to the synthe-
sis and remodeling of ECM, and its remodeling function is 
mainly realized by the synthesis of metalloproteinases and 
metalloproteinase inhibitors. The density change of dermal 
fibroblasts in vitro shows that the critical density of der-
mal fibroblasts is necessary for the formation of self-tissue 
matrix [35]. Fibroblasts are highly expressive of fibrogenic 
markers (CD90, PDGFR-α, PDGFR-β, leucine-rich small 
proteoglycans, decorin, and lumican). Functional fibroblasts 
do not express α-smooth muscle actin (α-SMA) [36]. The 
migration of fibroblasts to the wound is regulated by inflam-
matory mediators, in which the chemokine CCL-2 enables 
fibroblasts to be recruited to the wound site and differentiate 

into myofibroblasts [37]. Lack of mature fat cells in the 
skin or inhibition of fat formation prevents fibroblasts from 
being collected at the wound site, leading to delayed wound 
closure [33]. A large number of studies have demonstrated 
that soluble physiological factors such as IL-1, TNF, TGF-
β1, IL-13 and connective tissue growth factor (CTGF) are 
related to fibroblast proliferation and differentiation [37].

Myofibroblasts

In different tissues, myofibroblasts can be derived from 
regenerated epithelial cells and endothelial cells by means 
of epithelial-mesenchymal transformation (EMT) and 
endothelial-mesenchymal transformation [37]. Myofi-
broblasts are initially found in granulation tissue during 
the wound healing process, which have prominent endo-
plasmic reticulum for secretion and microfilaments for 
contraction [13, 38]. Myofibroblasts do not produce and 
contract the collagenous ECM simultaneously, and this 
process is mediated by different subtypes of myofibroblasts 
[38]. At the transcriptome level, cutaneous myofibroblasts 
are substantially different from pluripotent skin-derived 
precursors and fibroblasts in undamaged skin. Myofibro-
blasts maintain scar formation via epigenetic changes, 
such as DNA hypermethylation [13]. Although the α-SMA 
expression is not restricted to the myofibroblast [36], its 
expression is generally used as an indicator of myofibro-
blast phenotype [39]. It has been shown that the presence 
of this actin isotype not only enhances the contraction of 
myofibroblasts but also directs the activation of myofibro-
blasts in the intracellular mechanical feedback loop [36]. 
In contrast to the contractility of smooth muscle cells, the 
long-time contraction of myofibroblasts results in perma-
nent tissue retraction [40]. This contraction in myofibro-
blasts partially explains the role of these cells in the for-
mation and remodeling of excessive scarring, as seen in 
hypertrophic scarring and fibrotic tissue [26]. In addition, 
myofibroblasts promote cancer progression by stimulating 
microenvironment for epithelial tumor cells [41]. After 
the tissue integrity was restored, the activity of myofi-
broblast ceased and some cells apoptosis occurred [26, 
42]. However, in hypertrophic scars (HTS), myofibroblasts 
continue to proliferate instead of apoptosis, because myofi-
broblasts are unresponsive to apoptosis-inducing factors. 
Moreover, myofibroblasts are also related to biomechan-
ics. The increased skin tension results in up-regulation of 
genes related to matrix remodeling and down-regulation of 
genes related to apoptosis [37]. How to effectively control 
the formation, survival, and death of myofibroblast is one 
of the major challenges in wound treatment [36]. The role 
of fibroblasts and myofibroblasts in the process of scar 
formation is shown in Fig. 1.
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Characteristics of ADSCs and Exosomes

ADSCs

In vitro, ADSCs are spindle-shaped and lack intracellular 
lipid droplets, which can be seen in adipocytes [43]. ADSCs 
are derived from mesoderm and have the ability to differ-
entiate into other mesoderm cells such as cardiomyocytes, 
endothelial cells, adipocytes, osteoblasts, chondrocytes, 
neuro-like cells, etc. (Fig. 2B) [44–46]. ADSCs can also 
regulate the surrounding microenvironment by continuously 
releasing extracellular components, such as miRNAs and 
growth factors, and have the effects of anti-apoptosis, anti-
inflammatory, promoting angiogenesis, immune regulation, 
and anti-scar formation [47, 48]. ADSCs produce collagen 
more efficiently than other stem cells [43]. ADSCs possess 
stem cell-specific surface markers, such as CD90, CD105, 
CD73, CD44, and CD166, but the hematopoietic markers 
CD45 and CD34 are not expressed [49]. An ideal 3D biolog-
ical scaffold can provide a suitable environment for ADSCs 
to promote their proliferation and maintain their differen-
tiation ability [46]. Kim et al. observed that subcutaneous 

ADSCs had higher proliferation capacity and lipogenic dif-
ferentiation capacity compared with those from the abdomen 
[50]. The same amount of ADSCs can be isolated regardless 
of the age of the donor [51]. On the contrary, other studies 
have shown that the total cell production of ADSCs can be 
reduced in the influence of age [52]. In animal experiments, 
ADSCs have a higher proliferation capacity in young ani-
mals [51]. The ability of proliferation, differentiation, par-
acrine, and anti-apoptosis of ADSCs varies with the sex of 
the donor. The regeneration potential of ADSCs decreased 
in patients with chronic diseases. The risk of cancer induced 
by ADSCs transplantation has not been completely ruled 
out [51].

ADSCs have a large storage in adipose tissue and can 
be obtained with less invasive procedures, without ethical 
limitations [18, 53]. Although bone marrow mesenchymal 
stem cells (BMSCs) or umbilical cord mesenchymal stem 
cells (UCMSCs) have shown some therapeutic advances in 
the treatment of ulcers, scars, and burns, the proliferation, 
differentiation and paracrine abilities of ADSCs have dem-
onstrated their advantages in a wide range of applications in 
this field [54]. In addition, compared with BMSCs, ADSCs 

Fig. 1  The role of fibroblasts and myofibroblasts in scar formation. 
(1) During the inflammatory phase, various cytokines and inflam-
matory factors stimulate fibroblasts to undergo phenotypic changes. 
(2) In the proliferative phase, fibroblasts produce large amounts of 
cytokines and extracellular components by secretory action, which 
cause ECM accumulation. Fibroblasts are transformed into myofi-
broblasts through differentiation, which cause wound contraction and 
further ECM accumulation. Meanwhile, the migratory of fibroblasts 

is enhanced. (3) During the remodeling phase, the extracellular com-
ponent secreted by fibroblasts is reduced and the MMPs secreted by 
fibroblasts help the scar remodeling. Concurrently, fibroblasts and 
myofibroblasts are partially apoptotic, which contributed to the reduc-
tion of ECM. (4) EMT also has an important role in wound healing, 
during which epidermal cells and endothelial cells can differentiate 
into fibroblasts and myofibroblasts. “↑” and “↓” represent increase 
and decrease, respectively
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are more genetically and morphologically stable in long-
term culture with higher proliferation activity [55]; showed 
more osteogenic differentiation in 3D scaffolds [56]; are 
more suitable for survival in anoxic environment and show 
advantages in regulating inflammation [57]; have shown 
great anti-inflammation, anti-phagocytosis, anti-apoptosis 
and cell viability in the aspect of anti-atherosclerosis [58]; 
showed better regeneration in tendon injury, with a signifi-
cant increase in the number of myotubes and a significant 
decrease in collagen deposition [59]; showed stronger ability 
of neuronal differentiation and neurotrophic factor secre-
tion in cell transplantation therapy for nervous system injury 
[60]. Meanwhile, ADSCs showed stronger osteogenic abil-
ity than dental pulp stem cells [61]. Furthermore, ADSCs 
can differentiate into three developmental dermal cell types 
(endoderm, mesoderm and ectoderm) [62]. These advan-
tages make ADSCs the most attractive source of MSCs for 
regenerative medicine. The advantages and disadvantages of 
human stem cells are shown in Table 1 [63].

Current techniques for obtaining adipose tissue used to 
extract ADSCs include the coleman technique, liposuction, 

and direct excision [46]. The extraction process is shown in 
Fig. 2A [64]. ADSCs can be stored in conventional cryo-
preservation media, including 90% FBS and 10% Dimethyl 
sulfoxide (DMSO) [46].

Exosomes

Exosomes are a type of extracellular vesicle enclosed by 
lipid membranes between 40 nm and100 nm in diameter. 
Exosomes are formed in cells through the mechanism of 
endocytosis [65]. Exosomes were cup-shaped with a density 
of 1.13–1.19 g/mL [64]. The goblet shape can be used to 
distinguish between cell-derived vesicles and particles of 
similar size [66]. There are special markers on the mem-
brane surface of exosomes, such as membrane-binding pro-
teins CD81, CD9, CD63, MHC-I, heat shock proteins 73, 
90, etc. Exosomes contain a variety of microRNA, proteins, 
cytokines, lipids, and unedited RNA [67]. Xing et al. ana-
lyzed the mouse ADSC-Exos and identified a total of 1185 
proteome. The pathway analysis showed that most proteins 
were involved in the metabolic pathway, adhesion plaques, 

Fig. 2  The extraction and differentiation of ADSCs. Adipose tissue 
should be collected from patients with no underlying disease, adverse 
lifestyle preferences, or a history of drugs that affect fat metabolism. 
25 ml fat was taken and washed with PBS for 3 times to remove vis-
ible red blood cells. Then 0.075% type I collagenase of the same vol-
ume was added for 30–45 min digestion at 37 °C at 150  r/min, and 
DMEM/F12 medium containing 10%FBS was added to terminate 
digestion. After centrifugation, the top oil and intermediate clarifying 

solution are removed, and then the red blood cells are lysed with red 
blood cell lysate, followed by centrifugation to obtain a precipitate. 
The precipitate was resuspended in complete medium and filtered 
by 70 um cell sieve. After that, the resuspended solution was trans-
ferred to the culture dish for primary culture. ADSCs have the abil-
ity to differentiate into other mesoderm cells such as cardiomyocytes, 
endothelial cells, adipocytes, osteoblasts, chondrocytes, neuro-like 
cells
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regulation of actin skeleton, and microbial metabolism [68]. 
Therefore, exosomes play an important role in regulating dif-
ferent physiological and pathological processes and partici-
pate in inter-cell signal transmission at different distances, 
such as substance transmission, signal transmission, cell 
survival, apoptosis, and cell proliferation. In addition, some 
studies have shown that miRNA in exosomes can regulate 
the expression of target genes in recipient cells [24, 67]. 
Meanwhile, exosomes have the following characteristics: 
source cells characteristics, long-time activity, easy to trans-
port, low immunogenicity, easy to control the concentration 
and the contents change with the microenvironment [69–72].

MSC exosomes (MSC-Exos), like exosomes derived 
from other cells (tumor cells, immune cells, nerve cells, 
etc.), can perform many functions as intercellular shuttles. 
MSC-Exos have the characteristics of maintaining tissue 
homeostasis and responding to the external environment. 
In addition, they can potentially restore normal tissue func-
tion by providing catalytic active enzymes, and when tissue 
damage occurs, MSC-Exos are endocytosed by damaged tis-
sues, restoring normal cell function. Meanwhile, MSC-Exos 
have good tolerance, long life and better bioavailability [73]. 
Although bone marrow mesenchymal stem cell exosomes 
and umbilical cord mesenchymal stem cell exosomes play a 
role in promoting wound healing and alleviating scars [74], 
their shortcomings of difficult access and ethical limitations 
limit their use. Therefore, ADSC-Exos has attracted increas-
ing attention.

The extraction methods of ADSC-Exos include ultracen-
trifugation, Protein organic solvent precipitation (PROSPR), 
and total exosome isolation reagent (TEI) [75]. In the pro-
cess of obtine exosomes, FBS is prohibited from adding cell 
culture medium. The specific steps of ADSC-Exos extrac-
tion are shown in Fig. 3 [75]. Micromorphology under elec-
tron microscopy is the gold standard for the identification 
of exosomes. Besides, it can also be identified by specific 
markers on the surface of exosomes [67].

The Effect of ADSCs on the Behavior 
of Fibroblasts and Myofibroblasts 
during the Process from Wound to Scar

In the early stages, ADSCs facilitate the proliferation of 
skin fibroblasts, which in turn promote wound healing 
and collagen production [76]. However, in the late stage, 
ADSCs inhibit fibroblast proliferation and collagen synthesis 
[77]. Hence, ADSCs play different roles in different stages 
between wound healing and scar stage. Recent studies have 
shown that ADSC-CM and ADSC-Exos are the main factors 
for ADSCs to exert its biological effects [78]. So, we sum-
marized the roles of ADSC-CM and ADSC-Exos of ADSCs 
in the process of wound and scar stage.Ta
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Wound Stage

ADSC‑Cm

In the experiment of Lee et al., they collected ADSCs sus-
pension (ADSC-CM) and cultured fibroblast together. They 
found that ADSC-CM promoted the proliferation of fibro-
blasts and the contraction of collagen lattice in fibroblasts. 
Meanwhile, the expression of Col-I gene in fibroblasts was 
up-regulated by ADSC-CM [79]. Different culture con-
ditions of ADSCs have different effects on the biological 
characteristics of fibroblasts. Compared with 2D medium, 
ADSCs cultured in 3D medium significantly promote fibro-
blasts’ migration with a high expression of actin [80]. In 
the experiment of Yu et al., they made wafer with ADSCs 
and L-ascorbate 2-phosphate. They found that TGF-β1 and 
α-SMA were down-regulated in the ADSC-CM-cultured 
fibroblasts, which proved that ADSCs wafer had the effect of 
anti-scar formation and optimize the quality of new skin dur-
ing wound healing [81]. Shukla et al. observed that ADSCs 

reversed radiation-induced hypermigration of dermal fibro-
blasts [82]. In the experiment of Woo-Chan Son et al., they 
treated fibroblasts with ultraviolet radiation and then treated 
them with ADSC-CM. They found that MMP-1 expression 
was significantly increased, which was conducive to scar 
remodeling [83]. Zhao et al. found that EGF, PDGF-AA, 
VEGF, and basic fibroblast growth factor (bFGF) were found 
to be in high concentrations in ADSC-CM, and VEGF, 
bFGF, and PDGF-AA significantly stimulated the migra-
tion of skin fibroblasts, and bFGF and EGF can significantly 
stimulate the proliferation of vascular smooth muscle cells 
[84].

ADSC‑Exos

In the experiment of Choi et al., they cultured ADSC-
Exos with human skin fibroblasts in vitro and found that 
the expression of genes associated with skin regeneration 
(CD34, Col-I, elastin, and keratinocytes) was increased 
in a dose-dependent manner. At the same time, the 

Fig. 3  The three isolation techniques used in isolation of exosomes 
from serum-free conditioned media. (1) TEI the method where the 
serum-free conditioned media was taken and mixed with the reagent 
in 2:1 ratio, vortexed properly and incubated overnight at 4 °C. The 
exosomes were pelleted down at 10000 g for 60 min at 4 °C and were 
resuspended in 100 μl of 1 × PBS for further studies. (2) PROSPR is 
a technique that the conditioned media was mixed with ice-cold ace-
tone in a ratio of 1:4 and vorutexed, then centrifuged at 3000 g for 
2 min. The supernatant was collected and concentrated in a vacuum 

concentrator in vacuum-alcohol mode. The concentrated crystals 
were resuspended in 100  μl 1 × PBS. (3) The supernatant collected 
from this stage was centrifuged at 100000  g twice for 70  min each 
time to separate exosomes from the precipitation in the final step. The 
first hypervelocity rotation was to remove larger vesicles. The super-
natant was discarded, and the precipitate was washed with 1× PBS in 
the second rotation. The resuspension of the precipitation is the same 
as before
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proliferation rate of human dermal fibroblasts (HDFs) 
also increased, especially in the S phase of these cells 
[72]. Wang et al. investigated the effect of ADSC-Exos on 
the expression of ECM-related genes in skin fibroblasts. 
The mRNA expression levels of α-SMA and Col-I A1 
were reduced, and TGF-3, Col-III A1, MMP1, and MMP3 
were increased, while TIMP-1 and TGF-1 remained basi-
cally unchanged. The level of protein expression is similar 
to that of the mRNA. It can be seen that ADSC-Exos can 
regulate the ratio of fibroblast Col-III to Col-I, TGF-3 to 
TGF-1, and MMP3 to TIMP-1, as well as regulate fibro-
blast differentiation to affect ECM reconstruction, thereby 
alleviating scar [85]. Besides, ADSC-Exos can transfer 
fibroblasts to an endogenous state and inhibit their dif-
ferentiation [37].

The migration and proliferation of fibroblasts are also 
affected by ADSC-Exos in a dose-dependent manner [23]. 
Choi et al. showed that ADSC-Exos contained miRNAs 
that inhibited genes including NPM1, PDCD4, CCL5, 
and NUP62, thus contributing to the proliferation of skin 
fibroblasts [72]. Exosomes also promote the migration 
and proliferation of fibroblasts by promoting the mRNA 
expression of N-cadherin, cyclin-1, and PCNA [23]. 
Cooper et al. found that ADSC-Exos could increase der-
mal fibroblast migration and accelerate ischemic wound 
healing by releasing lncRNA MALAT1 (metastasis-
associated lung adenocarcinoma transcript 1) [86]. Qian 
et al. found that ADSC-Exos could promote the prolif-
eration of fibroblasts via lncRNA H19/ Mir-19b /SOX9 
Axis, thus speeding up wound healing [87]. Akt is one 
of the pathways that ADSC-Exos enhances the prolifera-
tion and migration of fibroblasts, which is independent of 
miRNA-205 [88]. Zhang et al. experim reduced ent also 
indicated that PI3K/Akt is a way for ADSC-Exos to regu-
late fibroblast. In a medium containing ADSC-Exos, if 
fibroblasts are pretreated with PI3K inhibitors Ly294002, 
the levels of cells proliferation, phosphorylation of Akt, 
Col-I and Col-III will be [89]. Wang et al. explained that 
ADSC-Exos may increase the MMP3 level of fibroblasts 
in the manner of ERK/MAPK signaling pathway. ADSC-
Exos also induced more nuclear translocations of P-ERK 
in fibroblasts. Besides, they observed that ADSC-Exos 
increased the expression of downstream genes in the 
ERK/MAPK pathway (c-Jun, c-Fos), while the increased 
expression was almost completely eliminated by the 
P-ERK-specific inhibitor U0126 [85]. ADSC-Exos can 
transport functional cytoskeleton proteins (such as vimen-
tin), which can act as promoters of fibroblast prolifera-
tion, migration, and ECM secretion [90]. ADSC-Exos 
also enhances the migration of human skin fibroblasts by 
lncRNA MALAT1(metastasis-associated lung adenocar-
cinoma transcript 1) [86].

Scarring Stage

ADSC‑Cm

It has been reported that ADSC-CM can reduce the expres-
sion of Col-I, Col-III and β-smooth muscle actin (β-SMA) 
in vitro, which are caused by the action of anti-fibrotic fac-
tors in ADSC-CM, thereby reducing collagen deposition 
and scar formation [91]. ADSC-CM significantly inhibits 
the proliferation and migration of hypertrophic scar fibro-
blasts, then lowers the expression level of ECM molecules in 
cells [78]. The result of Ma et al. (2020) showed that ADSCs 
could reduce the activity of fibroblasts, fibrosis molecular 
expression, and TIMP-1 in hypertrophic scar by secreting 
hepatocyte growth factor (HGF), while significantly increase 
the expression of MMPs [92]. In addition, the P-P38 protein 
level of hypertrophic scar fibroblasts cultured with ADSC-
CM was down-regulated in a concentration-dependent 
manner, and collagen was arranged more orderly [93]. In 
the hypertrophic scar model of rabbit ear, Chu et al. found 
that ADSCs could significantly increase the expression of 
decorin (DCN) in fibroblasts. The core protein is the most 
critical protein in DCN, which can transmit different biologi-
cal signals and resist scar formation [94]. The expression of 
p53 in ADSCs is associated with hypertrophic scar [95]. If 
the p53 gene of MSCs is knocked out, the production of NO 
will be increased and the ability to inhibit the proliferation 
of fibroblasts will be reduced [96]. ADSCs inhibit TGF-β1-
induced differentiation of fibroblasts in adult skin and TGF-
β1-induced contraction of keloid through the paracrine way. 
Furthermore, ADSCs down-regulate intracellular signaling 
pathway related molecules (such as p-Smad2, p-Smad3, 
p-STAT3, and p-ERK) and proteins, which are also impor-
tant ways to inhibit hypertrophic scar [95]. In the experi-
ment of Li et al. (2016), ADSC-CM can reduce collagen 
deposition and scar formation in vitro, ex vitro, and in vivo 
through the p38/MAPK signaling pathway [93]. Wang et al. 
cultured keloid fibroblasts with ADSC-CM, and they found 
that ADSC-CM decreased the expression of extracellular 
matrix related genes, inhibited cell proliferation and migra-
tion, and reduced  CD31+/CD34+ blood vessels, collagen 
deposition and TIMP [97].

ADSC‑Exos

ADSC-Exos can effectively inhibit the proliferation and 
migration of hypertrophic scar fibroblasts, reduce the expres-
sion of Col-1,Co-III, α-SMA, IL-17RA and p-Smad2/p-
Smad3, and increase the level of SIP1 in fibroblasts. Mice 
treated with ADSC-Exos showed faster wound healing and 
less collagen deposition [98]. miR-192–5p is also the regula-
tory mode of ADSCs to reduce the fibrosis level of hyper-
trophic scar [98]. The effects of ADSCs on the biological 
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characteristics of fibroblasts and myofibroblasts during the 
process from wound to scar are shown in Fig. 4.

ADSCs and ADSC‑Exos Indirectly 
Regulate Fibroblasts and Myofibroblasts 
by Promoting Angiogenesis and Inhibiting 
Inflammation, Thereby Reducing Scar 
Formation

ADSCs and ADSC‑Exos Promote Angiogenesis

Lynam et al. observed that moderate hypoxia (5% O2) and 
malnutrition (5% FCS) increase the level of fibroblasts and 
collagen, however, severe hypoxia (0.5% O2) and malnu-
trition (0.5% FCS) reduces the production of collagen, the 
cell vitality, and induce cell apoptosis [99]. The continuous 
overexpression of multiple cytokines by fibroblasts under the 
stimulation of vascular endothelial growth factor (VEGF) 
leads to excessive inflammation and collagen production. 
Excessive collagen deposition can mechanically crush the 
microvessels, resulting in occlusion of the microvessels and 

hypoxia at the damaged site, which further induce colla-
gen formation [9]. Chen et al. found that the hyperactive 
glycolytic fibroblast population is the main factor for ECM 
deposition during skin trauma, suggesting that glycolytic 
diversity is closely related to the heterogeneity of fibroblasts. 
Hyperactive glycolysis may be a functional phenotype in 
patients with fibrosis [10]. The enhancement of cellular gly-
colysis is usually caused by insufficient oxygen supply to the 
tissues, but the oxygen supply depends on the blood supply 
of the tissues. Therefore, blood supply is also a factor affect-
ing fibroblast phenotype.

Current studies have shown that ADSCs and ADSC-Exos 
play an important role in angiogenesis. ADSCs have great 
potential to release angiogenic factors either by injection or 
stent delivery [51]. Luo et al. studied the biaxially secre-
tory effect between microderms and ADSCs, and the results 
showed that the combination of microderms and ADSCs can 
upregulate cytokines, such as VEGF, IL-6, HGF, and EGF 
[100]. ADSC-Exos is comparable in angiogenesis to ADSCs 
[101]. Microenvironmental changes can affect the angiogen-
esis of ADSC-Exos. According to the experiments of Han 
et al., in terms of angiogenesis, the ability of hypoxic-treated 

Fig. 4  The effect of ADSCs on the biological characteristics of fibro-
blasts and myofibroblasts during the process from wound to scar. The 
process of ADSCs in preventing scar formation is complex and has 
different roles in the wound stage and scar formation stage. In the 
wound stage, ADSCs and ADSCs-Exos increased the migration, pro-
liferation, Col-I, Col-III, CD34, elastin, MMP3, decorin, keratinocyte 

of fibroblasts. In the scar stage, ADSCs and ADSC-Exos decreased 
the migration, proliferation, Col-I, Col-III, β-SMA, P-P38 protein, 
TIMP, differentiate of fibroblasts. However, they reduced α-SMA and 
TGF-β1 and inhibited the transformation of fibroblasts into myofi-
broblasts in both the wound and scar stage. “↑” and “↓” represent 
increase and decrease, respectively
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ADSC-Exos to form capillary networks is higher than that of 
non-hypoxic-treated ADSC-Exos [102]. In the experiment of 
Bail et al., ADSC-Exos pretreated with  H2O2 could promote 
angiogenesis [103]. Liang et al. showed that ADSC-Exos 
can transfer miR125a to endothelial cells and promote angi-
ogenesis by inhibiting DLL4 [104]. In addition, ADSC-Exos 
promotes angiogenesis by delivering miR378a-3p [105]. In 
some cases ADSCs can induce wound healing, but in some 
cases ADSCs can cause and aggravate hyperplastic scarring 
such as in some stages of acute burns, and this may be due to 
the excessive angiogenesis and granulation tissue [9].

Effects of ADSCs and ADSC‑Exos on Inflammation

During wound healing, macrophages, lymphocytes, and 
other inflammatory cells release various factors that induce 
fibroblast proliferation [95]. Therefore, inflammation is an 
important factor affecting fibroblasts’ activity. Roh et al. 
reported that human MSCs were implanted on the poly-
mer scaffold, then put the scaffold in immunodeficient 
mouse, and the cells could not be detected within a few 
days. Instead, the scaffolds were initially refilled by mouse 
monocytes, followed by refilled by smooth muscle cells and 
endothelial cells. Therefore, the authors first hypothesized 
that MSCs secrete a large amount of monocyte chemotactic 
protein-1, thus increasing the recruitment of early mono-
cytes in the mouse. These findings suggest that tissue regen-
eration occurs through an inflammatory process and not just 
through cell recovery [106]. Previous studies have shown 
that ADSC-Exos can effectively protect tissues and organs 
from ischemia-reperfusion injury by regulating inflamma-
tory and oxidative signal transduction axes [107]. Therefore, 
ADSCs and ADSC-Exos can indirectly regulate fibroblasts 
and myofibroblasts through the effects on inflammatory 
response in the process of wound healing.

ADSCs have the abitily to exchange cytoplasmic com-
ponents bidirectional with primary T lymphocytes [108]. 
ADSC-Exos is similar to its adipose stem cell source in its 
up-regulation of early inflammation [101]. ADSC-Exos can 
coordinate the role of  CD4+ T cells in the immune system, 
such as coordinating the balance between various subsets 
of  CD4+ T cells [109]. In vitro, ADSC-Exos demonstrated 
the ability to inhibit T cell differentiation, reduce T cell pro-
liferation, and stimulate the release of interferon-γ [110]. 
Macrophages play a role in coordinating the microenviron-
ment during wound healing. From the early stage to patho-
logical scar formation, the polarization of macrophages 
showed the temporal and spatial diversity of M1 and M2 
macrophages. The increased number of M2 cells is closely 
related to the sensitivity of the pathogenesis of abnormal 
scar [111]. Inflammatory cytokines can increase the immu-
nosuppressive and anti-inflammatory abilities of ADSC-
Exos, which have the ability to transform macrophages from 

M1 phenotype to M2 phenotype by regulating macrophage 
polarization through miRNA shuttles [112]. ADSC-Exos 
also upregulate the expression of M2 macrophage markers 
to regulate macrophage polarization [113], and increase the 
mRNA levels of M2-associated arginase-1 and IL (interleu-
kin)-10 [114]. In addition, ADSC-Exos activated arginase-1 
and transcriptional activator 3 (STAT-3), which induced 
polarization of macrophages to an anti-inflammatory M2, 
and significantly inhibited lipopolysaccharide (LPS) and 
IFN-γ-stimulated macrophage inflammatory response [114]. 
In the rat model of intestinal perforation causing systemic 
inflammatory response, the survival rate of rats treated with 
ADSC-Exos was significantly increased and the rats showed 
significant low inflammatory response [115]. The mecha-
nism of effect of ADSCs and ADSC-Exos on fibroblasts is 
summarized in Fig. 5.

Problems of ADSCs and ADSC‑Exos 
in Anti‑Scar Application

Although there are many studies on ADSCs in wound heal-
ing, we still have little understanding of their mechanism of 
action [95]. So, we still have a lot of work to do to under-
stand the mechanisms as far as possible. The contents of 
exosomes depend on the cells they come from and the physi-
ological conditions of the cells [116]. How to identify the 
specific contents of various exosomes and how to effectively 
control and regulate the contents of exosomes are part of the 
problems we need to solve.

Meanwhile, due to high clearance rate and short half-
life, the application of exosome in wound healing remains a 
challenge. Besides, their function may be impaired, as regen-
eration usually takes a long time and the viability of free 
exosomes is not maintained, which is also an issue we need 
to address. To solve the above problems, the combination of 
ADSCs and ADSC-Exos with biomaterials is also a research 
hotspot. Wang et al. manufactured an injectable adhesive, 
heat-sensitive multifunctional polysaccharide dressing 
(FEP), which has sustained pH response to exosome release, 
and promotes angiogenesis and diabetic wound healing 
[117]. In order to address the poor organ-targeting capabil-
ity of exosomes in MSCs, Li et al. labeled exosomes with 
oxidized nanoparticles (Exo + NPs) and injected Exo + NPs 
into the body under magnetic guidance. This method signifi-
cantly increases the amount of Exo + NPs accumulated at 
the site of injury. These accumulated Exo + NP reduce scar 
formation and increase the expression of CK19, PCNA, and 
collagen in the body [118].

ADSC-Exos itself has the function of the carrier, and can 
also be used as a component of well-designed biomedical 
materials. ADSC-Exos can be used as a stable and effective 
carrier to load specific proteins, lipids, and genetic materials, 
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and preferentially transport them to target tissues or organs 
due to its inherent homing ability or targeting ability of arti-
ficial modification [119, 120]. How to use the delivery func-
tion of exosomes still needs further study. In the experiment 
of Bolandi et al., they introduced miR-10a into exosomes by 
means of electric shock to regulate  CD4+ T cell differentia-
tion [109].

Precision therapy is the invariable direction of basic 
and clinical research. Fibroblasts and myofibroblasts play 
different roles in different stages of wound healing. There-
fore, it is necessary to clarify the regulatory effects of 
ADSCs and ADSC-Exos on fibroblasts and myofibroblasts 
at different stages of scar formation. Unfortunately, the 
role of ADSCs and ADSC-Exos in the different stages of 
scar formation has not been studied. Depending on the 
physiological or pathological status of the host tissue, 
fibroblasts show different shapes and sizes, and represent 
heterogeneous populations of cells with different charac-
teristics that remain largely undefined. During the wound 
repair process of skin tissue, fibroblasts show consider-
able functional differences, for example, there is little scar 
formation during wound remodeling in the mouth, while 

there is much scar tissue deposition in skin wounds [121]. 
Therefore, it is necessary to study the effects of ADSCs 
and ADSC-Exos on fibroblasts from different host tissue.

Conclusion & Expectation

In conclusion, it can be known that ADSCs and ADSC-
Exos can regulate fibroblasts and myofibroblasts in various 
ways. Therefore, ADSCs and ADSC-Exos have an enor-
mous potential in clinical application of anti-scar therapy. 
With the further study of ADSCs and ADSC-Exos as well 
as their relationship with biomaterials, the application of 
ADSCs and ADSC-Exos in scar treatment will be realized 
in the future.
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