Skip to main content

Advertisement

Log in

Oxidative Stress Enhances Autophagy-Mediated Death Of Stem Cells Through Erk1/2 Signaling Pathway – Implications For Neurotransplantations

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cell therapies are becoming increasingly popular solutions for neurological disorders. However, there is a lower survival rate of these cells after transplantation. Oxidative stress is linked to brain damage, and it may also impact transplanted stem cells. To better understand how transplanted cells respond to oxidative stress, the current study used H2O2. We briefly illustrated that exogenous H2O2 treatment exaggerated oxidative stress in the human dental pulp and mesenchymal stem cells. 2′,7′-Dichlorofluorescin diacetate (DCFDA), MitoSOX confirms the reactive oxygen species (ROS) involvement, which was remarkably subsided by the ROS inhibitors. The findings showed that H2O2 activates autophagy by enhancing pro-autophagic proteins, Beclin1 and Atg7. Increased LC3II/I expression (which co-localized with lysosomal proteins, LAMP1 and Cathepsin B) showed that H2O2 treatment promoted autophagolysosome formation. In the results, both Beclin1 and Atg7 were observed co-localized in mitochondria, indicating their involvement in mitophagy. The evaluation of Erk1/2 in the presence and absence of Na-Pyruvate, PEG-Catalase, and PD98059 established ROS-Erk1/2 participation in autophagy regulation. Further, these findings showed a link between apoptosis and autophagy. The results conclude that H2O2 acts as a stressor, promoting autophagy and mitophagy in stem cells under oxidative stress. The current study may help understand better cell survival and death approaches for transplanted cells in various neurological diseases.

Graphical abstract

The current study uses human Dental Pulp and Mesenchymal Stem cells to demonstrate the importance of H2O2-driven autophagy in deciding the fate of these cells in an oxidative microenvironment. To summarise, we discovered that exogenous H2O2 treatment causes oxidative stress. Exogenous H2O2  treatment also increased ROS production, especially intracellular H2O2. H2O2 stimulated the ErK1/2 signaling pathway and autophagy. Erk1/2 was found to cause autophagy. Further, the function of mitophagy appeared to be an important factor in the H2O2-induced regulation of these two human stem cell types. In a nutshell, by engaging in autophagy nucleation, maturation, and terminal phase proteins, we elucidated the participation of autophagy in cell dysfunction and death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. GBD 2016 Stroke Collaborators. (2019). Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 18(5), 439–458. https://doi.org/10.1016/S1474-4422(19)30034-1

    Article  Google Scholar 

  2. Raza, S. S., Wagner, A., Hussain, Y., & Khan, M. (2018). Mechanisms underlying dental-derived stem cell-mediated neurorestoration in neurodegenerative disorders. Stem Cell Research & Therapy, 9(1), 245. https://doi.org/10.1186/s13287-018-1005-z

    Article  CAS  Google Scholar 

  3. Prakash, R., Mishra, R., Ahmad, A., Khan, M., Khan, R., & Raza, S. (2021). Sivelestat-loaded nanostructured lipid carriers modulate oxidative and inflammatory stress in human dental pulp and mesenchymal stem cells subjected to oxygen-glucose deprivation. Materials Science and Engineering: C, 120, 111700. https://doi.org/10.1016/j.msec.2020.111700

    Article  CAS  Google Scholar 

  4. Ahmad, A., Eram, F., Kumar, M., Mishra, R. K., Kumar, A., Khan, M. A., Raza, S. S., & Khan, R. (2019). Gelatin coated polycaprolactonenanoparticle-mediated naringenin delivery rescue human mesenchymal stem cells from oxygen glucose deprivation-induced inflammatory stress. ACS Biomaterial Science and Engineering, 5(2), 683–695. https://doi.org/10.1021/acsbiomaterials.8b01081

    Article  CAS  Google Scholar 

  5. Niapour, A., GhasemiHamidabadi, H., Niapour, N., Mohammadi, P., SharifiPasandi, M., & Malekzadeh, V. (2019). Pharmacological Notch pathway inhibition leads to cell cycle arrest and stimulates ascl1 and neurogenin2 genes expression in dental pulp stem cells-derived neurospheres. Biotechnology Letter, 41(6–7), 873–887. https://doi.org/10.1007/s10529-019-02687-1

    Article  CAS  Google Scholar 

  6. Mahmoudinia, S., Niapour, A., Hamidabadi, G. H., & Mazani, M. (2019). 2,4-D causes oxidative stress induction and apoptosis in human dental pulp stem cells (hDPSCs). Environmental Science and Pollution Research Inernational, 26(25), 26170–26183. https://doi.org/10.1007/s11356-019-05837-0

  7. GhasemiHamidabadi, H., Rezvani, Z., NazmBojnordi, M., Shirinzadeh, H., Seifalian, A. M., Joghataei, M. T., Razaghpour, M., Alibakhshi, A., Yazdanpanah, A., Salimi, M., Mozafari, M., Urbanska, A. M., Reis, R. L., Kundu, S. C., & Gholipourmalekabadi, M. (2017). Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells. ACS Applied Material Interfaces, 9(13), 11392–11404. https://doi.org/10.1021/acsami.6b14283

    Article  CAS  Google Scholar 

  8. Lee, J., Cho, Y., Jung, H., & Choi, I. (2018). Pharmacological regulation of oxidative stress in stem cells. Oxidative Medicine and Cellular Longevity, 2018, 1–13. https://doi.org/10.1155/2018/4081890

    Article  CAS  Google Scholar 

  9. Adam-Vizi, V., & Starkov, A. (2010). Calcium and mitochondrial reactive oxygen species generation: How to read the facts. Journal of Alzheimer’s Disease, 20(s2), S413–S426. https://doi.org/10.3233/jad-2010-100465

    Article  PubMed  Google Scholar 

  10. Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L. A., & Seliger, B. (2015). Hydrogen peroxide - production, fate and role in redox signaling of tumor cells. Cell Commun Signal., 14(13), 39. https://doi.org/10.1186/s12964-015-0118-6

    Article  CAS  Google Scholar 

  11. Vilema-Enríquez, G., Arroyo, A., Grijalva, M., Amador-Zafra, R. I., & Camacho, J. (2016). Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications. Oxidative Medicine and Cellular Longevity., 2016, 1908164. https://doi.org/10.1155/2016/1908164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sies, H. (2017). Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biology, 11, 613–619. https://doi.org/10.1016/j.redox.2016.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mut, M., Yemisci, M., Gursoy-Ozdemir, Y., & Ture, U. (2009). Hydrogen peroxide-induced stroke: Elucidation of the mechanism in vivo. Journal of Neurosurgery, 110(1), 94–100. https://doi.org/10.3171/2008.3.17434

    Article  PubMed  Google Scholar 

  14. Hyslop, P. A., Zhang, Z., Pearson, D. V., & Phebus, L. A. (1995). Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: Correlation with the cytotoxic potential of H2O2 in vitro. Brain Research., 671, 181–186. https://doi.org/10.1016/0006-8993(94)01291-o

    Article  CAS  PubMed  Google Scholar 

  15. Wu, Z., Wang, H., Fang, S., & Xu, C. (2018). Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells. Molecular Medicine Reports, 18(5), 4163–4174. https://doi.org/10.3892/mmr.2018.9443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jia, L., Xiong, Y., Zhang, W., Ma, X., & Xu, X. (2020). Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Experimental Cell Research, 386(2), 111717. https://doi.org/10.1016/j.yexcr.2019.111717

    Article  CAS  PubMed  Google Scholar 

  17. Ye, G., Xie, Z., Zeng, H., Wang, P., Li, J., Zheng, G., Wang, S., Cao, Q., Li, M., Liu, W., Cen, S., Li, Z., Wu, Y., Ye, Z., & Shen, H. (2020). Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death Disease, 11, 775. https://doi.org/10.1038/s41419-020-02993-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sotthibundhu, A., McDonagh, K., von Kriegsheim, A., Garcia-Munoz, A., Klawiter, A., Thompson, K., Chauhan, K. D., Krawczyk, J., McInerney, V., Dockery, P., Devine, M. J., Kunath, T., Barry, F., O’Brien, T., & Shen, S. (2016). Rapamycin regulates autophagy and cell dhesion in induced pluripotent stem cells. Stem Cell Research Therapy, 7(1), 166. https://doi.org/10.1186/s13287-016-0425-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, J., Zhang, Y., Wan, C., Sun, Z., Nie, S., Jian, S. J., Zhang, L., Song, G. T., & Chen, Z. (2015). Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration. Biomaterials, 44, 11–23. https://doi.org/10.1016/j.biomaterials.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  20. Andrzejewska, A., Dabrowska, S., Lukomska, B., & Janowski, M. (2021). Mesenchymal stem cells for neurological disorders. Advanced Science (Weinh), 8(7), 2002944. https://doi.org/10.1002/advs.202002944

    Article  CAS  Google Scholar 

  21. Chen, X., He, Y., & Lu, F. (2018). Autophagy in stem cell biology: A perspective on stem cell self-renewal and differentiation. Stem Cells International, 2018, 1–12. https://doi.org/10.1155/2018/9131397

    Article  CAS  Google Scholar 

  22. Han, Y., Kim, S., Kim, S., & Park, W. (2007). The changes of intracellular H2O2 are an important factor maintaining mitochondria membrane potential of antimycin A-treated As4.1 juxtaglomerular cells. Biochemical Pharmacology, 73(6), 863–872. https://doi.org/10.1016/j.bcp.2006.11.017

    Article  CAS  PubMed  Google Scholar 

  23. Guidarelli, A., Clementi, E., Brambilla, L., & Cantoni, O. (1997). Mechanism of the antimycin A-mediated enhancement oft-butylhydroperoxide-induced single-strand breakage in DNA. Biochemical Journal, 328(3), 801–806. https://doi.org/10.1042/bj3280801

    Article  CAS  PubMed Central  Google Scholar 

  24. Varmazyar, R., Noori-Zadeh, A., Abbaszadeh, H., Hamidabadi, H., Rajaei, F., Darabi, S., Rezaie, M. J., Abdollahifar, M. A., Zafari, F., & Bakhtiyari, S. (2019). Neural stem cells neuroprotection by simvastatin via autophagy induction and apoptosis inhibition. Bratislava Medical Journal, 120(10), 744–751. https://doi.org/10.4149/bll_2019_124

    Article  CAS  PubMed  Google Scholar 

  25. Yang, Q., Sun, G., Yin, H., Li, H., Cao, Z., Wang, J., Zhou, M., Wang, H., & Li, J. (2018). PINK1 protects auditory hair cells and spiral ganglion neurons from cisplatin-induced ototoxicity via inducing autophagy and inhibiting JNK signaling pathway. Free Radical Biology and Medicine, 120, 342–355. https://doi.org/10.1016/j.freeradbiomed.2018.02.025

    Article  CAS  PubMed  Google Scholar 

  26. Parzych, K., & Klionsky, D. (2014). An overview of autophagy: Morphology, mechanism, and regulation. Antioxidants & Redox Signaling, 20(3), 460–473. https://doi.org/10.1089/ars.2013.5371

    Article  CAS  Google Scholar 

  27. Shinojima, N., Yokoyama, T., Kondo, Y., & Kondo, S. (2007). Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy, 3(6), 635–637. https://doi.org/10.4161/auto.4916

    Article  CAS  PubMed  Google Scholar 

  28. Pattingre, S., Bauvy, C., Codogno, P., Pattingre, S., Bauvy, C., & Codogno, P. (2003). Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. Journal of Biological Chemistry, 278(19), 16667–16674. https://doi.org/10.1074/jbc.m210998200

    Article  CAS  Google Scholar 

  29. Patra, S., Bhol, C., Panigrahi, D., Praharaj, P., Pradhan, B., Jena, M., & Bhutia, S. (2020). Gamma irradiation promotes chemo-sensitization potential of gallic acid through attenuation of autophagic flux to trigger apoptosis in an NRF2 inactivation signalling pathway. Free Radical Biology and Medicine, 160, 111–124. https://doi.org/10.1016/j.freeradbiomed.2020.06.022

    Article  CAS  PubMed  Google Scholar 

  30. Park, W., Han, Y., Kim, S., & Kim, S. (2007). An ROS generator, antimycin A, inhibits the growth of HeLa cells via apoptosis. Journal of Cellular Biochemistry, 102(1), 98–109. https://doi.org/10.1002/jcb.21280

    Article  CAS  PubMed  Google Scholar 

  31. Park, W. (2012). The effects of exogenous H2O2 on cell death, reactive oxygen species and glutathione levels in calf pulmonary artery and human umbilical vein endothelial cells. International Journal of Molecular Medicine, 31(2), 471–476. https://doi.org/10.3892/ijmm.2012.1215

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, J., Dagda, R. K., & Chu, C. T. (2011). Monitoring mitophagy in neuronal cell cultures. Methods Molecular Biology, 793, 325–339. https://doi.org/10.1007/978-1-61779-328-8_21

    Article  CAS  Google Scholar 

  33. Martins, W., Santos, N., Rocha, C., Bacellar, I., Tsubone, T., Viotto, A., Matsukuma, A. Y., Abrantes, A. B. P., Siani, P., Dias, L. G., & Baptista, M. S. (2018). Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy, 15(2), 259–279. https://doi.org/10.1080/15548627.2018.1515609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rafatian, G., Khodagholi, F., Farimani, M., Abraki, S., & Gardaneh, M. (2012). Increase of autophagy and attenuation of apoptosis by Salvigenin promote survival of SH-SY5Y cells following treatment with H2O2. Molecular and Cellular Biochemistry, 371(1–2), 9–22. https://doi.org/10.1007/s11010-012-1416-6

    Article  CAS  PubMed  Google Scholar 

  35. Ni, Y., Gu, W., Liu, Z., Zhu, Y., Rong, J., Kent, T. A., Li, M., Qiao, S. G., An, J. Z., & Zhang, H. L. (2018). RIP1K contributes to neuronal and astrocytic cell death in ischemic stroke via activating autophagic-lysosomal pathway. Neuroscience, 371, 60–74. https://doi.org/10.1016/j.neuroscience.2017.10.038

    Article  CAS  PubMed  Google Scholar 

  36. Tomalin, L., Day, A., Underwood, Z., Smith, G., DallePezze, P., Rallis, C., et al. (2016). Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxinhyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed. Free Radical Biology and Medicine, 95, 333–348. https://doi.org/10.1016/j.freeradbiomed.2016.02.035

    Article  CAS  PubMed  Google Scholar 

  37. Wu, D., & Yotnda, P. (2011). Production and detection of reactive oxygen species (ROS) in cancers. Journal of Visualized Experiments, 57, 3357. https://doi.org/10.3791/3357

    Article  CAS  Google Scholar 

  38. Tamatani, M., Matsuyama, T., Yamaguchi, A., Mitsuda, N., Tsukamoto, Y., Taniguchi, M., et al. (2001). ORP150 protects against hypoxia/ischemia-induced neuronal death. Nature Medicine, 7(3), 317–323. https://doi.org/10.1038/85463

    Article  CAS  PubMed  Google Scholar 

  39. Aleshin, A. N., Sawa, Y., Kitagawa-Sakakida, S., Bando, Y., Ono, M., Memon, I. A., Tohyama, M., Ogawa, S., & Matsuda, H. (2005). 150-kDa oxygen-regulated protein attenuates myocardial ischemia-reperfusion injury in rat heart. Journal of Molecular Cellular Cardiology, 38(3), 517–525. https://doi.org/10.1016/j.yjmcc.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  40. Chang, C., Huang, T., Chen, H., Huang, T., Lin, L., Chang, Y., & Hsia, S. (2018). Protective effect of melatonin against oxidative stress-induced apoptosis and enhanced autophagy in human retinal pigment epithelium cells. Oxidative Medicine and Cellular Longevity, 2018, 1–12. https://doi.org/10.1155/2018/9015765

    Article  CAS  Google Scholar 

  41. Baechler, B., Bloemberg, D., & Quadrilatero, J. (2019). Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy, 15(9), 1606–1619. https://doi.org/10.1080/15548627.2019.1591672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, J., Ren, Q., Chen, J., Gao, B., Wang, X., Zhang, Z. J., Wang, J., Xu, Z. J., & Xing, B. S. (2020). Autophagy Contributes to Oxidative Stress-Induced Apoptosis in Porcine Granulosa Cells. Reproductive Sciences. https://doi.org/10.1007/s43032-020-00340-1

    Article  PubMed  Google Scholar 

  43. Mitter, S., Song, C., Qi, X., Mao, H., Rao, H., Akin, D., Lewin, A., Grant, M., Dunn, W., Jr., Ding, J., Bowes, R. C., & Boulton, M. (2014). Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy, 10(11), 1989–2005. https://doi.org/10.4161/auto.36184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, Y., Liang, P., Jiang, B., Tang, Y., Liu, X., Liu, M., et al. (2020). CARD9 promotes autophagy in cardiomyocytes in myocardial ischemia/reperfusion injury via interacting with Rubicon directly. Basic Research In Cardiology, 115(3), 29. https://doi.org/10.1007/s00395-020-0790-6

    Article  CAS  PubMed  Google Scholar 

  45. Keeling, E., Chatelet, D., Johnston, D., Page, A., Tumbarello, D., Lotery, A., & Ratnayaka, J. (2019). Oxidative stress and dysfunctional intracellular traffic linked to an unhealthy diet results in impaired cargo transport in the retinal pigment epithelium (RPE). Molecular Nutrition & Food Research, 63(15), 1800951. https://doi.org/10.1002/mnfr.201800951

    Article  CAS  Google Scholar 

  46. Yan, X., Zhao, P., Ma, D., Jiang, Y., Luo, J., Liu, L., & Wang, X. (2017). Salvianolic acid B protects hepatocytes from H2O2 injury by stabilizing the lysosomal membrane. World Journal of Gastroenterology, 23(29), 5333. https://doi.org/10.3748/wjg.v23.i29.5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schulze, R., Krueger, E., Weller, S., Johnson, K., Casey, C., Schott, M., & McNiven, M. (2020). Direct lysosome-based autophagy of lipid droplets in hepatocytes. Proceedings of The National Academy of Sciences, 117(51), 32443–32452. https://doi.org/10.1073/pnas.2011442117

    Article  CAS  Google Scholar 

  48. Martini-Stoica, H., Xu, Y., Ballabio, A., & Zheng, H. (2016). The autophagy–lysosomal pathway in neurodegeneration: A TFEB perspective. Trends in Neurosciences, 39(4), 221–234. https://doi.org/10.1016/j.tins.2016.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eskelinen, E. L. (2006). Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med, 27(5–6), 495–502. https://doi.org/10.1016/j.mam.2006.08.005

    Article  CAS  PubMed  Google Scholar 

  50. Qi, X., Man, S. M., Malireddi, R. K., Karki, R., Lupfer, C., Gurung, P., Neale, G., Guy, C. S., Lamkanfi, M., & Kanneganti, T. D. (2016). Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection. J Exp Med, 213(10), 2081–97. https://doi.org/10.1084/jem.20151938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Angelova, P. R., Barilani, M., Lovejoy, C., Dossena, M., Vigano, M., Seresini, A., Piga, D., Gandhi, S., Pezzoli, G., Abramov, A. Y., & Lazzari, L. (2018). Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation. Redox Biology, 14, 474–484. https://doi.org/10.1016/j.redox.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  52. Hsieh, C. H., Shaltouki, A., Gonzalez, A. E., Bettencourt da Cruz, A., Burbulla, L. F., St Lawrence, E., Schule, B., Krainc, D., Palmer, T. D., & Wang, X. (2016). Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson’s Disease. Cell Stem Cell, 19(6), 709–724. https://doi.org/10.1016/j.stem.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, L., Shi, X., Xie, J., Weng, S. J., Xie, Z. J., Tang, J. H., Yan, D. Y., Wang, B. Z., Fang, K. H., Hong, C. X., Wu, Z. Y., & Yang, L. (2021). Apelin-13 induces mitophagy in bone marrow mesenchymal stem cells to suppress intracellular oxidative stress and ameliorate osteoporosis by activation of AMPK signaling pathway. Free Radical Biology and Medicine, 163, 356–368. https://doi.org/10.1016/j.freeradbiomed.2020.12.235

    Article  CAS  PubMed  Google Scholar 

  54. Basit, F., van Oppen, L., Schockel, L., Bossenbroek, H., van Emst-de Vries, S., Hermeling, J. C., Grefte, S., Kopitz, C., Heroult, M., Hgm, W. P., & Koopman, W. J. (2017). Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death & Disease, 8(3), e2716–e2716. https://doi.org/10.1038/cddis.2017.133

    Article  Google Scholar 

  55. Lyamzaev, K., Tokarchuk, A., Panteleeva, A., Mulkidjanian, A., Skulachev, V., & Chernyak, B. (2018). Induction of autophagy by depolarization of mitochondria. Autophagy, 14(5), 921–924. https://doi.org/10.1080/15548627.2018.1436937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhitomirsky, B., Farber, H., & Assaraf, Y. (2018). LysoTracker and MitoTracker Red are transport substrates of P-glycoprotein: Implications for anticancer drug design evading multidrug resistance. Journal of Cellular and Molecular Medicine, 22(4), 2131–2141. https://doi.org/10.1111/jcmm.13485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guyton, K., Liu, Y., Gorospe, M., Xu, Q., & Holbrook, N. (1996). Activation of mitogen-activated protein kinase by H2O2. Journal of Biological Chemistry, 271(8), 4138–4142. https://doi.org/10.1074/jbc.271.8.4138

    Article  CAS  Google Scholar 

  58. Han, J., Park, H., Lee, D., Jo, J., Heo, K., & Myung, C. (2021). Regulation of autophagy by controlling Erk1/2 and mTOR for platelet-derived growth factor-BB-mediated vascular smooth muscle cell phenotype shift. Life Sciences, 267, 118978. https://doi.org/10.1016/j.lfs.2020.118978

    Article  CAS  PubMed  Google Scholar 

  59. Wadhwani, A., Affaneh, A., Van Gulden, S., & Kessler, J. (2019). Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease. Annals of Neurology, 85(5), 726–739. https://doi.org/10.1002/ana.25455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He, K., & Aizenman, E. (2010). ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced neurotoxicity. Journal of Neurochemistry, 114(2), 452–461. https://doi.org/10.1111/j.1471-4159.2010.06762.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sivaprasad, U., & Basu, A. (2008). Inhibition of ERK attenuates autophagy and potentiates tumour necrosis factor-α-induced cell death in MCF-7 cells. Journal of Cellular and Molecular Medicine, 12(4), 1265–1271. https://doi.org/10.1111/j.1582-4934.2008.00282.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ellington, A., Berhow, M., & Singletary, K. (2005). Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis, 27(2), 298–306. https://doi.org/10.1093/carcin/bgi214

    Article  CAS  PubMed  Google Scholar 

  63. Jagtap, J., Chandele, A., Chopde, B., & Shastry, P. (2003). Sodium pyruvate protects against H2O2 mediated apoptosis in human neuroblastoma cell line-SK-N-MC. Journal of Chemical Neuroanatomy, 26(2), 109–118. https://doi.org/10.1016/s0891-0618(03)00037-1

    Article  CAS  PubMed  Google Scholar 

  64. Fan, Y. J., & Zong, W. X. (2013). The cellular decision between apoptosis and autophagy. Chin J Cancer, 32(3), 121–129. https://doi.org/10.5732/cjc.012.10106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received—some chemicals from DST-SERB Grant India, Grant no. YSS/2015//1731 were utilized in this project.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work in collaboration with SSR. SSR: conceptualized, designed, and supervision.

Corresponding author

Correspondence to Syed Shadab Raza.

Ethics declarations

Conflict of Interest

The authors declare no Conflict of Interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ravi Prakash and Eram Fauzia shared equal first authorship

Abu Junaid Siddiqui and Santosh Kumar Yadav shared equal second authorship

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, R., Fauzia, E., Siddiqui, A.J. et al. Oxidative Stress Enhances Autophagy-Mediated Death Of Stem Cells Through Erk1/2 Signaling Pathway – Implications For Neurotransplantations. Stem Cell Rev and Rep 17, 2347–2358 (2021). https://doi.org/10.1007/s12015-021-10212-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10212-z

Keywords

Navigation