Skip to main content

Advertisement

Log in

A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Narazaki, G., Uosaki, H., Teranishi, M., Okita, K., Kim, B., Matsuoka, S., Yamanaka, S., & Yamashita, J. K. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118, 498–506.

    PubMed  Google Scholar 

  2. Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., Thomson, J. A., & Kamp, T. J. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–e41.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., Nguemo, F., Menke, S., Haustein, M., Hescheler, J., Hasenfuss, G., & Martin, U. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.

    PubMed  Google Scholar 

  4. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    CAS  PubMed  Google Scholar 

  5. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    CAS  PubMed  Google Scholar 

  6. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., & Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.

    CAS  PubMed  Google Scholar 

  7. Moore, J. C. (2013). Generation of human-induced pluripotent stem cells by lentiviral transduction. Methods in Molecular Biology, 997, 35–43.

    CAS  PubMed  Google Scholar 

  8. Zhou, T., Benda, C., Duzinger, S., Huang, Y., Li, X., Li, Y., Guo, X., Cao, G., Chen, S., Hao, L., Chan, Y. C., Ng, K. M., Ho, J. C., Wieser, M., Wu, J., Redl, H., Tse, H. F., Grillari, J., Grillari-Voglauer, R., Pei, D., & Esteban, M. A. (2011). Generation of induced pluripotent stem cells from urine. American Society of Nephrology, 22, 1221–1228.

    Google Scholar 

  9. Macarthur, C. C., Fontes, A., Ravinder, N., Kuninger, D., Kaur, J., Bailey, M., Taliana, A., Vemuri, M. C., & Lieu, P. T. (2012). Generation of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free or xeno-free conditions. Stem Cells International, 2012, 564612.

    PubMed  PubMed Central  Google Scholar 

  10. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I. I., & Thomson, J. A. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, S., Yang, E., Cha, K. Y., Lanza, R., & Kim, K. S. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A., Daley, G. Q., Brack, A. S., Collins, J. J., Cowan, C., Schlaeger, T. M., & Rossi, D. J. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinle, H., Weber, M., Behring, A., Mau-Holzmann, U., von Ohle, C., Popov, A. F., Schlensak, C., Wendel, H. P., & Avci-Adali, M. (2019). Reprogramming of Urine-Derived Renal Epithelial Cells into iPSCs Using srRNA and Consecutive Differentiation into Beating Cardiomyocytes. Molecular Therapy--Nucleic Acids, 17, 907–921.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sandmaier, S. E., & Telugu, B. P. (2015). MicroRNA-Mediated Reprogramming of Somatic Cells into Induced Pluripotent Stem Cells. Methods in Molecular Biology, 1330, 29–36.

    CAS  PubMed  Google Scholar 

  15. Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hämäläinen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H. K., & Nagy, A. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458, 766–770.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Melo, U. S., de Souza Leite, F., Costa, S., Rosenberg, C., & Zatz, M. (2018). A fast method to reprogram and CRISPR/Cas9 gene editing from erythroblasts. Stem Cell Research, 31, 52–54.

    CAS  PubMed  Google Scholar 

  17. Weltner, J., Balboa, D., Katayama, S., Bespalov, M., Krjutskov, K., Jouhilahti, E. M., Trokovic, R., Kere, J., & Otonkoski, T. (2018). Human pluripotent reprogramming with CRISPR activators. Nature Communications, 9, 2643.

    PubMed  PubMed Central  Google Scholar 

  18. Chakraborty, S., Christoforou, N., Fattahi, A., Herzog, R. W., & Leong, K. W. (2013). A robust strategy for negative selection of Cre-loxP recombination-based excision of transgenes in induced pluripotent stem cells. PLoS One, 8, e64342.

    PubMed  PubMed Central  Google Scholar 

  19. Kadari, A., Lu, M., Li, M., Sekaran, T., Thummer, R. P., Guyette, N., Chu, V., & Edenhofer, F. (2014). Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells. Stem Cell Research & Therapy, 5, 47.

    Google Scholar 

  20. Morishige, S., Mizuno, S., Ozawa, H., Nakamura, T., Mazahery, A., Nomura, K., Seki, R., Mouri, F., Osaki, K., Yamamura, K., Okamura, T., & Nagafuji, K. (2020). CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs. International Journal of Hematology, 111, 225–233.

    CAS  PubMed  Google Scholar 

  21. Ma, J., Zhang, J., He, J., Zhang, Z., Li, W., Feng, B., Guo, R., Amponsah, A. E., Kong, D., Liu, A., Song, Y., Wei, L., & Cui, H. (2020). Induced pluripotent stem cell (iPSC) line (HEBHMUi002-A) from a healthy female individual and neural differentiation. Stem Cell Research, 42, 101669.

    CAS  PubMed  Google Scholar 

  22. Lee, C. H., Ingrole, R. S. J., & Gill, H. S. (2020). Generation of induced pluripotent stem cells using elastin like polypeptides as a non-viral gene delivery system. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1866, 165405.

    CAS  PubMed  Google Scholar 

  23. Lanzi, G., Ferraro, R. M., Masneri, S., Piovani, G., Barisani, C., Sobacchi, C., Villa, A., Vezzoni, P., & Giliani, S. (2020). Generation of 3 clones of induced pluripotent stem cells (iPSCs) from a patient affected by Autosomal Recessive Osteopetrosis due to mutations in TCIRG1 gene. Stem Cell Research, 42, 101660.

    CAS  PubMed  Google Scholar 

  24. Woods, S., Bates, N., Dunn, S. L., Serracino-Inglott, F., Hardingham, T. E., & Kimber, S. J. (2020). Generation of Human-Induced Pluripotent Stem Cells From Anterior Cruciate Ligament. Journal of Orthopaedic Research, 38, 92–104.

    CAS  PubMed  Google Scholar 

  25. Horton, C., Davies, T. J., Lahiri, P., Sachamitr, P., & Fairchild, P. J. (2020). Induced pluripotent stem cells reprogrammed from primary dendritic cells provide an abundant source of immunostimulatory dendritic cells for use in immunotherapy. Stem Cells, 38, 67–79.

    CAS  PubMed  Google Scholar 

  26. Mulder, J., Sharmin, S., Chow, T., Rodrigues, D. C., Hildebrandt, M. R., D'Cruz, R., Rogers, I., Ellis, J., & Rosenblum, N. D. (2020). Generation of infant- and pediatric-derived urinary induced pluripotent stem cells competent to form kidney organoids. Pediatric Research, 87, 647–655.

    CAS  PubMed  Google Scholar 

  27. Hiramoto, T., Tahara, M., Liao, J., Soda, Y., Miura, Y., Kurita, R., Hamana, H., Inoue, K., Kohara, H., Miyamoto, S., Hijikata, Y., Okano, S., Yamaguchi, Y., Oda, Y., Ichiyanagi, K., Toh, H., Sasaki, H., Kishi, H., Ryo, A., Muraguchi, A., Takeda, M., & Tani, K. (2020). Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells. Molecular Therapy, 28, 129–141.

    CAS  PubMed  Google Scholar 

  28. Sung, T. C., Li, H. F., Higuchi, A., Kumar, S. S., Ling, Q. D., Wu, Y. W., Burnouf, T., Nasu, M., Umezawa, A., Lee, K. F., Wang, H. C., Chang, Y., & Hsu, S. T. (2020). Effect of cell culture biomaterials for completely xeno-free generation of human induced pluripotent stem cells. Biomaterials, 230, 119638.

    CAS  PubMed  Google Scholar 

  29. Ustyantseva, E. I., Medvedev, S. P., Vetchinova, A. S., Illarioshkin, S. N., Leonov, S. V., & Zakian, S. M. (2020). Generation of an induced pluripotent stem cell line, ICGi014-A, by reprogramming peripheral blood mononuclear cells from a patient with homozygous D90A mutation in SOD1 causing Amyotrophic lateral sclerosis. Stem Cell Research, 42, 101675.

    CAS  PubMed  Google Scholar 

  30. Trionfini, P., Ciampi, O., Romano, E., Benigni, A., & Tomasoni, S. (2020). Generation of two isogenic knockout PKD2 iPS cell lines, IRFMNi003-A-1 and IRFMNi003-A-2, using CRISPR/Cas9 technology. Stem Cell Research, 42, 101667.

    CAS  PubMed  Google Scholar 

  31. Yang, T., Qin, J., Zhang, Q., Sun, H., Wang, Z., Yang, J., Liu, H., Zhang, C., Zhang, S., Zhang, J., Wang, Y., & Xu, Y. (2020). Generation of induced pluripotent stem cell line (ZZUi0018-A ) from a patient with spinocerebellar ataxia type 6. Stem Cell Research, 44, 101777.

    CAS  PubMed  Google Scholar 

  32. Lu, H. E., Tsai, C. L., Chiu, I. M., Pan, Y. L., Lin, Y. F., Lin, H. C., & Hsu, Y. C. (2020). Generation of induced pluripotent stem cells MMCi001-A from a Taiwanese hearing loss patient carrying GJB2 pV37I mutation. Stem Cell Research, 42, 101692.

    CAS  PubMed  Google Scholar 

  33. Slamecka, J., Salimova, L., McClellan, S., van Kelle, M., Kehl, D., Laurini, J., Cinelli, P., Owen, L., Hoerstrup, S. P., & Weber, B. (2016). Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions. Cell Cycle, 15, 234–249.

    CAS  PubMed  Google Scholar 

  34. Ye, J., Ge, J., Zhang, X., Cheng, L., Zhang, Z., He, S., Wang, Y., Lin, H., Yang, W., Liu, J., Zhao, Y., & Deng, H. (2016). Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Research, 26, 34–45.

    CAS  PubMed  Google Scholar 

  35. Li, D., Wang, L., Hou, J., Shen, Q., Chen, Q., Wang, X., Du, J., Cai, X., Shan, Y., Zhang, T., Zhou, T., Shi, X., Li, Y., Zhang, H., & Pan, G. (2016). Optimized Approaches for Generation of Integration-free iPSCs from Human Urine-Derived Cells with Small Molecules and Autologous Feeder. Stem Cell Reports, 6, 717–728.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao, Y., Zhao, T., Guan, J., Zhang, X., Fu, Y., Ye, J., Zhu, J., Meng, G., Ge, J., Yang, S., Cheng, L., Du, Y., Zhao, C., Wang, T., Su, L., Yang, W., & Deng, H. (2015). A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical Reprogramming. Cell, 163, 1678–1691.

    CAS  PubMed  Google Scholar 

  37. Rais, Y., Zviran, A., Geula, S., Gafni, O., Chomsky, E., Viukov, S., Mansour, A. A., Caspi, I., Krupalnik, V., Zerbib, M., Maza, I., Mor, N., Baran, D., Weinberger, L., Jaitin, D. A., Lara-Astiaso, D., Blecher-Gonen, R., Shipony, Z., Mukamel, Z., Hagai, T., Gilad, S., Amann-Zalcenstein, D., Tanay, A., Amit, I., Novershtern, N., & Hanna, J. H. (2013). Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 502, 65–70.

    CAS  PubMed  Google Scholar 

  38. Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., Ge, J., Xu, J., Zhang, Q., Zhao, Y., & Deng, H. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654.

    CAS  PubMed  Google Scholar 

  39. Thier, M., Munst, B., Mielke, S., & Edenhofer, F. (2012). Cellular reprogramming employing recombinant sox2 protein. Stem Cells International, 2012, 549846.

    PubMed  PubMed Central  Google Scholar 

  40. Li, Y., Zhang, Q., Yin, X., Yang, W., Du, Y., Hou, P., Ge, J., Liu, C., Zhang, W., Zhang, X., Wu, Y., Li, H., Liu, K., Wu, C., Song, Z., Zhao, Y., Shi, Y., & Deng, H. (2011). Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research, 21, 196–204.

    CAS  PubMed  Google Scholar 

  41. Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., Zhang, Y., Yang, W., Gruber, P. J., Epstein, J. A., & Morrisey, E. E. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 376–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu, J., Chau, K. F., Vodyanik, M. A., Jiang, J., & Jiang, Y. (2011). Efficient feeder-free episomal reprogramming with small molecules. PLoS One, 6, e17557.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Staerk, J., Lyssiotis, C. A., Medeiro, L. A., Bollong, M., Foreman, R. K., Zhu, S., Garcia, M., Gao, Q., Bouchez, L. C., Lairson, L. L., Charette, B. D., Supekova, L., Janes, J., Brinker, A., Cho, C. Y., Jaenisch, R., & Schultz, P. G. (2011). Pan-Src family kinase inhibitors replace Sox2 during the direct reprogramming of somatic cells. Angewandte Chemie (International Ed. in English), 50, 5734–5736.

    CAS  Google Scholar 

  44. Si-Tayeb, K., Noto, F. K., Sepac, A., Sedlic, F., Bosnjak, Z. J., Lough, J. W., & Duncan, S. A. (2010). Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Developmental Biology, 10, 81.

    PubMed  PubMed Central  Google Scholar 

  45. Chan, A. W., Cheng, P. H., Neumann, A., & Yang, J. J. (2010). Reprogramming Huntington monkey skin cells into pluripotent stem cells. Cellular Reprogramming, 12, 509–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho, H. J., Lee, C. S., Kwon, Y. W., Paek, J. S., Lee, S. H., Hur, J., Lee, E. J., Roh, T. Y., Chu, I. S., Leem, S. H., Kim, Y., Kang, H. J., Park, Y. B., & Kim, H. S. (2010). Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood, 116, 386–395.

    CAS  PubMed  Google Scholar 

  47. Heng, J. C., Feng, B., Han, J., Jiang, J., Kraus, P., Ng, J. H., Orlov, Y. L., Huss, M., Yang, L., Lufkin, T., Lim, B., & Ng, H. H. (2010). The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell, 6, 167–174.

    CAS  PubMed  Google Scholar 

  48. Haase, A., Olmer, R., Schwanke, K., Wunderlich, S., Merkert, S., Hess, C., Zweigerdt, R., Gruh, I., Meyer, J., Wagner, S., Maier, L. S., Han, D. W., Glage, S., Miller, K., Fischer, P., Scholer, H. R., & Martin, U. (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5, 434–441.

    CAS  PubMed  Google Scholar 

  49. Ye, Z., Zhan, H., Mali, P., Dowey, S., Williams, D. M., Jang, Y. Y., Dang, C. V., Spivak, J. L., Moliterno, A. R., & Cheng, L. (2009). Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood, 114, 5473–5480.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lyssiotis, C. A., Foreman, R. K., Staerk, J., Garcia, M., Mathur, D., Markoulaki, S., Hanna, J., Lairson, L. L., Charette, B. D., Bouchez, L. C., Bollong, M., Kunick, C., Brinker, A., Cho, C. Y., Schultz, P. G., & Jaenisch, R. (2009). Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proceedings of the National Academy of Sciences of the United States of America, 106, 8912–8917.

    PubMed  PubMed Central  Google Scholar 

  51. Feng, B., Jiang, J., Kraus, P., Ng, J. H., Heng, J. C., Chan, Y. S., Yaw, L. P., Zhang, W., Loh, Y. H., Han, J., Vega, V. B., Cacheux-Rataboul, V., Lim, B., Lufkin, T., & Ng, H. H. (2009). Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 11, 197–203.

    CAS  PubMed  Google Scholar 

  52. Stadtfeld, M., Brennand, K., & Hochedlinger, K. (2008). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Current Biology, 18, 890–894.

    CAS  PubMed  Google Scholar 

  53. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., & Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26, 101–106.

    CAS  PubMed  Google Scholar 

  54. Shi, Y., Do, J. T., Desponts, C., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2, 525–528.

    CAS  PubMed  Google Scholar 

  55. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B. E., & Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318–324.

    CAS  PubMed  Google Scholar 

  56. Stadtfeld, M., Apostolou, E., Akutsu, H., Fukuda, A., Follett, P., Natesan, S., Kono, T., Shioda, T., & Hochedlinger, K. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 465, 175–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: history, mechanisms, and applications. Genes & Development, 24, 2239–2263.

    CAS  Google Scholar 

  58. Maekawa, M., Yamaguchi, K., Nakamura, T., Shibukawa, R., Kodanaka, I., Ichisaka, T., Kawamura, Y., Mochizuki, H., Goshima, N., & Yamanaka, S. (2011). Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 474, 225–229.

    CAS  PubMed  Google Scholar 

  59. Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., Zhang, Q., Xiang, C., Hou, P., Song, Z., Liu, Y., Yong, J., Zhang, P., Cai, J., Liu, M., Li, H., Li, Y., Qu, X., Cui, K., Zhang, W., Xiang, T., Wu, Y., Liu, C., Yu, C., Yuan, K., Lou, J., Ding, M., & Deng, H. (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 3, 475–479.

    CAS  PubMed  Google Scholar 

  60. Chen, K., Long, Q., Xing, G., Wang, T., Wu, Y., Li, L., Qi, J., Zhou, Y., Ma, B., Schöler, H. R., Nie, J., Pei, D., & Liu, X. (2020). Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming. The EMBO Journal, 39, e99165.

    CAS  PubMed  Google Scholar 

  61. Seki, T., Yuasa, S., Oda, M., Egashira, T., Yae, K., Kusumoto, D., Nakata, H., Tohyama, S., Hashimoto, H., Kodaira, M., Okada, Y., Seimiya, H., Fusaki, N., Hasegawa, M., & Fukuda, K. (2010). Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell, 7, 11–14.

    CAS  PubMed  Google Scholar 

  62. Akkouh, I. A., Ueland, T., Hansson, L., Inderhaug, E., Hughes, T., Steen, N. E., Aukrust, P., Andreassen, O. A., Szabo, A., & Djurovic, S. (2020). Decreased IL-1β-induced CCL20 response in human iPSC-astrocytes in schizophrenia: Potential attenuating effects on recruitment of regulatory T cells. Brain, Behavior, and Immunity, 87, 634–644.

    CAS  PubMed  Google Scholar 

  63. Alari, V., Russo, S., Rovina, D., Garzo, M., Crippa, M., Calzari, L., Scalera, C., Concolino, D., Castiglioni, E., Giardino, D., Prosperi, E., Finelli, P., Gervasini, C., Gowran, A., & Larizza, L. (2019). Generation of three iPSC lines (IAIi002, IAIi004, IAIi003) from Rubinstein-Taybi syndrome 1 patients carrying CREBBP non sense c.4435G>T, p.(Gly1479*) and c.3474G>A, p.(Trp1158*) and missense c.4627G>T, p.(Asp1543Tyr) mutations. Stem Cell Research, 40, 101553.

    CAS  PubMed  Google Scholar 

  64. Altieri, F., D'Anzi, A., Martello, F., Tardivo, S., Spasari, I., Ferrari, D., Bernardini, L., Lamorte, G., Mazzoccoli, G., Valente, E. M., Vescovi, A. L., & Rosati, J. (2019). Production and characterization of human induced pluripotent stem cells (iPSC) CSSi007-A (4383) from Joubert Syndrome. Stem Cell Research, 38, 101480.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bursch, F., Kalmbach, N., Naujock, M., Staege, S., Eggenschwiler, R., Abo-Rady, M., Japtok, J., Guo, W., Hensel, N., Reinhardt, P., Boeckers, T. M., Cantz, T., Sterneckert, J., Van Den Bosch, L., Hermann, A., Petri, S., & Wegner, F. (2019). Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations. Human Molecular Genetics, 28, 2835–2850.

    CAS  PubMed  Google Scholar 

  66. Anastasaki, C., Wegscheid, M. L., Hartigan, K., Papke, J. B., Kopp, N. D., Chen, J., Cobb, O., Dougherty, J. D., & Gutmann, D. H. (2020). Human iPSC-Derived Neurons and Cerebral Organoids Establish Differential Effects of Germline NF1 Gene Mutations. Stem Cell Reports, 14, 541–550.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Arribas-Carreira, L., Bravo-Alonso, I., López-Márquez, A., Alonso-Barroso, E., Briso-Montiano, Á., Arroyo, I., Ugarte, M., Pérez, B., Pérez-Cerdá, C., Rodríguez-Pombo, P., & Richard, E. (2019). Generation and characterization of a human iPSC line (UAMi005-A) from a patient with nonketotic hyperglycinemia due to mutations in the GLDC gene. Stem Cell Research, 39, 101503.

    CAS  PubMed  Google Scholar 

  68. Atchison, L., Abutaleb, N. O., Snyder-Mounts, E., Gete, Y., Ladha, A., Ribar, T., Cao, K., & Truskey, G. A. (2020). iPSC-Derived Endothelial Cells Affect Vascular Function in a Tissue-Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome. Stem Cell Reports, 14, 325–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Barabino, A., Flamier, A., Hanna, R., Héon, E., Freedman, B. S., & Bernier, G. (2020). Deregulation of Neuro-Developmental Genes and Primary Cilium Cytoskeleton Anomalies in iPSC Retinal Sheets from Human Syndromic Ciliopathies. Stem Cell Reports, 14, 357–373.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bozaoglu, K., Gao, Y., Stanley, E., Fanjul-Fernández, M., Brown, N. J., Pope, K., Green, C. C., Vlahos, K., Sourris, K., Bahlo, M., Delatycki, M., Scheffer, I., & Lockhart, P. J. (2019). Generation of seven iPSC lines from peripheral blood mononuclear cells suitable to investigate Autism Spectrum Disorder. Stem Cell Research, 39, 101516.

    CAS  PubMed  Google Scholar 

  71. Ding, Y., Marcó de la Cruz, B., Xia, Y., Liu, M., Lu, Y., McInerney, V., Krawczyk, J., Lynch, S. A., Howard, L., O'Brien, T., Gallagher, L., & Shen, S. (2019). Derivation of familial iPSC lines from three ASD patients carrying NRXN1α(+/−) and two controls (NUIGi022-A, NUIGi022-B; NUIGi023-A, NUIGi023-B; NUIGi025-A, NUIGi025-B; NUIGi024-A, NUIGi024-B; NUIGi026-A, NUIGi026-B). Stem Cell Research, 41, 101653.

    CAS  PubMed  Google Scholar 

  72. Bolinches-Amorós, A., León, M., Del Buey Furió, V., Marfany, G., Gonzàlez-Duarte, R., Erceg, S., & Lukovic, D. (2019). Generation of an iPSC line from a retinitis pigmentosa patient carrying a homozygous mutation in CERKL and a healthy sibling. Stem Cell Research, 38, 101455.

    PubMed  Google Scholar 

  73. Booth, H. D. E., Wessely, F., Connor-Robson, N., Rinaldi, F., Vowles, J., Browne, C., Evetts, S. G., Hu, M. T., Cowley, S. A., Webber, C., & Wade-Martins, R. (2019). RNA sequencing reveals MMP2 and TGFB1 downregulation in LRRK2 G2019S Parkinson's iPSC-derived astrocytes. Neurobiology of Disease, 129, 56–66.

    CAS  PubMed  Google Scholar 

  74. Brazdis, R. M., Alecu, J., Marsch, D., Dahms, A., Simmnacher, K., Lörentz, S., Brendler, A., Schneider, Y., Marxreiter, F., Roybon, L., Winner, B., Xiang, W., & Prots, I. (2020). Demonstration of brain region-specific neuronal vulnerability in human iPSC-based model of familial Parkinson's disease. Human Molecular Genetics, 29, 1180–1191.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, Z., Peng, F., Liu, J., Xie, B., Xu, P., Gan, Z., Li, M., Xu, L., & Zhong, X. (2020). Generation of an iPSC line (SKLOi001-A) from a patient with CLCN2-related leukoencephalopathy. Stem Cell Research, 45, 101769.

    CAS  PubMed  Google Scholar 

  76. Cheng, Y. F., Chan, Y. H., Hu, C. J., Lu, Y. C., Saeki, T., Hosoya, M., Saegusa, C., Fujioka, M., Okano, H., Weng, S. M., Hsu, C. J., Chang, K. H., & Wu, C. C. (2019). Generation of a human iPS cell line (CGMH.SLC26A4919–2) from a Pendred syndrome patient carrying SLC26A4 c.919-2A>G splice-site mutation. Stem Cell Research, 40, 101524.

    CAS  PubMed  Google Scholar 

  77. Erkilic, N., Sanjurjo-Soriano, C., Diakatou, M., Manes, G., Dubois, G., Hamel, C. P., Meunier, I., & Kalatzis, V. (2019). Generation of a human iPSC line, INMi003-A, with a missense mutation in CRX associated with autosomal dominant cone-rod dystrophy. Stem Cell Research, 38, 101478.

    CAS  PubMed  Google Scholar 

  78. Ali, M., Kabir, F., Thomson, J. J., Ma, Y., Qiu, C., Delannoy, M., Khan, S. Y., & Riazuddin, S. A. (2019). Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies. Scientific Reports, 9, 18552.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bueno, C., Sardina, J. L., Di Stefano, B., Romero-Moya, D., Muñoz-López, A., Ariza, L., Chillón, M. C., Balanzategui, A., Castaño, J., Herreros, A., Fraga, M. F., Fernández, A., Granada, I., Quintana-Bustamante, O., Segovia, J. C., Nishimura, K., Ohtaka, M., Nakanishi, M., Graf, T., & Menendez, P. (2016). Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα. Leukemia, 30, 674–682.

    CAS  PubMed  Google Scholar 

  80. Rizzi, R., Di Pasquale, E., Portararo, P., Papait, R., Cattaneo, P., Latronico, M. V., Altomare, C., Sala, L., Zaza, A., Hirsch, E., Naldini, L., Condorelli, G., & Bearzi, C. (2012). Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death and Differentiation, 19, 1162–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cai, W., Zhang, Y., & Kamp, T. J. (2011). Imaging of Induced Pluripotent Stem Cells: From Cellular Reprogramming to Transplantation. American Journal of Nuclear Medicine and Molecular Imaging, 1, 18–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Badenes, S. M., Fernandes, T. G., Cordeiro, C. S., Boucher, S., Kuninger, D., Vemuri, M. C., Diogo, M. M., & Cabral, J. M. (2016). Defined Essential 8 Medium and Vitronectin Efficiently Support Scalable Xeno-Free Expansion of Human Induced Pluripotent Stem Cells in Stirred Microcarrier Culture Systems. PLoS One, 11, e0151264.

    PubMed  PubMed Central  Google Scholar 

  83. Badenes, S. M., Fernandes, T. G., Rodrigues, C. A., Diogo, M. M., & Cabral, J. M. (2015). Scalable expansion of human-induced pluripotent stem cells in xeno-free microcarriers. Methods in Molecular Biology, 1283, 23–29.

    CAS  PubMed  Google Scholar 

  84. Rodrigues, A. L., Rodrigues, C. A. V., Gomes, A. R., Vieira, S. F., Badenes, S. M., Diogo, M. M., & Cabral, J. M. S. (2019). Dissolvable Microcarriers Allow Scalable Expansion And Harvesting Of Human Induced Pluripotent Stem Cells Under Xeno-Free Conditions. Biotechnology Journal, 14, e1800461.

    PubMed  Google Scholar 

  85. Nogueira, D. E. S., Rodrigues, C. A. V., Carvalho, M. S., Miranda, C. C., Hashimura, Y., Jung, S., Lee, B., & Cabral, J. M. S. (2019). Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-Wheel bioreactors. Journal of Biological Engineering, 13, 74.

    PubMed  PubMed Central  Google Scholar 

  86. Rodrigues, C. A., Silva, T. P., Nogueira, D. E., Fernandes, T. G., Hashimura, Y., Wesselschmidt, R., Diogo, M. M., Lee, B., & Cabral, J. M. (2018). Scalable culture of human induced pluripotent cells on microcarriers under xeno-free conditions using single-use vertical-wheel™ bioreactors. Journal of Chemical Technology & Biotechnology, 93, 3597–3606.

    CAS  Google Scholar 

  87. Abecasis, B., Aguiar, T., Arnault, E., Costa, R., Gomes-Alves, P., Aspegren, A., Serra, M., & Alves, P. M. (2017). Expansion of 3D human induced pluripotent stem cell aggregates in bioreactors: Bioprocess intensification and scaling-up approaches. Journal of Biotechnology, 246, 81–93.

    CAS  PubMed  Google Scholar 

  88. Kropp, C., Kempf, H., Halloin, C., Robles-Diaz, D., Franke, A., Scheper, T., Kinast, K., Knorpp, T., Joos, T. O., Haverich, A., Martin, U., Zweigerdt, R., & Olmer, R. (2016). Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors. Stem Cells Translational Medicine, 5, 1289–1301.

    PubMed  PubMed Central  Google Scholar 

  89. Cabral, J. M. S., & Da Silva, C. L. (2018). Bioreactors for Stem Cell Expansion and Differentiation. Boca Raton: CRC Press.

    Google Scholar 

  90. Lavon, N., Zimerman, M., & Itskovitz-Eldor, J. (2018). Scalable Expansion of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, 163, 23–37.

    CAS  PubMed  Google Scholar 

  91. Davis, R. L., Weintraub, H., & Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51, 987–1000.

    CAS  PubMed  Google Scholar 

  92. Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A. A., Ko, M. S., & Niwa, H. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 9, 625–635.

    CAS  PubMed  Google Scholar 

  93. Niwa, H., Ogawa, K., Shimosato, D., & Adachi, K. (2009). A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature, 460, 118–122.

    CAS  PubMed  Google Scholar 

  94. Gonzalez, F., Boue, S., & Izpisua Belmonte, J. C. (2011). Methods for making induced pluripotent stem cells: reprogramming a la carte. Nature Reviews. Genetics, 12, 231–242.

    CAS  PubMed  Google Scholar 

  95. Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T., & Yamanaka, S. (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 107, 14152–14157.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., & Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–642.

    CAS  PubMed  Google Scholar 

  97. Shyh-Chang, N., & Daley, G. Q. (2013). Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell, 12, 395–406.

    PubMed  PubMed Central  Google Scholar 

  98. Kunitomi, A., Yuasa, S., Sugiyama, F., Saito, Y., Seki, T., Kusumoto, D., Kashimura, S., Takei, M., Tohyama, S., Hashimoto, H., Egashira, T., Tanimoto, Y., Mizuno, S., Tanaka, S., Okuno, H., Yamazawa, K., Watanabe, H., Oda, M., Kaneda, R., Matsuzaki, Y., Nagai, T., Okano, H., Yagami, K. I., Tanaka, M., & Fukuda, K. (2016). H1foo Has a Pivotal Role in Qualifying Induced Pluripotent Stem Cells. Stem Cell Reports, 6, 825–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Utikal, J., Polo, J. M., Stadtfeld, M., Maherali, N., Kulalert, W., Walsh, R. M., Khalil, A., Rheinwald, J. G., & Hochedlinger, K. (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature, 460, 1145–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., & Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460, 1132–1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ichida, J. K., Blanchard, J., Lam, K., Son, E. Y., Chung, J. E., Egli, D., Loh, K. M., Carter, A. C., Di Giorgio, F. P., Koszka, K., Huangfu, D., Akutsu, H., Liu, D. R., Rubin, L. L., & Eggan, K. (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5, 491–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Maherali, N., & Hochedlinger, K. (2009). Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Current Biology, 19, 1718–1723.

    CAS  PubMed  Google Scholar 

  103. Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., & Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453, 519–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, G., Guo, Y., Li, C., Li, S., & Wan, X. (2020). Small molecules that promote self-renewal of stem cells and somatic cell reprogramming. Stem Cell Reviews and Reports, 16, 511–523.

    CAS  PubMed  Google Scholar 

  105. Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., Fujihara, M., Akimaru, H., Sakai, N., Shibata, Y., Terada, M., Nomiya, Y., Tanishima, S., Nakamura, M., Kamao, H., Sugita, S., Onishi, A., Ito, T., Fujita, K., Kawamata, S., Go, M. J., Shinohara, C., Hata, K. I., Sawada, M., Yamamoto, M., Ohta, S., Ohara, Y., Yoshida, K., Kuwahara, J., Kitano, Y., Amano, N., Umekage, M., Kitaoka, F., Tanaka, A., Okada, C., Takasu, N., Ogawa, S., Yamanaka, S., & Takahashi, M. (2017). Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. The New England Journal of Medicine, 376, 1038–1046.

    CAS  PubMed  Google Scholar 

  106. Takahashi, J. (2019). Preparing for first human trial of induced pluripotent stem cell-derived cells for Parkinson's disease: an interview with Jun Takahashi. Regenerative Medicine, 14, 93–95.

    CAS  PubMed  Google Scholar 

  107. Huang, C. Y., Liu, C. L., Ting, C. Y., Chiu, Y. T., Cheng, Y. C., Nicholson, M. W., & Hsieh, P. C. H. (2019). Human iPSC banking: barriers and opportunities. Journal of Biomedical Science, 26, 87.

    PubMed  PubMed Central  Google Scholar 

  108. Hanna, J., Wernig, M., Markoulaki, S., Sun, C. W., Meissner, A., Cassady, J. P., Beard, C., Brambrink, T., Wu, L. C., Townes, T. M., & Jaenisch, R. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318, 1920–1923.

    CAS  PubMed  Google Scholar 

  109. Akita, H., Yoshie, S., Ishida, T., Takeishi, Y., & Hazama, A. (2020). Negative chronotropic and inotropic effects of lubiprostone on iPS cell-derived cardiomyocytes via activation of CFTR. BMC Complement Med Ther, 20, 118.

    PubMed  PubMed Central  Google Scholar 

  110. Jeon, K., Lim, H., Kim, J. H., Thuan, N. V., Park, S. H., Lim, Y. M., Choi, H. Y., Lee, E. R., Lee, M. S., & Cho, S. G. (2012). Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells and Development, 21, 2642–2655.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., Leibel, R. L., & Melton, D. A. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 106, 15768–15773.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Pennarossa, G., Maffei, S., Campagnol, M., Tarantini, L., Gandolfi, F., & Brevini, T. A. (2013). Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proceedings of the National Academy of Sciences of the United States of America, 110, 8948–8953.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tateishi, K., He, J., Taranova, O., Liang, G., D'Alessio, A. C., & Zhang, Y. (2008). Generation of insulin-secreting islet-like clusters from human skin fibroblasts. The Journal of Biological Chemistry, 283, 31601–31607.

    CAS  PubMed  Google Scholar 

  114. Wang, R. M., & Christman, K. L. (2016). Decellularized Myocardial Matrix Hydrogels: In Basic Research and Preclinical Studies. Advanced Drug Delivery Reviews, 96, 77–82.

    PubMed  Google Scholar 

  115. O'Neal, W. T., Griffin, W. F., Dries-Devlin, J. L., Kent, S. D., Chen, J., Willis, M. S., & Virag, J. A. (2013). Ephrin-Eph signaling as a potential therapeutic target for the treatment of myocardial infarction. Medical Hypotheses, 80, 738–744.

    CAS  PubMed  Google Scholar 

  116. Ozawa, T., Mickle, D. A., Weisel, R. D., Koyama, N., Ozawa, S., & Li, R. K. (2002). Optimal biomaterial for creation of autologous cardiac grafts. Circulation, 106, 176–182.

    Google Scholar 

  117. Guan, X., Xu, W., Zhang, H., Wang, Q., Yu, J., Zhang, R., Chen, Y., Xia, Y., Wang, J., & Wang, D. (2020). Transplantation of human induced pluripotent stem cell-derived cardiomyocytes improves myocardial function and reverses ventricular remodeling in infarcted rat hearts. Stem Cell Research & Therapy, 11, 73.

    CAS  Google Scholar 

  118. Ishida, M., Miyagawa, S., Saito, A., Fukushima, S., Harada, A., Ito, E., Ohashi, F., Watabe, T., Hatazawa, J., Matsuura, K., & Sawa, Y. (2019). Transplantation of Human-induced Pluripotent Stem Cell-derived Cardiomyocytes Is Superior to Somatic Stem Cell Therapy for Restoring Cardiac Function and Oxygen Consumption in a Porcine Model of Myocardial Infarction. Transplantation, 103, 291–298.

    PubMed  PubMed Central  Google Scholar 

  119. Caron, J., Pène, V., Tolosa, L., Villaret, M., Luce, E., Fourrier, A., Heslan, J. M., Saheb, S., Bruckert, E., Gómez-Lechón, M. J., Nguyen, T. H., Rosenberg, A. R., Weber, A., & Dubart-Kupperschmitt, A. (2019). Low-density lipoprotein receptor-deficient hepatocytes differentiated from induced pluripotent stem cells allow familial hypercholesterolemia modeling, CRISPR/Cas-mediated genetic correction, and productive hepatitis C virus infection. Stem Cell Research & Therapy, 10, 221.

    Google Scholar 

  120. Adamiak, M., Cheng, G., Bobis-Wozowicz, S., Zhao, L., Kedracka-Krok, S., Samanta, A., Karnas, E., Xuan, Y. T., Skupien-Rabian, B., Chen, X., Jankowska, U., Girgis, M., Sekula, M., Davani, A., Lasota, S., Vincent, R. J., Sarna, M., Newell, K. L., Wang, O. L., Dudley, N., Madeja, Z., Dawn, B., & Zuba-Surma, E. K. (2018). Induced Pluripotent Stem Cell (iPSC)-Derived Extracellular Vesicles Are Safer and More Effective for Cardiac Repair Than iPSCs. Circulation Research, 122, 296–309.

    CAS  PubMed  Google Scholar 

  121. Kodo, K., Ong, S. G., Jahanbani, F., Termglinchan, V., Hirono, K., InanlooRahatloo, K., Ebert, A. D., Shukla, P., Abilez, O. J., Churko, J. M., Karakikes, I., Jung, G., Ichida, F., Wu, S. M., Snyder, M. P., Bernstein, D., & Wu, J. C. (2016). iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nature Cell Biology, 18, 1031–1042.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Choi, I. Y., Lim, H., Estrellas, K., Mula, J., Cohen, T. V., Zhang, Y., Donnelly, C. J., Richard, J. P., Kim, Y. J., Kim, H., Kazuki, Y., Oshimura, M., Li, H. L., Hotta, A., Rothstein, J., Maragakis, N., Wagner, K. R., & Lee, G. (2016). Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model. Cell Reports, 15, 2301–2312.

    CAS  PubMed  Google Scholar 

  123. Atchison, L., Zhang, H., Cao, K., & Truskey, G. A. (2017). A Tissue Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome Using Human iPSC-derived Smooth Muscle Cells. Scientific Reports, 7, 8168.

    PubMed  PubMed Central  Google Scholar 

  124. Protze, S. I., Liu, J., Nussinovitch, U., Ohana, L., Backx, P. H., Gepstein, L., & Keller, G. M. (2017). Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nature Biotechnology, 35, 56–68.

    CAS  PubMed  Google Scholar 

  125. Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., Ogasawara, T., Okada, K., Shiba, N., Sakamoto, K., Ido, D., Shiina, T., Ohkura, M., Nakai, J., Uno, N., Kazuki, Y., Oshimura, M., Minami, I., & Ikeda, U. (2016). Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature, 538, 388–391.

    CAS  PubMed  Google Scholar 

  126. Funakoshi, S., Miki, K., Takaki, T., Okubo, C., Hatani, T., Chonabayashi, K., Nishikawa, M., Takei, I., Oishi, A., Narita, M., Hoshijima, M., Kimura, T., Yamanaka, S., & Yoshida, Y. (2016). Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Scientific Reports, 6, 19111.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou, Y., Wang, S., Yu, Z., Hoyt, R. F. J., Horvath, K. A., & Singh, A. K. (2012). Allogeneic Transplantation of Induced Pluripotent Stem Cells in a Porcine Model of Chronic Myocardial Ischemia Failed to Stimulate Myocyte Differentiation: 1649. Transplantation, 94, 1014.

    Google Scholar 

  128. Sun, N., Yazawa, M., Liu, J., Han, L., Sanchez-Freire, V., Abilez, O. J., Navarrete, E. G., Hu, S., Wang, L., Lee, A., Pavlovic, A., Lin, S., Chen, R., Hajjar, R. J., Snyder, M. P., Dolmetsch, R. E., Butte, M. J., Ashley, E. A., Longaker, M. T., Robbins, R. C., & Wu, J. C. (2012). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine, 4, 130ra147.

    Google Scholar 

  129. Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., Feldman, O., Gepstein, A., Arbel, G., Hammerman, H., Boulos, M., & Gepstein, L. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471, 225–229.

    CAS  PubMed  Google Scholar 

  130. Sala, L., Gnecchi, M., & Schwartz, P. J. (2019). Long QT Syndrome Modelling with Cardiomyocytes Derived from Human-induced Pluripotent Stem Cells. Arrhythmia & Electrophysiology Review, 8, 105–110.

    Google Scholar 

  131. Paik, D. T., Chandy, M., & Wu, J. C. (2020). Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacological Reviews, 72, 320–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Parrotta, E. I., Lucchino, V., Scaramuzzino, L., Scalise, S., & Cuda, G. (2020). Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. International Journal of Molecular Sciences, 21.

  133. Carpenter, L., Carr, C., Yang, C. T., Stuckey, D. J., Clarke, K., & Watt, S. M. (2012). Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells and Development, 21, 977–986.

    CAS  PubMed  Google Scholar 

  134. Gu, M., Nguyen, P. K., Lee, A. S., Xu, D., Hu, S., Plews, J. R., Han, L., Huber, B. C., Lee, W. H., Gong, Y., de Almeida, P. E., Lyons, J., Ikeno, F., Pacharinsak, C., Connolly, A. J., Gambhir, S. S., Robbins, R. C., Longaker, M. T., & Wu, J. C. (2012). Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circulation Research, 111, 882–893.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Lee, A. S., Xu, D., Plews, J. R., Nguyen, P. K., Nag, D., Lyons, J. K., Han, L., Hu, S., Lan, F., Liu, J., Huang, M., Narsinh, K. H., Long, C. T., de Almeida, P. E., Levi, B., Kooreman, N., Bangs, C., Pacharinsak, C., Ikeno, F., Yeung, A. C., Gambhir, S. S., Robbins, R. C., Longaker, M. T., & Wu, J. C. (2011). Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. The Journal of Biological Chemistry, 286, 32697–32704.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Tachibana, A., Santoso, M. R., Mahmoudi, M., Shukla, P., Wang, L., Bennett, M., Goldstone, A. B., Wang, M., Fukushi, M., Ebert, A. D., Woo, Y. J., Rulifson, E., & Yang, P. C. (2017). Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium. Circulation Research, 121, e22–e36.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Templin, C., Zweigerdt, R., Schwanke, K., Olmer, R., Ghadri, J. R., Emmert, M. Y., Müller, E., Küest, S. M., Cohrs, S., Schibli, R., Kronen, P., Hilbe, M., Reinisch, A., Strunk, D., Haverich, A., Hoerstrup, S., Lüscher, T. F., Kaufmann, P. A., Landmesser, U., & Martin, U. (2012). Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation, 126, 430–439.

    CAS  PubMed  Google Scholar 

  138. Ye, L., Chang, Y. H., Xiong, Q., Zhang, P., Zhang, L., Somasundaram, P., Lepley, M., Swingen, C., Su, L., Wendel, J. S., Guo, J., Jang, A., Rosenbush, D., Greder, L., Dutton, J. R., Zhang, J., Kamp, T. J., Kaufman, D. S., & Ge, Y. (2014). Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell, 15, 750–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, L., Song, Y., Shi, X., Liu, J., Xiong, S., Chen, W., Fu, Q., Huang, Z., Gu, N., & Zhang, R. (2018). The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting. Genome Research, 28, 132–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cyranoski, D. (2018). [online] Available at: https://www.nature.com/articles/d41586-018-05278-8. Nature, 2018. Accessed 03 Oct. 2020.

  141. Kadota, S., & Shiba, Y. (2019). Pluripotent Stem Cell-Derived Cardiomyocyte Transplantation for Heart Disease Treatment. Current Cardiology Reports, 21, 73.

    PubMed  Google Scholar 

  142. Engleka, K. A., Manderfield, L. J., Brust, R. D., Li, L., Cohen, A., Dymecki, S. M., & Epstein, J. A. (2012). Islet1 derivatives in the heart are of both neural crest and second heart field origin. Circulation Research, 110, 922–926.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ge, Z., Lal, S., Le, T. Y. L., Dos Remedios, C., & Chong, J. J. H. (2015). Cardiac stem cells: translation to human studies. Biophysical Reviews, 7, 127–139.

    CAS  PubMed  Google Scholar 

  144. Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., Sano, M., Toko, H., Akazawa, H., Sato, T., Nakaya, H., Kasanuki, H., & Komuro, I. (2004). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. The Journal of Biological Chemistry, 279, 11384–11391.

    CAS  PubMed  Google Scholar 

  145. Serradifalco, C., Catanese, P., Rizzuto, L., Cappello, F., Puleio, R., Barresi, V., Nunnari, C. M., Zummo, G., & Di Felice, V. (2011). Embryonic and foetal Islet-1 positive cells in human hearts are also positive to c-Kit. European Journal of Histochemistry, 55, 229–234.

    Google Scholar 

  146. Avolio, E., Meloni, M., Spencer, H. L., Riu, F., Katare, R., Mangialardi, G., Oikawa, A., Rodriguez-Arabaolaza, I., Dang, Z., Mitchell, K., Reni, C., Alvino, V. V., Rowlinson, J., Livi, U., Cesselli, D., Angelini, G., Emanueli, C., Beltrami, A. P., & Madeddu, P. (2015). Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circulation Research, 116, e81–e94.

    CAS  PubMed  Google Scholar 

  147. Santini, M. P., Forte, E., Harvey, R. P., & Kovacic, J. C. (2016). Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development, 143, 1242–1258.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Domian, I. J., Chiravuri, M., van der Meer, P., Feinberg, A. W., Shi, X., Shao, Y., Wu, S. M., Parker, K. K., & Chien, K. R. (2009). Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science, 326, 426–429.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gaetani, R., Doevendans, P. A., Metz, C. H., Alblas, J., Messina, E., Giacomello, A., & Sluijter, J. P. (2012). Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, 33, 1782–1790.

    CAS  PubMed  Google Scholar 

  150. Senyo, S. E., Steinhauser, M. L., Pizzimenti, C. L., Yang, V. K., Cai, L., Wang, M., Wu, T. D., Guerquin-Kern, J. L., Lechene, C. P., & Lee, R. T. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493, 433–436.

    CAS  PubMed  Google Scholar 

  151. Parrag, I. C., Zandstra, P. W., & Woodhouse, K. A. (2012). Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering. Biotechnology and Bioengineering, 109, 813–822.

    CAS  PubMed  Google Scholar 

  152. Mandel, Y., Weissman, A., Schick, R., Barad, L., Novak, A., Meiry, G., Goldberg, S., Lorber, A., Rosen, M. R., Itskovitz-Eldor, J., & Binah, O. (2012). Human embryonic and induced pluripotent stem cell-derived cardiomyocytes exhibit beat rate variability and power-law behavior. Circulation, 125, 883–893.

    PubMed  PubMed Central  Google Scholar 

  153. Parsons, X. H., Teng, Y. D., Moore, D. A., & Snyder, E. Y. (2011). Patents on Technologies of Human Tissue and Organ Regeneration from Pluripotent Human Embryonic Stem Cells. Rec Pat Regen Med, 1, 142–163.

    CAS  Google Scholar 

  154. Shen, N., Knopf, A., Westendorf, C., Kraushaar, U., Riedl, J., Bauer, H., Poschel, S., Layland, S. L., Holeiter, M., Knolle, S., Brauchle, E., Nsair, A., Hinderer, S., & Schenke-Layland, K. (2017). Steps toward Maturation of Embryonic Stem Cell-Derived Cardiomyocytes by Defined Physical Signals. Stem Cell Reports, 9, 122–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Liau, B., Christoforou, N., Leong, K. W., & Bursac, N. (2011). Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials, 32, 9180–9187.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Moon, S. H., Kang, S. W., Park, S. J., Bae, D., Kim, S. J., Lee, H. A., Kim, K. S., Hong, K. S., Kim, J. S., Do, J. T., Byun, K. H., & Chung, H. M. (2013). The use of aggregates of purified cardiomyocytes derived from human ESCs for functional engraftment after myocardial infarction. Biomaterials, 34, 4013–4026.

    CAS  PubMed  Google Scholar 

  157. Guo, X. M., Zhao, Y. S., Chang, H. X., Wang, C. Y., E, L.-L., Zhang, X. A., Duan, C. M., Dong, L. Z., Jiang, H., Li, J., Song, Y., & Yang, X. J. (2006). Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation, 113, 2229–2237.

    PubMed  Google Scholar 

  158. Hynes, R. O. (2008). US policies on human embryonic stem cells. Nature Reviews. Molecular Cell Biology, 9, 993–997.

    CAS  PubMed  Google Scholar 

  159. Gupta, M. K., Uhm, S. J., Lee, S. H., & Lee, H. T. (2008). Role of nonessential amino acids on porcine embryos produced by parthenogenesis or somatic cell nuclear transfer. Molecular Reproduction and Development, 75, 588–597.

    CAS  PubMed  Google Scholar 

  160. Ju, J. Y., Park, C. Y., Gupta, M. K., Uhm, S. J., Paik, E. C., Ryoo, Z. Y., Cho, Y. H., Chung, K. S., & Lee, H. T. (2008). Establishment of stem cell lines from nuclear transferred and parthenogenetically activated mouse oocytes for therapeutic cloning. Fertility and Sterility, 89, 1314–1323.

    CAS  PubMed  Google Scholar 

  161. Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., Gerstenblith, G., DeMaria, A. N., Denktas, A. E., Gammon, R. S., Hermiller Jr., J. B., Reisman, M. A., Schaer, G. L., & Sherman, W. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Abd Emami, B., Mahmoudi, E., Shokrgozar, M. A., Dehghan, M. M., Farzad Mohajeri, S., Haghighipour, N., Marjanmehr, S. H., Molazem, M., Amin, S., & Gholami, H. (2018). Mechanical and Chemical Predifferentiation of Mesenchymal Stem Cells Into Cardiomyocytes and Their Effectiveness on Acute Myocardial Infarction. Artificial Organs, 42, E114–E126.

    CAS  PubMed  Google Scholar 

  163. Cai, M., Shen, R., Song, L., Lu, M., Wang, J., Zhao, S., Tang, Y., Meng, X., Li, Z., & He, Z. X. (2016). Bone Marrow Mesenchymal Stem Cells (BM-MSCs) Improve Heart Function in Swine Myocardial Infarction Model through Paracrine Effects. Scientific Reports, 6, 28250.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Gerace, D., Martiniello-Wilks, R., Habib, R., Ren, B., Nassif, N. T., O'Brien, B. A., & Simpson, A. M. (2019). Ex Vivo Expansion of Murine MSC Impairs Transcription Factor-Induced Differentiation into Pancreatic beta-Cells. Stem Cells International, 2019, 1395301.

    PubMed  PubMed Central  Google Scholar 

  165. Li, G., Chen, J., Zhang, X., He, G., Tan, W., Wu, H., Li, R., Chen, Y., Gu, R., Xie, J., & Xu, B. (2017). Cardiac repair in a mouse model of acute myocardial infarction with trophoblast stem cells. Scientific Reports, 7, 44376.

    PubMed  PubMed Central  Google Scholar 

  166. Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., Penicaud, L., & Casteilla, L. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94, 223–229.

    CAS  PubMed  Google Scholar 

  167. Van Dijk, A., Niessen, H. W., Zandieh Doulabi, B., Visser, F. C., & van Milligen, F. J. (2008). Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell and Tissue Research, 334, 457–467.

    PubMed  Google Scholar 

  168. Smith, A. W., Segar, C. E., Nguyen, P. K., MacEwan, M. R., Efimov, I. R., & Elbert, D. L. (2012). Long-term culture of HL-1 cardiomyocytes in modular poly(ethylene glycol) microsphere-based scaffolds crosslinked in the phase-separated state. Acta Biomaterialia, 8, 31–40.

    CAS  PubMed  Google Scholar 

  169. Shiota, M., Heike, T., Haruyama, M., Baba, S., Tsuchiya, A., Fujino, H., Kobayashi, H., Kato, T., Umeda, K., Yoshimoto, M., & Nakahata, T. (2007). Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Experimental Cell Research, 313, 1008–1023.

    CAS  PubMed  Google Scholar 

  170. Homayouni Moghadam, F., Tayebi, T., & Barzegar, K. (2016). Differentiation of Rat bone marrow Mesenchymal stem cells into Adipocytes and Cardiomyocytes after treatment with platelet lysate. Int J Hematol Oncol Stem Cell Res, 10, 21–29.

    PubMed  PubMed Central  Google Scholar 

  171. Rouhi, L., Kajbafzadeh, A. M., Modaresi, M., Shariati, M., & Hamrahi, D. (2013). Autologous serum enhances cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells in the presence of transforming growth factor-beta1 (TGF-beta1). In Vitro Cellular & Developmental Biology. Animal, 49, 287–294.

    CAS  Google Scholar 

  172. Xaymardan, M., Tang, L., Zagreda, L., Pallante, B., Zheng, J., Chazen, J. L., Chin, A., Duignan, I., Nahirney, P., Rafii, S., Mikawa, T., & Edelberg, J. M. (2004). Platelet-derived growth factor-AB promotes the generation of adult bone marrow-derived cardiac myocytes. Circulation Research, 94, E39–E45.

    CAS  PubMed  Google Scholar 

  173. Jumabay, M., Matsumoto, T., Yokoyama, S., Kano, K., Kusumi, Y., Masuko, T., Mitsumata, M., Saito, S., Hirayama, A., Mugishima, H., & Fukuda, N. (2009). Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. Journal of Molecular and Cellular Cardiology, 47, 565–575.

    CAS  PubMed  Google Scholar 

  174. Choi, Y. S., Dusting, G. J., Stubbs, S., Arunothayaraj, S., Han, X. L., Collas, P., Morrison, W. A., & Dilley, R. J. (2010). Differentiation of human adipose-derived stem cells into beating cardiomyocytes. Journal of Cellular and Molecular Medicine, 14, 878–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Choi, Y. S., Matsuda, K., Dusting, G. J., Morrison, W. A., & Dilley, R. J. (2010). Engineering cardiac tissue in vivo from human adipose-derived stem cells. Biomaterials, 31, 2236–2242.

    CAS  PubMed  Google Scholar 

  176. Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., Mu, H., Pachori, A., & Dzau, V. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences of the United States of America, 104, 1643–1648.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Jawad, H., Ali, N. N., Lyon, A. R., Chen, Q. Z., Harding, S. E., & Boccaccini, A. R. (2007). Myocardial tissue engineering: A review. Journal of Tissue Engineering and Regenerative Medicine, 1, 327–342.

    CAS  PubMed  Google Scholar 

  178. Pushp, P., Sahoo, B., Ferreira, F. C., Sampaio Cabral, J. M., Fernandes-Platzgummer, A., & Gupta, M. K. (2019). Functional comparison of beating cardiomyocytes differentiated from umbilical cord-derived mesenchymal/stromal stem cells and human foreskin-derived induced pluripotent stem cells. Journal of Biomedical Materials Research Part A, 108, 496–514.

    PubMed  Google Scholar 

  179. Baba, S., Heike, T., Umeda, K., Iwasa, T., Kaichi, S., Hiraumi, Y., Doi, H., Yoshimoto, M., Kanatsu-Shinohara, M., Shinohara, T., & Nakahata, T. (2007). Generation of cardiac and endothelial cells from neonatal mouse testis-derived multipotent germline stem cells. Stem Cells, 25, 1375–1383.

    CAS  PubMed  Google Scholar 

  180. Guan, K., Nayernia, K., Maier, L. S., Wagner, S., Dressel, R., Lee, J. H., Nolte, J., Wolf, F., Li, M., Engel, W., & Hasenfuss, G. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 440, 1199–1203.

    CAS  PubMed  Google Scholar 

  181. Kanatsu-Shinohara, M., Miki, H., Inoue, K., Ogonuki, N., Toyokuni, S., Ogura, A., & Shinohara, T. (2005). Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biology of Reproduction, 72, 985–991.

    CAS  PubMed  Google Scholar 

  182. Ko, K., Tapia, N., Wu, G., Kim, J. B., Bravo, M. J., Sasse, P., Glaser, T., Ruau, D., Han, D. W., Greber, B., Hausdorfer, K., Sebastiano, V., Stehling, M., Fleischmann, B. K., Brustle, O., Zenke, M., & Scholer, H. R. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell, 5, 87–96.

    CAS  PubMed  Google Scholar 

  183. Iwasa, T., Baba, S., Doi, H., Kaichi, S., Yokoo, N., Mima, T., Kanatsu-Shinohara, M., Shinohara, T., Nakahata, T., & Heike, T. (2010). Neonatal mouse testis-derived multipotent germline stem cells improve the cardiac function of acute ischemic heart mouse model. Biochemical and Biophysical Research Communications, 400, 27–33.

    CAS  PubMed  Google Scholar 

  184. Guan, K., Wagner, S., Unsold, B., Maier, L. S., Kaiser, D., Hemmerlein, B., Nayernia, K., Engel, W., & Hasenfuss, G. (2007). Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circulation Research, 100, 1615–1625.

    CAS  PubMed  Google Scholar 

  185. Nguyen, T. L., Yoo, J. G., Sharma, N., Kim, S. W., Kang, Y. J., Thi, H. H. P., & Jeong, D. K. (2016). Isolation, characterization and differentiation potential of chicken spermatogonial stem cell derived embryoid bodies. Annals of Animal Science, 16, 115–128.

    CAS  Google Scholar 

  186. Jung, Y. H., Gupta, M. K., Oh, S. H., Uhm, S. J., & Lee, H. T. (2010). Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells. Experimental Cell Research, 316, 747–761.

    CAS  PubMed  Google Scholar 

  187. Lim, J. M., & Gong, S. P. (2013). Somatic cell transformation into stem cell-like cells induced by different microenvironments. Organogenesis, 9, 245–248.

    PubMed  PubMed Central  Google Scholar 

  188. Graichen, R., Xu, X., Braam, S. R., Balakrishnan, T., Norfiza, S., Sieh, S., Soo, S. Y., Tham, S. C., Mummery, C., Colman, A., Zweigerdt, R., & Davidson, B. P. (2008). Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 76, 357–370.

    CAS  PubMed  Google Scholar 

  189. Matsuda, Y., Takahashi, K., Kamioka, H., & Naruse, K. (2018). Human gingival fibroblast feeder cells promote maturation of induced pluripotent stem cells into cardiomyocytes. Biochemical and Biophysical Research Communications, 503, 1798–1804.

    CAS  PubMed  Google Scholar 

  190. Fujiwara, M., Yan, P., Otsuji, T. G., Narazaki, G., Uosaki, H., Fukushima, H., Kuwahara, K., Harada, M., Matsuda, H., Matsuoka, S., Okita, K., Takahashi, K., Nakagawa, M., Ikeda, T., Sakata, R., Mummery, C. L., Nakatsuji, N., Yamanaka, S., Nakao, K., & Yamashita, J. K. (2011). Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PLoS One, 6, e16734.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Laco, F., Lam, A. T., Woo, T. L., Tong, G., Ho, V., Soong, P. L., Grishina, E., Lin, K. H., Reuveny, S., & Oh, S. K. (2020). Selection of human induced pluripotent stem cells lines optimization of cardiomyocytes differentiation in an integrated suspension microcarrier bioreactor. Stem Cell Research & Therapy, 11, 118.

    CAS  Google Scholar 

  192. Chen, V. C., Ye, J., Shukla, P., Hua, G., Chen, D., Lin, Z., Liu, J. C., Chai, J., Gold, J., Wu, J., Hsu, D., & Couture, L. A. (2015). Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Research, 15, 365–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Fonoudi, H., Ansari, H., Abbasalizadeh, S., Larijani, M. R., Kiani, S., Hashemizadeh, S., Zarchi, A. S., Bosman, A., Blue, G. M., Pahlavan, S., Perry, M., Orr, Y., Mayorchak, Y., Vandenberg, J., Talkhabi, M., Winlaw, D. S., Harvey, R. P., Aghdami, N., & Baharvand, H. (2015). A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Stem Cells Translational Medicine, 4, 1482–1494.

    PubMed  PubMed Central  Google Scholar 

  194. Halloin, C., Schwanke, K., Lobel, W., Franke, A., Szepes, M., Biswanath, S., Wunderlich, S., Merkert, S., Weber, N., Osten, F., de la Roche, J., Polten, F., Christoph Wollert, K., Kraft, T., Fischer, M., Martin, U., Gruh, I., Kempf, H., & Zweigerdt, R. (2019). Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture. Stem Cell Reports, 13, 366–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Titmarsh, D. M., Glass, N. R., Mills, R. J., Hidalgo, A., Wolvetang, E. J., Porrello, E. R., Hudson, J. E., & Cooper-White, J. J. (2016). Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Scientific Reports, 6, 24637.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang, G., McCain, M. L., Yang, L., He, A., Pasqualini, F. S., Agarwal, A., Yuan, H., Jiang, D., Zhang, D., Zangi, L., Geva, J., Roberts, A. E., Ma, Q., Ding, J., Chen, J., Wang, D. Z., Li, K., Wang, J., Wanders, R. J., Kulik, W., Vaz, F. M., Laflamme, M. A., Murry, C. E., Chien, K. R., Kelley, R. I., Church, G. M., Parker, K. K., & Pu, W. T. (2014). Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine, 20, 616–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Kattman, S. J., Witty, A. D., Gagliardi, M., Dubois, N. C., Niapour, M., Hotta, A., Ellis, J., & Keller, G. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8, 228–240.

    CAS  PubMed  Google Scholar 

  198. Chen, Y., Zeng, D., Ding, L., Li, X. L., Liu, X. T., Li, W. J., Wei, T., Yan, S., Xie, J. H., Wei, L., & Zheng, Q. S. (2015). Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. BMC Cell Biology, 16, 22.

    PubMed  PubMed Central  Google Scholar 

  199. Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N. M., Plews, J. R., Abilez, O. J., Cui, B., Gold, J. D., & Wu, J. C. (2014). Chemically defined generation of human cardiomyocytes. Nature Methods, 11, 855–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Hatani, T., Miki, K., & Yoshida, Y. (2018). Induction of Human Induced Pluripotent Stem Cells to Cardiomyocytes Using Embryoid Bodies. Methods in Molecular Biology, 1816, 79–92.

    CAS  PubMed  Google Scholar 

  201. Miki, K., Uenaka, H., Saito, A., Miyagawa, S., Sakaguchi, T., Higuchi, T., Shimizu, T., Okano, T., Yamanaka, S., & Sawa, Y. (2012). Bioengineered myocardium derived from induced pluripotent stem cells improves cardiac function and attenuates cardiac remodeling following chronic myocardial infarction in rats. Stem Cells Translational Medicine, 1, 430–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Lewandowski, J., Kolanowski, T. J., & Kurpisz, M. (2017). Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. Journal of Tissue Engineering and Regenerative Medicine, 11, 1658–1674.

    CAS  PubMed  Google Scholar 

  203. Uosaki, H., Fukushima, H., Takeuchi, A., Matsuoka, S., Nakatsuji, N., Yamanaka, S., & Yamashita, J. K. (2011). Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One, 6, e23657.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Dubois, N. C., Craft, A. M., Sharma, P., Elliott, D. A., Stanley, E. G., Elefanty, A. G., Gramolini, A., & Keller, G. (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnology, 29, 1011–1018.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Miki, K., Endo, K., Takahashi, S., Funakoshi, S., Takei, I., Katayama, S., Toyoda, T., Kotaka, M., Takaki, T., Umeda, M., Okubo, C., Nishikawa, M., Oishi, A., Narita, M., Miyashita, I., Asano, K., Hayashi, K., Osafune, K., Yamanaka, S., Saito, H., & Yoshida, Y. (2015). Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches. Cell Stem Cell, 16, 699–711.

    CAS  PubMed  Google Scholar 

  206. Tohyama, S., Hattori, F., Sano, M., Hishiki, T., Nagahata, Y., Matsuura, T., Hashimoto, H., Suzuki, T., Yamashita, H., Satoh, Y., Egashira, T., Seki, T., Muraoka, N., Yamakawa, H., Ohgino, Y., Tanaka, T., Yoichi, M., Yuasa, S., Murata, M., Suematsu, M., & Fukuda, K. (2013). Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 12, 127–137.

    CAS  PubMed  Google Scholar 

  207. Tohyama, S., Fujita, J., Hishiki, T., Matsuura, T., Hattori, F., Ohno, R., Kanazawa, H., Seki, T., Nakajima, K., Kishino, Y., Okada, M., Hirano, A., Kuroda, T., Yasuda, S., Sato, Y., Yuasa, S., Sano, M., Suematsu, M., & Fukuda, K. (2016). Glutamine Oxidation Is Indispensable for Survival of Human Pluripotent Stem Cells. Cell Metabolism, 23, 663–674.

    CAS  PubMed  Google Scholar 

  208. Zhang, J. Z., Termglinchan, V., Shao, N. Y., Itzhaki, I., Liu, C., Ma, N., Tian, L., Wang, V. Y., Chang, A. C. Y., Guo, H., Kitani, T., Wu, H., Lam, C. K., Kodo, K., Sayed, N., Blau, H. M., & Wu, J. C. (2019). A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles. Cell Stem Cell, 24, 802–811.e805.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Devalla, H. D., Schwach, V., Ford, J. W., Milnes, J. T., El-Haou, S., Jackson, C., Gkatzis, K., Elliott, D. A., & Chuva de Sousa Lopes, S.M., Mummery, C.L., Verkerk, A.O. & Passier, R. (2015). Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Molecular Medicine, 7, 394–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Guo, Y., & Pu, W. T. (2020). Cardiomyocyte Maturation: New Phase in Development. Circulation Research, 126, 1086–1106.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Yang, X., Pabon, L., & Murry, C. E. (2014). Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation Research, 114, 511–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Ahmed, R. E., Anzai, T., Chanthra, N., & Uosaki, H. (2020). A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes. Frontiers in Cell and Development Biology, 8, 178.

    Google Scholar 

  213. Lundy, S. D., Zhu, W. Z., Regnier, M., & Laflamme, M. A. (2013). Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells and Development, 22, 1991–2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhu, R., Blazeski, A., Poon, E., Costa, K. D., Tung, L., & Boheler, K. R. (2014). Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Research & Therapy, 5, 117.

    Google Scholar 

  215. Correia, C., Koshkin, A., Duarte, P., Hu, D., Teixeira, A., Domian, I., Serra, M., & Alves, P. M. (2017). Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Scientific Reports, 7, 8590.

    PubMed  PubMed Central  Google Scholar 

  216. Kikuchi, C., Bienengraeber, M., Canfield, S., Koopmeiner, A., Schäfer, R., Bosnjak, Z. J., & Bai, X. (2015). Comparison of Cardiomyocyte Differentiation Potential Between Type 1 Diabetic Donor- and Nondiabetic Donor-Derived Induced Pluripotent Stem Cells. Cell Transplantation, 24, 2491–2504.

    PubMed  PubMed Central  Google Scholar 

  217. Dias, T. P., Pinto, S. N., Santos, J. I., Fernandes, T. G., Fernandes, F., Diogo, M. M., Prieto, M., & Cabral, J. M. S. (2018). Biophysical study of human induced Pluripotent Stem Cell-Derived cardiomyocyte structural maturation during long-term culture. Biochemical and Biophysical Research Communications, 499, 611–617.

    CAS  PubMed  Google Scholar 

  218. Gentillon, C., Li, D., Duan, M., Yu, W. M., Preininger, M. K., Jha, R., Rampoldi, A., Saraf, A., Gibson, G. C., Qu, C. K., Brown, L. A., & Xu, C. (2019). Targeting HIF-1α in combination with PPARα activation and postnatal factors promotes the metabolic maturation of human induced pluripotent stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 132, 120–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Parikh, S. S., Blackwell, D. J., Gomez-Hurtado, N., Frisk, M., Wang, L., Kim, K., Dahl, C. P., Fiane, A., Tønnessen, T., Kryshtal, D. O., Louch, W. E., & Knollmann, B. C. (2017). Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation Research, 121, 1323–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Dunn, K. K., Reichardt, I. M., Simmons, A. D., Jin, G., Floy, M. E., Hoon, K. M., & Palecek, S. P. (2019). Coculture of Endothelial Cells with Human Pluripotent Stem Cell-Derived Cardiac Progenitors Reveals a Differentiation Stage-Specific Enhancement of Cardiomyocyte Maturation. Biotechnology Journal, 14, e1800725.

    PubMed  PubMed Central  Google Scholar 

  221. Yoshida, S., Miyagawa, S., Fukushima, S., Kawamura, T., Kashiyama, N., Ohashi, F., Toyofuku, T., Toda, K., & Sawa, Y. (2018). Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Soluble Factors from Human Mesenchymal Stem Cells. Molecular Therapy, 26, 2681–2695.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Herron, T. J., Rocha, A. M., Campbell, K. F., Ponce-Balbuena, D., Willis, B. C., Guerrero-Serna, G., Liu, Q., Klos, M., Musa, H., Zarzoso, M., Bizy, A., Furness, J., Anumonwo, J., Mironov, S., & Jalife, J. (2016). Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function. Circulation. Arrhythmia and Electrophysiology, 9, e003638.

    CAS  PubMed  Google Scholar 

  223. Huang, C. Y., Peres Moreno Maia-Joca, R., Ong, C. S., Wilson, I., DiSilvestre, D., Tomaselli, G. F., & Reich, D. H. (2020). Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. Journal of Molecular and Cellular Cardiology, 138, 1–11.

    CAS  PubMed  Google Scholar 

  224. Branco, M. A., Cotovio, J. P., Rodrigues, C. A. V., Vaz, S. H., Fernandes, T. G., Moreira, L. M., Cabral, J. M. S., & Diogo, M. M. (2019). Transcriptomic analysis of 3D Cardiac Differentiation of Human Induced Pluripotent Stem Cells Reveals Faster Cardiomyocyte Maturation Compared to 2D Culture. Scientific Reports, 9, 9229.

    PubMed  PubMed Central  Google Scholar 

  225. Nunes, S. S., Miklas, J. W., Liu, J., Aschar-Sobbi, R., Xiao, Y., Zhang, B., Jiang, J., Massé, S., Gagliardi, M., Hsieh, A., Thavandiran, N., Laflamme, M. A., Nanthakumar, K., Gross, G. J., Backx, P. H., Keller, G., & Radisic, M. (2013). Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nature Methods, 10, 781–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Ebert, A., Joshi, A. U., Andorf, S., Dai, Y., Sampathkumar, S., Chen, H., Li, Y., Garg, P., Toischer, K., Hasenfuss, G., Mochly-Rosen, D., & Wu, J. C. (2019). Proteasome-Dependent Regulation of Distinct Metabolic States During Long-Term Culture of Human iPSC-Derived Cardiomyocytes. Circulation Research, 125, 90–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Kolanowski, T. J., Busek, M., Schubert, M., Dmitrieva, A., Binnewerg, B., Pöche, J., Fisher, K., Schmieder, F., Grünzner, S., Hansen, S., Richter, A., El-Armouche, A., Sonntag, F., & Guan, K. (2020). Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomaterialia, 102, 273–286.

    CAS  PubMed  Google Scholar 

  228. Pekkanen-Mattila, M., Häkli, M., Pölönen, R. P., Mansikkala, T., Junnila, A., Talvitie, E., Koivisto, J. T., Kellomäki, M., & Aalto-Setälä, K. (2019). Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Materials (Basel), 12, 1805.

    CAS  Google Scholar 

  229. Di Baldassarre, A., Cimetta, E., Bollini, S., Gaggi, G., & Ghinassi, B. (2018). Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications. Cells, 7, 48.

    PubMed Central  Google Scholar 

  230. Reinecke, H., Zhang, M., Bartosek, T., & Murry, C. E. (1999). Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation, 100, 193–202.

    CAS  PubMed  Google Scholar 

  231. Karbassi, E., Fenix, A., Marchiano, S., Muraoka, N., Nakamura, K., Yang, X., & Murry, C. E. (2020). Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nature Reviews. Cardiology, 17, 341–359.

    PubMed  PubMed Central  Google Scholar 

  232. Li, J., Zhu, K., Yang, S., Wang, Y., Guo, C., Yin, K., Wang, C., & Lai, H. (2015). Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium. Experimental Biology and Medicine, 240, 585–592.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Ong, S. G., Huber, B. C., Lee, W. H., Kodo, K., Ebert, A. D., Ma, Y., Nguyen, P. K., Diecke, S., Chen, W. Y., & Wu, J. C. (2015). Microfluidic Single-Cell Analysis of Transplanted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes After Acute Myocardial Infarction. Circulation, 132, 762–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Chow, A., Stuckey, D. J., Kidher, E., Rocco, M., Jabbour, R. J., Mansfield, C. A., Darzi, A., Harding, S. E., Stevens, M. M., & Athanasiou, T. (2017). Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports, 9, 1415–1422.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Wang, X., Chun, Y. W., Zhong, L., Chiusa, M., Balikov, D. A., Frist, A. Y., Lim, C. C., Maltais, S., Bellan, L., Hong, C. C., & Sung, H. J. (2015). A temperature-sensitive, self-adhesive hydrogel to deliver iPSC-derived cardiomyocytes for heart repair. International Journal of Cardiology, 190, 177–180.

    PubMed  PubMed Central  Google Scholar 

  236. Tabei, R., Kawaguchi, S., Kanazawa, H., Tohyama, S., Hirano, A., Handa, N., Hishikawa, S., Teratani, T., Kunita, S., Fukuda, J., Mugishima, Y., Suzuki, T., Nakajima, K., Seki, T., Kishino, Y., Okada, M., Yamazaki, M., Okamoto, K., Shimizu, H., Kobayashi, E., Tabata, Y., Fujita, J., & Fukuda, K. (2019). Development of a transplant injection device for optimal distribution and retention of human induced pluripotent stem cell–derived cardiomyocytes. The Journal of Heart and Lung Transplantation, 38, 203–214.

    PubMed  Google Scholar 

  237. Ishigami, M., Masumoto, H., Ikuno, T., Aoki, T., Kawatou, M., Minakata, K., Ikeda, T., Sakata, R., Yamashita, J. K., & Minatoya, K. (2018). Human iPS cell-derived cardiac tissue sheets for functional restoration of infarcted porcine hearts. PLoS One, 13, e0201650.

    PubMed  PubMed Central  Google Scholar 

  238. Kawamura, M., Miyagawa, S., Miki, K., Saito, A., Fukushima, S., Higuchi, T., Kawamura, T., Kuratani, T., Daimon, T., Shimizu, T., Okano, T., & Sawa, Y. (2012). Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation, 126, S29–S37.

    CAS  PubMed  Google Scholar 

  239. Chang, D., Wen, Z., Wang, Y., Cai, W., Wani, M., Paul, C., Okano, T., & Millard, R. W. (2014). Ultrastructural features of ischemic tissue following application of a bio-membrane based progenitor cardiomyocyte patch for myocardial infarction repair. PLoS One, 9, e107296.

    PubMed  PubMed Central  Google Scholar 

  240. Komae, H., Sekine, H., Dobashi, I., Matsuura, K., Ono, M., Okano, T., & Shimizu, T. (2017). Three-dimensional functional human myocardial tissues fabricated from induced pluripotent stem cells. Journal of Tissue Engineering and Regenerative Medicine, 11, 926–935.

    CAS  PubMed  Google Scholar 

  241. Seta, H., Matsuura, K., Sekine, H., Yamazaki, K., & Shimizu, T. (2017). Tubular Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells Generate Pulse Pressure In Vivo. Scientific Reports, 7, 45499.

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Shadrin, I. Y., Allen, B. W., Qian, Y., Jackman, C. P., Carlson, A. L., Juhas, M. E., & Bursac, N. (2017). Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nature Communications, 8, 1825.

    PubMed  PubMed Central  Google Scholar 

  243. Wendel, J. S., Ye, L., Tao, R., Zhang, J., Kamp, T. J., & Tranquillo, R. T. (2015). Functional Effects of a Tissue-Engineered Cardiac Patch From Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in a Rat Infarct Model. Stem Cells Translational Medicine, 4, 1324–1332.

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Weinberger, F., Breckwoldt, K., Pecha, S., Kelly, A., Geertz, B., Starbatty, J., Yorgan, T., Cheng, K. H., Lessmann, K., Stolen, T., Scherrer-Crosbie, M., Smith, G., Reichenspurner, H., Hansen, A., & Eschenhagen, T. (2016). Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Science Translational Medicine, 8, 363ra148.

    PubMed  Google Scholar 

  245. Li, H., Bao, M., & Nie, Y. (2020). Extracellular matrix-based biomaterials for cardiac regeneration and repair. Heart Failure Reviews. https://doi.org/10.1007/s10741-020-09953-9.

  246. Xu, Y., Chen, C., Hellwarth, P. B., & Bao, X. (2019). Biomaterials for stem cell engineering and biomanufacturing. Bioact Mater, 4, 366–379.

    PubMed  PubMed Central  Google Scholar 

  247. Rao, C., Prodromakis, T., Kolker, L., Chaudhry, U. A., Trantidou, T., Sridhar, A., Weekes, C., Camelliti, P., Harding, S. E., Darzi, A., Yacoub, M. H., Athanasiou, T., & Terracciano, C. M. (2013). The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials, 34, 2399–2411.

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Maiullari, F., Costantini, M., Milan, M., Pace, V., Chirivì, M., Maiullari, S., Rainer, A., Baci, D., Marei, H. E., Seliktar, D., Gargioli, C., Bearzi, C., & Rizzi, R. (2018). A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Scientific Reports, 8, 13532.

    PubMed  PubMed Central  Google Scholar 

  249. Schubert, M., Binnewerg, B., Voronkina, A., Muzychka, L., Wysokowski, M., Petrenko, I., Kovalchuk, V., Tsurkan, M., Martinovic, R., Bechmann, N., Ivanenko, V. N., Fursov, A., Smolii, O. B., Fromont, J., Joseph, Y., Bornstein, S. R., Giovine, M., Erpenbeck, D., Guan, K., & Ehrlich, H. (2019). Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida). International Journal of Molecular Sciences, 20, 5105.

    CAS  PubMed Central  Google Scholar 

  250. Song, X., Mei, J., Ye, G., Wang, L., Ananth, A., Yu, L., & Qiu, X. (2019). In situ pPy-modification of chitosan porous membrane from mussel shell as a cardiac patch to repair myocardial infarction. Applied Materials Today, 15, 87–99.

    Google Scholar 

  251. Liu, Y., Xu, Y., Wang, Z., Wen, D., Zhang, W., Schmull, S., Li, H., Chen, Y., & Xue, S. (2016). Electrospun nanofibrous sheets of collagen/elastin/polycaprolactone improve cardiac repair after myocardial infarction. American Journal of Translational Research, 8, 1678–1694.

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Bejleri, D., Streeter, B. W., Nachlas, A. L. Y., Brown, M. E., Gaetani, R., Christman, K. L., & Davis, M. E. (2018). A Bioprinted Cardiac Patch Composed of Cardiac-Specific Extracellular Matrix and Progenitor Cells for Heart Repair. Advanced Healthcare Materials, 7, e1800672.

    PubMed  PubMed Central  Google Scholar 

  253. Shah, M., Kc, P., & Zhang, G. (2019). In Vivo Assessment of Decellularized Porcine Myocardial Slice as an Acellular Cardiac Patch. ACS Applied Materials & Interfaces, 11, 23893–23900.

    CAS  Google Scholar 

  254. Fong, A. H., Romero-López, M., Heylman, C. M., Keating, M., Tran, D., Sobrino, A., Tran, A. Q., Pham, H. H., Fimbres, C., Gershon, P. D., Botvinick, E. L., George, S. C., & Hughes, C. C. (2016). Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Engineering. Part A, 22, 1016–1025.

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Kaiser, N. J., Kant, R. J., Minor, A. J., & Coulombe, K. L. K. (2019). Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes. ACS Biomaterials Science & Engineering, 5, 887–899.

    CAS  Google Scholar 

  256. Kobayashi, K., Ichihara, Y., Tano, N., Fields, L., Murugesu, N., Ito, T., Ikebe, C., Lewis, F., Yashiro, K., Shintani, Y., Uppal, R., & Suzuki, K. (2018). Fibrin Glue-aided, Instant Epicardial Placement Enhances the Efficacy of Mesenchymal Stromal Cell-Based Therapy for Heart Failure. Scientific Reports, 8, 9448.

    PubMed  PubMed Central  Google Scholar 

  257. Gao, L., Kupfer, M. E., Jung, J. P., Yang, L., Zhang, P., Da Sie, Y., Tran, Q., Ajeti, V., Freeman, B. T., Fast, V. G., Campagnola, P. J., Ogle, B. M., & Zhang, J. (2017). Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold. Circulation Research, 120, 1318–1325.

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Shin, S. R., Zihlmann, C., Akbari, M., Assawes, P., Cheung, L., Zhang, K., Manoharan, V., Zhang, Y. S., Yuksekkaya, M., Wan, K. T., Nikkhah, M., Dokmeci, M. R., Tang, X. S., & Khademhosseini, A. (2016). Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. Small, 12, 3677–3689.

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L., & Dvir, T. (2019). 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv Sci (Weinh), 6, 1900344.

    PubMed Central  Google Scholar 

  260. Miao, S., Cui, H., Nowicki, M., Lee, S. J., Almeida, J., Zhou, X., Zhu, W., Yao, X., Masood, F., Plesniak, M. W., Mohiuddin, M., & Zhang, L. G. (2018). Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation. Biofabrication, 10, 035007.

    PubMed  PubMed Central  Google Scholar 

  261. Li, Z., Fan, Z., Xu, Y., Lo, W., Wang, X., Niu, H., Li, X., Xie, X., Khan, M., & Guan, J. (2016). pH-Sensitive and Thermosensitive Hydrogels as Stem-Cell Carriers for Cardiac Therapy. ACS Applied Materials & Interfaces, 8, 10752–10760.

    CAS  Google Scholar 

  262. Wang, W., Tan, B., Chen, J., Bao, R., Zhang, X., Liang, S., Shang, Y., Liang, W., Cui, Y., Fan, G., Jia, H., & Liu, W. (2018). An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials, 160, 69–81.

    CAS  PubMed  Google Scholar 

  263. Wanjare, M., Hou, L., Nakayama, K. H., Kim, J. J., Mezak, N. P., Abilez, O. J., Tzatzalos, E., Wu, J. C., & Huang, N. F. (2017). Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomaterials Science, 5, 1567–1578.

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Pushp, P., Sahoo, B., Ferreira, F. C., Sampaio Cabral, J. M., Fernandes-Platzgummer, A., & Gupta, M. K. (2020). Functional comparison of beating cardiomyocytes differentiated from umbilical cord-derived mesenchymal/stromal stem cells and human foreskin-derived induced pluripotent stem cells. Journal of Biomedical Materials Research. Part A, 108, 496–514.

    CAS  PubMed  Google Scholar 

  265. Pushp, P., Ferreira, F. C., Cabral, J. M. S., & Gupta, M. K. (2017). Improved survival of cardiac cells on surface modified electrospun nanofibers. Polymer Science, Series A, 59, 515–523.

    CAS  Google Scholar 

  266. Engelmayr Jr., G. C., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., & Freed, L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 7, 1003–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Radisic, M., Marsano, A., Maidhof, R., Wang, Y., & Vunjak-Novakovic, G. (2008). Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 3, 719–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Constantinides, C., Basnett, P., Lukasiewicz, B., Carnicer, R., Swider, E., Majid, Q. A., Srinivas, M., Carr, C. A., & Roy, I. (2018). In Vivo Tracking and (1)H/(19)F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate/Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells. ACS Applied Materials & Interfaces, 10, 25056–25068.

    CAS  Google Scholar 

  269. Bertuoli, P. T., Ordono, J., Armelin, E., Perez-Amodio, S., Baldissera, A. F., Ferreira, C. A., Puiggali, J., Engel, E., Del Valle, L. J., & Aleman, C. (2019). Electrospun Conducting and Biocompatible Uniaxial and Core-Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega, 4, 3660–3672.

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Hsiao, C. W., Bai, M. Y., Chang, Y., Chung, M. F., Lee, T. Y., Wu, C. T., Maiti, B., Liao, Z. X., Li, R. K., & Sung, H. W. (2013). Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials, 34, 1063–1072.

    CAS  PubMed  Google Scholar 

  271. Stout, D. A., Yoo, J., Santiago-Miranda, A. N., & Webster, T. J. (2012). Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application. International Journal of Nanomedicine, 7, 5653–5669.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Gelmi, A., Cieslar-Pobuda, A., de Muinck, E., Los, M., Rafat, M., & Jager, E. W. (2016). Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering. Advanced Healthcare Materials, 5, 1471–1480.

    CAS  PubMed  Google Scholar 

  273. Khan, M., Xu, Y., Hua, S., Johnson, J., Belevych, A., Janssen, P. M., Gyorke, S., Guan, J., & Angelos, M. G. (2015). Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch. PLoS One, 10, e0126338.

    PubMed  PubMed Central  Google Scholar 

  274. Muniyandi, P., Palaninathan, V., Veeranarayanan, S., Ukai, T., Maekawa, T., Hanajiri, T., & Mohamed, M. S. (2020). ECM Mimetic Electrospun Porous Poly (L-lactic acid) (PLLA) Scaffolds as Potential Substrates for Cardiac Tissue Engineering. Polymers (Basel), 12.

  275. Mohammadi Amirabad, L., Massumi, M., Shamsara, M., Shabani, I., Amari, A., Mossahebi Mohammadi, M., Hosseinzadeh, S., Vakilian, S., Steinbach, S. K., Khorramizadeh, M. R., Soleimani, M., & Barzin, J. (2017). Enhanced Cardiac Differentiation of Human Cardiovascular Disease Patient-Specific Induced Pluripotent Stem Cells by Applying Unidirectional Electrical Pulses Using Aligned Electroactive Nanofibrous Scaffolds. ACS Applied Materials & Interfaces, 9, 6849–6864.

    CAS  Google Scholar 

  276. Boffito, M., Di Meglio, F., Mozetic, P., Giannitelli, S. M., Carmagnola, I., Castaldo, C., Nurzynska, D., Sacco, A. M., Miraglia, R., Montagnani, S., Vitale, N., Brancaccio, M., Tarone, G., Basoli, F., Rainer, A., Trombetta, M., Ciardelli, G., & Chiono, V. (2018). Surface functionalization of polyurethane scaffolds mimicking the myocardial microenvironment to support cardiac primitive cells. PLoS One, 13, e0199896.

    PubMed  PubMed Central  Google Scholar 

  277. Gnanaprakasam Thankam, F., Muthu, J., Sankar, V., & Kozhiparambil Gopal, R. (2013). Growth and survival of cells in biosynthetic poly vinyl alcohol-alginate IPN hydrogels for cardiac applications. Colloids and Surfaces. B, Biointerfaces, 107, 137–145.

    CAS  PubMed  Google Scholar 

  278. Pallavi, P., & Kumar, G. M. (2017). Synthesis and characterization of films based on cross linked blends of poly (vinylalcohol) and poly (vinylpyrrolidone) with glutaraldehyde for tissue engineering application: Synthese und Charakterisierung von Filmen auf der Basis von vernetzten Blends aus Poly (vinylalkohol) und Poly (vinylpyrrolidon) mit Glutaraldehyd zur Anwendung für Gewebeentwicklung. Materialwissenschaft und Werkstofftechnik, 48, 611–622.

    CAS  Google Scholar 

  279. Cui, Z., Ni, N. C., Wu, J., Du, G. Q., He, S., Yau, T. M., Weisel, R. D., Sung, H. W., & Li, R. K. (2018). Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics, 8, 2752–2764.

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Pomeroy, J. E., Helfer, A., & Bursac, N. (2019). Biomaterializing the promise of cardiac tissue engineering. Biotechnology Advances.

  281. Wang, L., Xu, C., Zhu, Y., Yu, Y., Sun, N., Zhang, X., Feng, K., & Qin, J. (2015). Human induced pluripotent stem cell-derived beating cardiac tissues on paper. Lab on a Chip, 15, 4283–4290.

    CAS  PubMed  Google Scholar 

  282. Chun, Y. W., Balikov, D. A., Feaster, T. K., Williams, C. H., Sheng, C. C., Lee, J. B., Boire, T. C., Neely, M. D., Bellan, L. M., Ess, K. C., Bowman, A. B., Sung, H. J., & Hong, C. C. (2015). Combinatorial polymer matrices enhance in vitro maturation of human induced pluripotent stem cell-derived cardiomyocytes. Biomaterials, 67, 52–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Hou, L., Coller, J., Natu, V., Hastie, T. J., & Huang, N. F. (2016). Combinatorial extracellular matrix microenvironments promote survival and phenotype of human induced pluripotent stem cell-derived endothelial cells in hypoxia. Acta Biomaterialia, 44, 188–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Parveen, S., Singh, S. P., Panicker, M. M., & Gupta, P. K. (2019). Amniotic membrane as novel scaffold for human iPSC-derived cardiomyogenesis. In Vitro Cellular & Developmental Biology. Animal, 55, 272–284.

    CAS  Google Scholar 

  285. Arai, K., Murata, D., Verissimo, A. R., Mukae, Y., Itoh, M., Nakamura, A., Morita, S., & Nakayama, K. (2018). Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PLoS One, 13, e0209162.

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Tiburcy, M., Hudson, J. E., Balfanz, P., Schlick, S., Meyer, T., Chang Liao, M. L., Levent, E., Raad, F., Zeidler, S., Wingender, E., Riegler, J., Wang, M., Gold, J. D., Kehat, I., Wettwer, E., Ravens, U., Dierickx, P., van Laake, L. W., Goumans, M. J., Khadjeh, S., Toischer, K., Hasenfuss, G., Couture, L. A., Unger, A., Linke, W. A., Araki, T., Neel, B., Keller, G., Gepstein, L., Wu, J. C., & Zimmermann, W. H. (2017). Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation, 135, 1832–1847.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Oberwallner, B., Brodarac, A., Anić, P., Šarić, T., Wassilew, K., Neef, K., Choi, Y. H., & Stamm, C. (2015). Human cardiac extracellular matrix supports myocardial lineage commitment of pluripotent stem cells. European Journal of Cardio-Thoracic Surgery, 47, 416–425 discussion 425.

    PubMed  Google Scholar 

  288. Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J. C., Yakir, B., Clark, A. T., Plath, K., Lowry, W. E., & Benvenisty, N. (2010). Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell, 7, 521–531.

    CAS  PubMed  Google Scholar 

  289. Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B. E., Jaenisch, R., Lander, E. S., & Meissner, A. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454, 49–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Kawamura, A., Miyagawa, S., Fukushima, S., Kawamura, T., Kashiyama, N., Ito, E., Watabe, T., Masuda, S., Toda, K., Hatazawa, J., Morii, E., & Sawa, Y. (2016). Teratocarcinomas Arising from Allogeneic Induced Pluripotent Stem Cell-Derived Cardiac Tissue Constructs Provoked Host Immune Rejection in Mice. Scientific Reports, 6, 19464.

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Aron Badin, R., Bugi, A., Williams, S., Vadori, M., Michael, M., Jan, C., Nassi, A., Lecourtois, S., Blancher, A., Cozzi, E., Hantraye, P., & Perrier, A. L. (2019). MHC matching fails to prevent long-term rejection of iPSC-derived neurons in non-human primates. Nature Communications, 10, 4357.

    PubMed  PubMed Central  Google Scholar 

  292. Zhao, T., Zhang, Z. N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474, 212–215.

    CAS  PubMed  Google Scholar 

  293. de Almeida, P. E., Meyer, E. H., Kooreman, N. G., Diecke, S., Dey, D., Sanchez-Freire, V., Hu, S., Ebert, A., Odegaard, J., Mordwinkin, N. M., Brouwer, T. P., Lo, D., Montoro, D. T., Longaker, M. T., Negrin, R. S., & Wu, J. C. (2014). Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nature Communications, 5, 3903.

    PubMed  PubMed Central  Google Scholar 

  294. Taylor, C. J., Peacock, S., Chaudhry, A. N., Bradley, J. A., & Bolton, E. M. (2012). Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell, 11, 147–152.

    CAS  PubMed  Google Scholar 

  295. Liang, G., & Zhang, Y. (2013). Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell, 13, 149–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M. J., Ji, H., Ehrlich, L. I., Yabuuchi, A., Takeuchi, A., Cunniff, K. C., Hongguang, H., McKinney-Freeman, S., Naveiras, O., Yoon, T. J., Irizarry, R. A., Jung, N., Seita, J., Hanna, J., Murakami, P., Jaenisch, R., Weissleder, R., Orkin, S. H., Weissman, I. L., Feinberg, A. P., & Daley, G. Q. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Ohi, Y., Qin, H., Hong, C., Blouin, L., Polo, J. M., Guo, T., Qi, Z., Downey, S. L., Manos, P. D., Rossi, D. J., Yu, J., Hebrok, M., Hochedlinger, K., Costello, J. F., Song, J. S., & Ramalho-Santos, M. (2011). Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nature Cell Biology, 13, 541–549.

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Carcamo-Orive, I., Hoffman, G. E., Cundiff, P., Beckmann, N. D., D'Souza, S. L., Knowles, J. W., Patel, A., Papatsenko, D., Abbasi, F., Reaven, G. M., Whalen, S., Lee, P., Shahbazi, M., Henrion, M. Y. R., Zhu, K., Wang, S., Roussos, P., Schadt, E. E., Pandey, G., Chang, R., Quertermous, T., & Lemischka, I. (2017). Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity. Cell Stem Cell, 20, 518–532.e519.

    CAS  PubMed  Google Scholar 

  299. Pei, F., Jiang, J., Bai, S., Cao, H., Tian, L., Zhao, Y., Yang, C., Dong, H., & Ma, Y. (2017). Chemical-defined and albumin-free generation of human atrial and ventricular myocytes from human pluripotent stem cells. Stem Cell Research, 19, 94–103.

    CAS  PubMed  Google Scholar 

  300. Vitale, A. M., Matigian, N. A., Ravishankar, S., Bellette, B., Wood, S. A., Wolvetang, E. J., & Mackay-Sim, A. (2012). Variability in the generation of induced pluripotent stem cells: importance for disease modeling. Stem Cells Translational Medicine, 1, 641–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Volpato, V., & Webber, C. (2020). Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Disease Models & Mechanisms, 13, dmm042317.

    CAS  Google Scholar 

  302. Rojas, S. V., Martens, A., Zweigerdt, R., Baraki, H., Rathert, C., Schecker, N., Rojas-Hernandez, S., Schwanke, K., Martin, U., Haverich, A., & Kutschka, I. (2015). Transplantation Effectiveness of Induced Pluripotent Stem Cells Is Improved by a Fibrinogen Biomatrix in an Experimental Model of Ischemic Heart Failure. Tissue Engineering. Part A, 21, 1991–2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Rojas, S. V., Meier, M., Zweigerdt, R., Eckardt, D., Rathert, C., Schecker, N., Schmitto, J. D., Rojas-Hernandez, S., Martin, U., Kutschka, I., Haverich, A., & Martens, A. (2017). Multimodal Imaging for In Vivo Evaluation of Induced Pluripotent Stem Cells in a Murine Model of Heart Failure. Artificial Organs, 41, 192–199.

    CAS  PubMed  Google Scholar 

  304. Martens, A., Rojas, S. V., Baraki, H., Rathert, C., Schecker, N., Zweigerdt, R., Schwanke, K., Rojas-Hernandez, S., Martin, U., Saito, S., Schmitto, J. D., Haverich, A., & Kutschka, I. (2014). Substantial early loss of induced pluripotent stem cells following transplantation in myocardial infarction. Artificial Organs, 38, 978–984.

    PubMed  Google Scholar 

  305. Lou, X., Zhao, M., Fan, C., Fast, V. G., Valarmathi, M. T., Zhu, W., & Zhang, J. (2020). N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts. Cardiovascular Research, 116, 671–685.

    CAS  PubMed  Google Scholar 

  306. Mauritz, C., Martens, A., Rojas, S. V., Schnick, T., Rathert, C., Schecker, N., Menke, S., Glage, S., Zweigerdt, R., Haverich, A., Martin, U., & Kutschka, I. (2011). Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. European Heart Journal, 32, 2634–2641.

    CAS  PubMed  Google Scholar 

  307. Korecky, B., Hai, C. M., & Rakusan, K. (1982). Functional capillary density in normal and transplanted rat hearts. Canadian Journal of Physiology and Pharmacology, 60, 23–32.

    CAS  PubMed  Google Scholar 

  308. Tee, R., Lokmic, Z., Morrison, W. A., & Dilley, R. J. (2010). Strategies in cardiac tissue engineering. ANZ Journal of Surgery, 80, 683–693.

    PubMed  Google Scholar 

  309. Valarmathi, M. T., Fuseler, J. W., Davis, J. M., & Price, R. L. (2017). A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct. Frontiers in Cell and Development Biology, 5, 2.

    Google Scholar 

Download references

Acknowledgments

Support (Project ID: 1-5763895621) from the Technical Education Quality Improvement Program (TEQIP-III), implemented through the Ministry of Human Resource Development – National Project Implementation Unit (MHRD-NPIU) is acknowledged. The support of Erasmus Mundus (NAMASTE) for exchange mobility of Pallavi Pushp and Erasmus+ for exchange mobility of Mukesh Gupta to Institute Superior Tecnico (IST), Portugal is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joaquim M. S. Cabral or Mukesh Kumar Gupta.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushp, P., Nogueira, D.E.S., Rodrigues, C.A.V. et al. A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev and Rep 17, 748–776 (2021). https://doi.org/10.1007/s12015-020-10061-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10061-2

Keywords

Navigation