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Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They 
are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apop-
tosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. 
Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of 
stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological 
conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-
mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge 
of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle 
associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs 
could be regulated to influence cell cycle progression in stem cells as a potential clinical application.
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Introduction

Stem Cells and Cell Cycle Regulation

Stem cells are characterized by their unlimited ability to 
self-renew and capability to differentiate into multiple cell 
lineages [1]. In this end, stem cells undergo an asymmetric 
cell division during which only one of the two daughter cells 
differentiates. This is a complex mechanism in which differ-
ent transcription factors, epigenetic modifications and hor-
mones are involved. There are two broad types of stem cells 
including embryonic stem cells (ESCs), which are solely 
present at the earliest stages of development, and somatic (or 
adult) stem cells, which appear during fetal development and 
remain throughout life. ESCs are pluripotent and therefore 
have the capacity to differentiate into all the possible cell 
types of the three germ layers. Somatic stem cells, however, 

are multipotent and can only differentiate into cell types of 
the specific tissue or organ from which they originate. It 
is also suggested that a certain type of stem-like cells is 
responsible for the initiation of cancer, so-called cancer stem 
cells (CSCs). It is thought that CSCs arise from either dif-
ferentiated cancer cells or somatic stem cells [2].

In eukaryotes, the cell division cycle includes four 
discrete phases: Gap 1 (G1), Synthesis (S), Gap 2 (G2) 
and Mitosis (M). During the G1 phase, which is known 
as the first interphase, the cell synthesizes proteins that 
are needed for DNA replication and continuous growth. 
DNA replication takes place during the S phase and is 
followed by the G2 phase, which is known as the second 
interphase, where the DNA integrity is checked. At this 
point, the cell is growing and preparing for cell division. 
During the M phase, the cell divides into two daughter 
cells. After the mitotic phase, the daughter cells re-enter 
the G1 phase or go into the quiescent state. This is defined 
as a state of reversible cell cycle arrest and is known as the 
G0 phase [3]. The quiescent state is important for cellular 
homeostasis, meaning that it has the ability to either stop 
proliferating or to re-enter the cell cycle and self-renew 
when needed [4, 5].

The duration of the cell cycle and the transition from 
one phase to the next is highly variable between different 
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cell types. While the cell cycle duration in murine somatic 
cells is relatively long (> 16 h), the duration in murine ESCs 
(mESCs) is much faster (8–10 h). A reduced G1 phase and 
prolonged S phase in ESCs are the causes that make this 
difference. In addition, human ESCs (hESCs) spend only 
3 h in the G1 phase, compared to human somatic cells that 
spend 10 h in this phase [6]. The difference in cell cycle 
duration between ESCs and somatic stem cells is remark-
able, an explanation could be that somatic stem cells are pre-
dominantly in a quiescent state compared to the fast dividing 
ESCs. Previous studies have indicated that the G1 phase is 
the most variable phase and that its duration contributes to 
cell fate determination [7–9].

When a cell enters the G1 phase, a protein called cyclin 
D increases in response to mitogenic stimuli. Cyclin D pro-
teins bind to enzymes called CDK4/6 and together they form 
heterodimers. These complexes subsequently phosphorylate 
proteins of the retinoblastoma (RB) family. The E2F family 
is a group of genes encoding for transcription factors E2F-1, 
E2F-2 and E2F-3, which are downstream targets of the RB 
family. The central member of the RB family, the RB tumor 
suppressor protein (pRb), is a negative regulator of the E2F 
genes. When pRb is hypophosphorylated, it inactivates E2F 
transcription factors, which results in the inhibition of tran-
sition from G1 to S phase. Hyperphosphorylation of pRb 
leads to dissociation of E2F from the E2F/pRb complex and 
contributes to the G1/S transition. Recent findings show the 
importance of the E2F/pRb activity in relation to ESCs self-
renewal and differentiation [10–12].

Cyclin dependent kinase proteins (CDK) tightly regu-
late the progression of the cell cycle. A CDK binds to 
its regulatory cyclin protein partner to control the dif-
ferent cell cycle phases. Progression through S phase 
is regulated by the cyclin E-CDK2 complex, while the 
G2/M transition is under control of cyclin B-CDK1 com-
plex. Cyclin dependent kinase inhibitor (CDKI) proteins 
including p21/Cip1, p27/Kip1 and p57/Kip2, block the 
activity of cyclin E-CDK2 and cyclin A-CDK1 [13]. 
Furthermore, proteins of the INK4 family, including 
p16/INK4A, p15/INK4B, p18/INK4C and p19/INK4D 
inhibit the cyclin D-CDK4/6 activity. These mechanisms 
can lead to cell cycle arrest and are of major importance 
to regulate tissue homeostasis and prevent tumorigen-
esis. The p53-p21 signaling pathway is also involved in 
the transition of G1 to S phase and G2 to M phase. It is 
well established that loss of p53 is the main reason for 
genomic instability as the p53-null cells have disrupted 
the G1/S checkpoint [14–17]. In addition, the expression 
levels of p53 and p21 in ESCs are important for the main-
tenance of pluripotency [18].

Biogenesis of MicroRNAs

Epigenetic features, such as the activity of microRNAs 
(miRNAs), modulate the expression of cell cycle-asso-
ciated genes [19–23]. MiRNAs are a conserved class of 
endogenously expressed small non-coding RNAs (span-
ning 20–24 nucleotides), that have been widely implicated 
in fine-tuning various biological processes. Since the dis-
covery of the first miRNA in 1993 [24], the knowledge on 
miRNAs has been rapidly increased. MiRNAs are ubiqui-
tously expressed in plants, animals and viruses, indicat-
ing the evolutionary importance of these small molecules. 
According to the miRBase database (v.21), 1881 miRNAs 
have been identified with confidence in human [25]. These 
miRNAs are suggested to regulate the expression of more 
than 60% of all protein-coding genes. Previous research 
has investigated the functional role of miRNAs in diverse 
mechanisms including cell proliferation, apoptosis, and 
differentiation. Additionally, alteration in the expression 
of miRNAs contribute to human diseases such as cancer 
and cardiovascular disease [26–33].

MiRNA maturation is a complex biological process that 
is subjected to tight molecular regulation. In the nucleus, 
miRNAs are initially transcribed as 800-3000nt long pri-
mary transcripts (pri-miRNA). These pri-miRNAs are 
subsequently cleaved by Drosha, RNaseII, endonuclease 
III, and Pasha/DGCR8 proteins to generate ~ 70nt hairpin 
precursor miRNAs (pre-miRNAs). Following this initial 
process, pre-miRNAs are transported to the cytoplasm by 
Exportin 5. Subsequently, the hairpin precursor is cleaved 
in a ~ 22nt double-stranded miRNA by the ribonuclease III 
enzyme called Dicer together with TRBP/ PACT proteins. 
The guide strand (5′ end) then associates with members 
of the Argonaute family and is been incorporated into 
the RNA-induced silencing complex (RISC). The miR-
RISC complex facilitates base-pairing interaction between 
miRNA and the 3′ untranslated region (3′UTR) of target 
mRNA. The core of a mature miRNA, called the ‘seed’ 
region, includes nucleotides 2–7/8 from the 5′ end of the 
miRNA and plays a critical role in target recognition and 
interaction. Binding of the miRNA seed region to its com-
plementary site in the target mRNA leads to translational 
repression or degradation of the target transcript.

The first studies investigating miRNA function in cell 
cycle regulation were published two decades ago, where 
two independent studies revealed that miRNAs lin-4 and 
let-7 induce cell cycle arrest in the nematode, C. elegans 
[24, 34]. Since then, several studies have demonstrated the 
importance of miRNAs in cell cycle regulation in different 
cell types including stem cells [21, 35, 36]. The role of 
miRNAs in stem cell proliferation was initially observed 
in knockout mice lacking Dicer and Dgcr8, which are key 
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components of the miRNA biogenesis [37]. Dicer knock-
out mice were embryonic lethal and ESCs from Dicer-
deficient mice exhibited defects in cell cycle progression 
[38]. Similarly, ESCs derived from Dgcr8-deficient mice 
exhibited delay in the cell cycle progression due to down-
regulation of genes involved in regulation of self-renewal 
[37]. These initial studies indicated that miRNAs are cru-
cial for cell cycle regulation of stem cells. Then, other 
studies demonstrated that miRNAs are involved in the cell 
cycle progression of stem cells by direct or indirect target-
ing of different cell cycle-associated genes (e.g. Cyclins, 
CDKs and CDKIs). Understanding the tightly regulated 
networks of cell cycle in which miRNAs are interacting, 
will enhance our knowledge in the development of both 
healthy and disease states of the human body. In the fol-
lowing, we will discuss the recent advances on the func-
tions of miRNAs in cell cycle regulation of stem cells. In 
addition, a promising therapeutic potential of miRNAs in 
controlling somatic and cancer stem cells self-renewal and 
proliferation will be discussed.

MiRNAs and Cell Cycle Regulation of Stem 
Cells

Embryonic Stem Cells (ESCs)

The duration of the cell cycle is variable between different 
types of stem cells. ESCs have a shorter cell cycle compared 
to somatic stem cells, which is due to a significantly abbrevi-
ated G1 phase and a prolonged S phase [39–41]. Previous 
studies have explored the phosphorylation status of pRb as 
a regulator for the length of G1 phase. Since mESCs lack 
cyclin D-CDK4 as well as cyclin E-CDK2, pRb will not 
be phosphorylated and thereby not stimulating the cyclin 
E-CDK2 activity [42]. Therefore, the time spent in G1 phase 
compared to S phase may be a key feature of the pluripo-
tency fate [12]. Moreover, DNA damage response pathways, 
which are activated in the G1 phase, are reduced or absent 
in both hESCs and mESCs [43]. Several negative regulators 
of cell cycle progression, including p53, p16/INK4A, p19/
ARF and p21/Cip1, are expressed at low levels in ESCs, 
while DNA repair and replication regulators are expressed 
at high levels [6, 43].

Previous studies have shown the distinct expression pat-
tern of miRNAs in ESCs. These studies demonstrate that 
ESCs express a set of miRNAs, of which a few are abun-
dantly expressed at 60,000 or more copies per cell. The most 
abundantly expressed miRNAs in ESCs are miR-290-295, 
miR-302, miR-17-92, miR-106b-25 and miR-106a-363 
clusters, which provide approximately 70% of the total 
miRNA molecules in ESCs [20, 44–46]. These miRNAs are 
expressed in homologous clusters, so-called polycistronic 

loci, which contribute to the same cis-regulatory elements 
[47]. The miR-290-295 cluster and miR-302 share a highly 
conserved seed-sequence ‘AAG UGC U’, while miR-17-92, 
miR-106b-25 and miR-106a-363 clusters share the seed-
sequence ‘AAA GUG C’ [20]. These miRNAs are called the 
regulators of the embryonic stem cell cycle (ESCC), because 
of the ability in rescuing cell cycle progression in Dgcr8 
knockout ESCs [20, 44, 48–50]. A schematic overview of 
the functionality of ESCC miRNAs is illustrated in Fig. 1. In 
general, ESCC miRNAs facilitate the G1/S transition mainly 
through suppressing the expression of RB proteins [44]. In 
addition, these miRNAs have been demonstrated to directly 
regulate the expression of p21/Cip1 and cyclin E-CDK2 
regulatory molecules in mESCs, including RB, RBL1, RBL2, 
and LATS2 [21, 48–50].

The miR-290 cluster, consisting of miR-291a-3p, miR-
291b-3p, miR-294, and miR-295, is upregulated in undiffer-
entiated ESCs, but is rapidly downregulated during differen-
tiation [21, 50, 52]. It has been shown that members of this 
miRNA cluster promote the G1/S transition. Cells can rela-
tively quick enter the S phase, because members of the miR-
290-295 cluster directly target cyclin D-CDK4/6 and indi-
rectly downregulate the cyclin E-CDK2 complex (Fig. 1). 
MiR-290-295 downregulates diverse inhibitors of the cell 
cycle, including RB, RBL1, RBL2, p21 and LATS2,which 
change the distribution of ESC in each cell cycle phase [47]. 
Furthermore, the miR-290-295 cluster enhances the somatic 
reprogramming by increasing the expression of pluripotent 
transcription factors OCT4, SOX2, KLF4, LIN28, MYC and 
NANOG [47, 53]. Also, miR-290-295 is shown to be directly 
involved to suppress apoptosis by targeting Caspase 2 [54]. 
This leads to a reduced percentage of ESCs in G1 phase and 
an increased fraction of cells in S or G2/M phases. Due to 
the enhanced proliferation, the metabolism of ESCs rather 
rely on glycolysis than aerobic respiration. This metabo-
lism is similar to the Warburg effect that is known in cancer 
cells [44, 47, 48]. Therefore, glycolysis-associated genes, 
such as MYC, LIN28 and HIF1, have been promoted by the 
miR-290-295 cluster [44, 47]. Moreover, members of this 
miRNA cluster could affect epigenetic pathways includ-
ing DNA methylation, histone acetylation and activation of 
Polycomb proteins, which inactivates genes involved in dif-
ferentiation [55, 56].

The miR-17-92 cluster consists of miR-17, miR-18a, 
miR-19a, miR-19b, miR-20a and miR-92a. This miRNA 
cluster is crucial in early mammalian development by sup-
porting cellular reprogramming and tumorigenesis [44]. In 
particular, miR-17-92 is a regulator of the MYC oncogene 
[51, 57]. MYC inhibits the expression of chromatin regula-
tory genes including SIN3B, HBP1, and BTG1, via miR-
17-92. Through epigenetic mechanisms including reduced 
recruitment of histone deacetylase (HADC) via HBP1, miR-
17-92 controls the chromatin stage of cell cycle related genes 
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(Fig. 1) [51]. MYC through miR-17-92, contributes to the 
euchromatin formation of specific gene expression involved 
in DNA replication and repair mechanisms that goes along 
with a shift in the percentage of cells in a proliferating state 
[51]. Likewise, miR-106b, which shares a high sequence 
homology with miR-17 and miR-20a, is shown to promote 
G1/S transition by directly targeting p21, which results in 
a higher portion of cells in S phase compared to G1 phase 
[58].

The miR-302-367 cluster, consisting of miR-302a, b, c, 
d, and miR-367, has also been shown to play a crucial role 
in the proliferation of ESCs. Members of the miR-302-367 
cluster are highly expressed in early stages of embryonic 
development [59]. This miRNA cluster targets genes that 
are involved in epigenetic mechanisms. For example, the 
miRNA cluster downregulates lysine demethylases and 
CpG binding proteins MECP1-p66 and MECP2 [59]. This 
facilitates the transcription of pluripotent genes and thereby 

contributes to the sustenance of pluripotency in mammalian 
ESCs [59]. Furthermore, it has been demonstrated that the 
promoter of miR-302-367 is activated when bound by OCT4, 
SOX2, which are core transcription factors directly involved 
in the maintenance of ESCs [59, 60]. It has been also shown 
that this cluster promotes pluripotency in ESCs by targeting 
the SMAD signaling pathway and the PI3K/PKB signaling 
molecules. MiR-302 inhibits the expression of transforming 
growth factor beta-receptor 2 (TGFBR2) and RAS homolog 
gene family member C (RHOC), which leads to a reduction 
of epithelial-mesenchymal transition [59, 61, 62]. In addi-
tion, the miR-302 cluster has suggested to negatively regu-
lates p21 and LATS2 activity in both hESCs and mESCs [63, 
64]. These molecular mechanisms enlighten the important 
role of the miR-302-367 cluster with respect to pluripotency 
and cell cycle modulations.

Another well-known miRNA family involved in the regu-
lation of cell cycle progression is the let-7 family, which 

Fig. 1  An overview of cell cycle regulation in ESCs by miRNAs. 
The figure illustrates the cell cycle progression in embryonic stem 
cells (ESCs). As shown, multiple key regulatory elements includ-
ing cyclins, CDKs and CDK inhibitors are forming a network that 
progress cells through the four different phases of cell cycle. Sev-
eral miRNA clusters and single miRNAs are involved in the regula-
tion of cell cycle in ESCs by directly or indirectly targeting the cell 
cycle-associated components (e.g. RB, p53, p21, LATS2, PTEN, cyc-
lin D, cyclin E). Among them, miR-17-92, miR-290-295, miR-302, 
miR-106b-25 and miR-106a-363 are abundantly expressed in ESCs. 
Inhibition of E2F by miR-92 and miR-195 decreases transcription of 

multiple transcription factors and proteins (e.g. E2F-1, E2F-2, E2F-
3, CDK2, CDC25A), resulting in a reduction of G1 phase duration. 
Furthermore, the expression of main G1/S and G2/M checkpoint 
regulator p53 is decreased via indirect targeting by miR-290-295 
and miR-302 in ESCs. This facilitates the G1/S transition. Moreover, 
p21 expression is reduced via miR-290-295, miR-372a, miR-302 and 
miR-106b-25 in a direct manner. This inhibits cyclin E-CDK2 activ-
ity, and therefore facilitates the G1/S transition. Additionally, miR-
106b-25 and miR-17-92 can target pro-apoptotic gene BIM, resulting 
in a reduction of cells entering apoptosis [51]
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consist of let-7a-1, a-2, a-3, b, c, d, e, f-1, f-2, g, i and miR-
98. Members of this miRNA family affect the G1/S tran-
sition of ESCs differently than the above-described ESCC 
miRNAs. While most of the ESCC miRNAs are related 
to promote self-renewal, the let-7 miRNAs suppress self-
renewal [35, 52]. The mechanism underlying this antagonis-
tic effect remains unclear. However, it has been suggested 
that the ESCC miRNAs positively regulate the expression 
of LIN28, which through a negative feedback loop suppress 
the let-7 maturation [65, 66].

Two other miRNAs known to affect the regulation of 
ESCs are miR-195 and miR-372a. Both miRNAs are highly 
enriched in hESCs compared to differentiated cells and 
their function also relies on maintaining the proliferative 
capacity of hESCs [67]. For example, ectopic expression 
of miR-195 results in reduced expression of the G2/M cell 
cycle checkpoint kinase WEE1 and an enhancement of BrdU 
incorporation [67, 68]. Ectopic expression of miR-372 has 
also shown to reduce the p21 expression levels in Dicer-
knockdown hESCs [67].

Human ESCs have the therapeutic potential to treat a 
myriad of disorders by cell replacement. In theory, ESCs 
could be used in regenerative medicine, drugs discovery 
and disease modeling. However, the usage of ESCs as clini-
cal application is limited because of high tumorigenicity 
and ethical restrictions. A miRNA-based therapy that use 
induced pluripotent stem cells (iPSC) might overcome these 
limitations. In this regard, ectopic expression of ESCC miR-
NAs may contribute to expansion of stem cells for regenera-
tive medicine purposes [12, 20, 44].

Somatic Stem Cells

An extensive body of research has revealed the role of miR-
NAs in the cell cycle regulation of somatic stem cells [45, 
69, 70]. In particular, studies with tissue specific Dicer-
knockout or Dgcr8-deficient mice have demonstrated that 
miRNAs are essential regulators of proliferation, survival 
and differentiation in somatic stem cells [71]. In the follow-
ing paragraphs, the role of miRNAs in the cell cycle regula-
tion of hematopoietic and mesenchymal stem cells will be 
discussed. The associations of miRNAs with other somatic 
stem cells are summarized in Table 1.

Hematopoietic stem cell (HSC) development has been 
characterized by several mechanisms that lead to generat-
ing multiple cell lineages. Adult HSCs are predominantly 
quiescent (in the G0 phase) compared to fetal HSCs [4]. 
Well established is the self-renewal function of the LIN28 
gene, which is highly expressed in fetal HSCs compared 
to adult HSCs (Fig. 2b) [95, 96]. This is a form-feedback 
loop which includes the downregulation of let-7 through 
LIN28, and subsequently downregulation of HMGA2. 
Given that HMGA2 enhances the self-renewal capacity, the 

LIN28-HMGA2 pathway is crucial in stem cell development 
[97]. Most of the previous research has focused on determin-
ing the expression of miRNAs in hematopoietic stem and 
progenitor cells during lineage differentiation [98]. Several 
studies have also reported differential miRNA expressions 
between HSCs, hematopoietic progenitor cells and both 
myeloid and lymphoid linages (e.g. T cell, B cell, Granulo-
cyte, Monocyte, Erythrocyte), demonstrating that miRNAs 
are involved in the differentiation of specific hematopoietic 
lineages [95, 99–101]. Although the conventional model 
suggests that hematopoietic lineages are derived from a 
common HSC, more recent research revealed that a rather 
large number of progenitor cells are the main drivers behind 
steady-state hematopoiesis and clonal diversity [102]. In this 
regards, short-term HSCs could support the heterogeneous 
range of progeny [102]. Taken the functional role of miR-
NAs into consideration, both progenitor cells and diverse 
miRNAs may be equally important for clonal expansion and 
hematopoiesis.

For example, miRNAs are differentially expressed 
between long term hematopoietic stem cells (LT-HSCs) and 
short term HSCs, which are defined by a combination of cell 
surface markers such as c-Kit+/Sca-1+/Lin− (KSL). Based 
on the expression levels of cell surface markers including 
CD34, Flk-2, CD150, CD48, CD224, c-Kit, Sca-1, and Lin, 
the heterogeneous population of HSCs differ in proliferation 

Table 1  miRNAs associated with cell cycle regulation in somatic 
stem cells

Stem cell miRNA ID Potential target gene(s) Reference

Epidermal miR-205 PI3K-AKT [72]
miR-203 SNAI2, p63, SNAP2 [73]
miR-34 p63 [74]
miR-184 NOTCH, p63, FIH1 [75]
miR-214 WNT/β-catenin [76]

Neural miR-9 TLX, BAF53A [77]
miR-137 TLX [78]
miR-184 MBD1 [79]
miR-195 MBD1 [80]
miR-124 SOX-2, PTBP1, SCP1 [81–83]
miR-302 p53, OCT4, SOX2, NANOG [84]
miR-148b WNT/β-catenin [85]
miR-138 TRIP6 [86]

Muscle miR-27 PAX3 [87]
miR-322 CDC25A [88]
miR-206 HDAC4, PAX7 [89, 90]
miR-1 HDAC4, PAX7 [90]
miR-133 SRF, MALAT1 [91]
miR-221 PI3K-AKT [92]
miR-143 IGFBP5, ERK1/2 [93]
miR-486 PAX7 [94]
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and differentiation capacity [104]. The transition of HSCs 
into progenitor cells is related with a switch from quiescent 
into rapid proliferating cells, and subsequently an alteration 
in expression of surface makers (Fig. 2c). Therefore, the 
expression of cell cycle related miRNAs in exclusively pro-
genitor cells is likely to be involved in the alteration of cell 
cycle duration [70]. One of the enhanced expressed miR-
NAs in LT-HSCs is the miR-125 cluster (miR-125a, miR-
125b1, miR-125b2). The expression of miR-125 has been 
shown to be associated with self-renewal and expansion of 
the stem cell population in vivo [105–107]. Furthermore, 
miR-29a has been revealed to regulate the G1/S transition 
in hematopoietic progenitor stem cells. MiR-29a promotes 
the self-renewal capacity by targeting a subset of genes that 

are involved in cell cycle progression, including CDC42EP2 
and HBP1 [108]. Recently, Lechman et al. demonstrated that 
miR-126 can control the cell cycle progression by targeting 
the PI3K/AKT/MTOR pathway [109]. They showed that 
overexpression of miR-126 results in an increased percent-
age of quiescent cells, whereas a knockdown of miR-126 
lead to enhanced proliferation and differentiation of HSCs 
[109–111].

Additionally, previous studies have suggested miR-125 
and miR-126 as potential target treatment for acute myeloid 
leukemia (AML) [112, 113]. An indication for the poten-
tial therapeutic function is based on the alternated expres-
sion of these miRNAs between  CD34+  CD38− HSC and 
 CD34+  CD38− leukemic stem cells. A reduction of miR-126 

a

b

c

Fig. 2  miRNA-mediated regulation of cell cycle in HSCs. (a) The 
schematic describes miRNAs (e.g. miR-125, miR-126, miR-33, miR-
146 and let-7) with critical roles in the cell cycle regulation in adult 
HSCs by directly targeting cell cycle components. Furthermore, miR-
29 and miR-124, which target components involved in DNA meth-
ylation, indirectly influence the expression of cell cycle-associated 
genes. (b) The LIN28-HMGA2 feed-forward loop is among the most 
important mechanisms that drive fetal HSC self-renewal. LIN28 is 
highly expressed in fetal HSCs compared to adult HSCs. As LIN28 
directly inhibits let-7 expression, this indicates the important role of 
miRNA let-7 upon stem cell differentiation. Decreased level of let-7 
has resulted in higher expression of HMGA2, which induces self-
renewal. Additionally, LIN28 can acts independently of the let-7 fam-

ily and contributes to self-renewal [95, 96]. (c) Adult HSCs are a het-
erogeneous population that differ in self-renewal and differentiation 
capacity based on their surface markers. Long-term HSCs (LT-HSCs) 
are predominantly quiescent (c-kit+ Sca-1+  Lin− Flk-2−  CD34−) 
[103]. However, a large fraction of short term-HSCs (c-kit+ Sca-1+ 
 Lin− Flk-2−  CD34+) gives rise to the differentiated progeny, and also 
shows greater cell proliferation capacity than LT-HSCs [102, 103]. 
Progenitor cells are associated with proliferation and differentiation 
into hematopoietic lineages. KSL (c-kit+ Sca-1+  Lin−) with high 
 CD150+ expression may give predominant rise to myeloid linages, 
whereas KSL-CD150− are more likely to a lymphoid outcome [104]. 
Several studies also  demonstrate that specific miRNAs are differen-
tially expressed among HSCs and progenitor cells
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stimulates the PI3K/AKT/MTOR pathway in HSCs and will 
result in an increased number of HSCs, while this effect 
decreases the self-renewal capacity in  CD34+  CD38− leuke-
mic stem cells [112]. Although this miRNA-based treatment 
holds promising capacity to in vivo experiments, issues with 
respect to toxicity and delivery need to be solved before 
application in AML patients [112].

Mesenchymal stem cells (MSCs) are multipotent cells 
that originate from bone marrow stroma, but are present 
in various tissues such as adipose tissue, bone, skeletal 
muscle, cartilage and tendon [114]. Evidence suggests that 
miRNAs are closely involved in the regulation of MSC dif-
ferentiation into specific cell lineages [101, 115–117]. The 
role of miRNAs in proliferation and cell cycle regulation 
of human MSCs has been investigated through Drosha and 
Dicer knockdown studies [118]. These studies have shown a 
significant increase in the number of cells in G1 phase and a 
reduced proliferation rate of MSCs [118]. In the same study, 
Drosha knockdown in MSCs resulted in a decrease of pRb 
and an increase in p16 and p15 levels [118]. Other studies 
have been implicated miR-16 and miR-143 in the regulation 
of MSC proliferation and differentiation. In this regard, miR-
16 has been shown to inhibit MSC proliferation and induce 
cell cycle arrest by targeting cyclin E [119]. Likewise, 
miR-143 targets ERK5 (member of MAPK family), which 
itself decreases the expression of cyclin D and CDK6. This 
reduces cell entry into S phase, suggesting miR-143 to be a 
negative regulator of the cell cycle progression [120, 121]. 
Moreover, a number of miRNAs have determined to control 
the differentiation into specific linages, such as osteoblasts 
[122]. For example, Peng et al. demonstrated that miRNAs 
promote the osteogenic differentiation of MSCs via BMP, 
WNT/β-catenin and NOTCH signaling pathways. Among 
them, miR-27 promotes differentiation by targeting APC, 
which modulates the G2/M transition [122, 123]. On the 
other hand, miR-27 expression is shown to be downregu-
lated upon adipocyte differentiation [124, 125]. Several cell 
cycle associated genes, including ERK1/2, ERK5, TGF-β1 
and KLF5 are related to adipocyte differentiation, which is 
explained by miRNA regulation [126]. Notably, miR-143, 
miR-448 and miR-375 have been reported as negative regu-
lators and miR-21 as positive regulator of adipocyte differ-
entiation [126].

Cancer Stem Cells (CSCs)

Altered expression and molecular abnormalities of the cell-
cycle-regulatory proteins, such as pRB, p53, CDKs, CDKIs 
and cyclins, play a central role in cancer initiation and pro-
gression [17, 127–129]. Notably, it has been suggested that 
a class of cancer cells with characteristics of stem cells, so-
called cancer stem cells (CSCs), are responsible for tumor 
initiation, invasion, metastasis and chemoresistance [130, 

131]. As discussed previously in this review, miRNAs have 
the ability to suppress apoptosis and promote proliferation 
by interplaying with the cell cycle components. Therefore, 
miRNAs and CSCs share common properties with respect 
to tumorigenesis. The transcriptional levels of several miR-
NAs have shown to vary between normal stem cells and 
CSCs [132]. Furthermore, associations between either cell 
cycle components including cyclins and transcription factors 
or miRNA expression and specific CSC markers have been 
investigated [133, 134]. Hence, miRNAs as regulators of 
CSCs have gain attention in recent years in multiple fields 
of research [131, 133, 135, 136]. The associations between 
miRNAs expression and various cancers are summarized in 
Table 2. In the following paragraph, some of the main CSC-
related miRNAs will be discussed.

The miR-17-92 cluster affects the cell cycle by target-
ing E2F-1 and cyclin D as well as it cooperates with the 
oncogene MYC to prevent apoptosis in CSCs [169–172]. Li 
et al. investigated the miR-17-92 target genes involved in 
the MYC suppression. They demonstrated that the function-
alities of the miR-17-92 target genes rely on multiple DNA 
replication, cell cycle regulation, chromosome organization, 
RNA transcription or protein metabolism [51]. Similarly, 
this miRNA cluster is shown to coordinate the timing of cell 
cycle progression by modulating expression of BMI1, PTEN, 
RBL2 and p21 [154, 173–176].

Other important regulators of CSCs are the members 
of the let-7 family. Evidence suggests that let-7 is among 
the most important miRNAs involved in tumor progres-
sion and chemoresistance [131, 177]. The expression of 
the let-7 family is reduced in various types of tumor cells, 
including breast, head and neck squamous (HNSCC), lung, 
pancreatic, neuroblastoma cells, among others [131, 133, 
178, 179]. Accordingly, decreased expression of let-7 
has resulted in overexpression of oncogenes MYC, RAS, 
HMGA2 and BLIMP1 [115, 177, 180]. Furthermore, mem-
bers of the let-7 family have been recognized as negative 
regulators of PTEN that inactivate the PI3K/AKT/MTOR 
pathway. The let-7 family has also shown to be involved 
in suppressing the epithelial-to-mesenchymal transition 
(EMT), which is related to metastasis and chemoresistance 
and therefore a characteristic of CSCs [131, 177]. Multi-
ple genes involved in cell cycle progression are suggested 
to be targets for the let-7 family. The latter include cyc-
lin D, cyclin A, CDK1, CDK2, CDK4, CDK6, CDK8 and 
CDC25A [115, 177, 180]. Also, it has been shown that the 
RNA binding protein LIN28 inhibits let-7 by stimulating 
cellular proliferation via cyclin D, CDK2 and CDC25A and 
thereby contribute to the maintenance of stemness charac-
teristics of CSCs [46, 181]. LIN28 has been recognized as 
an oncogene, as it promotes tumor progression by repress-
ing let-7 [177]. Previous studies based on let-7 expression 
and tumor progression display that ectopic expression of 
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Table 2  miRNAs associated with the cell cycle progression in cancer stem cells

Cancer type miRNA ID Potential target gene(s) Exp. of miRNA Reported biological effect Reference

Breast let-7 LIN28 Downregulated Upregulation of LIN28 results in sup-
porting RAS, MYC and HMGA2

[137]

miR-21 PTEN Upregulated Promote PI3K/AKT signaling activa-
tion through directly inhibiting 
PTEN expression

[138]

miR-221/222 PTEN Upregulated Promote AKT/NF-κβ/COX-2 pathway 
by targeting PTEN

[139]

miR-93 JAK1, SOX4, STAT3, AKT, EZH1, 
HMGA2

Upregulated Regulate CSC proliferation [140]

miR-34 CDK4, CDK6, NOTCH1 Downregulated Regulate p53 [141]
miR-16 BMI1 Upregulated Inhibit DNA repair by repressing 

BMI1
[142]

miR-200 ZEB1, ZEB2, WNT-signaling Downregulated Reduction of EMT [143]
miR-494-3p PAK1 Downregulated Inhibit proliferation via MAPK by 

targeting PAK1
[144]

Liver (HCC) miR-34 Cyclin D1, BCL2 Downregulated Regulate p53 [145]
miR-365 BCL2 Upregulated Apoptosis [146]
miR-31 HDCA2, CDK2 Downregulated Induction of p16 and p21. Repression 

of cyclin D, CDK4, CDK2
[147]

miR-26a EZH2 Upregulated Reduction of EMT [148]
miR-150 GAB1 Downregulated Suppress proliferation and invasion 

via MAPK pathway by targeting 
GAB1 and ERK1/2

[149]

Head and Neck let-7 ABCB1 Downregulated Reduction of cell proliferation [150]
Pancreatic let-7 LIN28 Downregulated Inhibit EMT, induces cell cycle arrest 

when LIN28 is reduced
[151]

miR-21 PTEN, PDCD4 Upregulated Promote metastasis [152]
miR-203 ZEB1, ZEB2 Downregulated Reduction of EMT [153]
miR-34 BCL2, NOTCH1/2 Downregulated Regulate p53 [136]
miR-17-92 p21, p57, TBX3 Downregulated Maintain stemness characteristics in 

pancreatic CSC. Downregulation 
of MYC

[154]

Prostate let-7 LIN28 Upregulated Upregulating cell cycle via cyclin D1 [155]
miR-100 CDK6, RB1, mTOR Downregulated Regulation of cell growth [156]
miR-34 Cyclin D1, CDK4, CDK6, c-MET, 

CD44
Downregulated Mediating p53. Tumor metastasis [157]

miR-221/222 p27/Kip1 Upregulated Regulate activation of cyclin E and 
cyclin D

[158]

Glioblastoma miR-124 CDK6 Upregulated Inhibit cell proliferation [159]
miR-137 CDK6 Upregulated Inhibit cell proliferation [160]
miR-128 BMI1 Upregulated Decreasing cell proliferation in IDH1 

mutant glioma
[161]

miR-23b HMGA2 Upregulated Cell cycle arrest and proliferation 
inhibition

[162]

miR-125b CDK6, E2F3, CDC25A Downregulated Induce G1/S cell cycle arrest [163]
miR-34 BCL2, NOTCH1 Downregulated Targeting p53. Anti-apoptotic, 

increase cell proliferation
[164]

Lung miR-605 LATS2 Upregulated Promote cell proliferation, migration 
and invasion

[165]

let-7 KRAS, MYC, CDK6 HMGA2, 
TGFBR2

Downregulated Suppression of multiple oncogenic 
members

[166]

miR-21 MDM4 Upregulated Repress MDM4 to activate p53 [167]
miR-15a/ miR-16 RB Downregulated Cell cycle arrest [168]
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let-7 was sufficient enough to inhibit proliferation and 
clonal expansion in vitro and tumor recurrence in prostate 
cancer cells in vivo [173].

The next miRNA family, consisting of miR-34a, b, and 
c, is well-studied regarding to cell cycle progression and its 
expression is downregulated in several types of cancer cells 
including lung adenocarcinomas, colon cancer and liver can-
cer (HCC) [141, 167, 182–185]. MiR-34a induces both G1/S 
cell cycle arrest and cell senescence [167]. Reduced expres-
sion of miR-34 has been associated with enhanced levels 
of BCL2 and NOTCH, which are target genes for tumor 
suppressor gene p53 [131, 135, 167]. Similarity, miR-34 
promotes apoptosis via Caspase 3, and therefore increases 
sensitivity for anti-cancer treatment [135]. By regulating 
CDK6, cyclin D1 and E2F, miR-34 negatively affects cell 
cycle progression in colon cancer cells [131, 184, 185]. In 
addition, miR-34 represses pluripotency genes inclusive of 
NANOG, SOX2 and MYC [135]. Thus, overexpression of 
this miRNA family may cause an accumulated percentage 
of cells in the G0/G1 phase and significantly reduces the 
population of cells in the S phase.

MiR-31 has also shown to be inversely correlated with 
metastasis, since its high expression in liver cancer is linked 
with a poor prognosis in patients. Kim et al. showed that 
ectopic expression of miR-31 evokes an overexpression of 
CDK2 and HDAC2 [147]. They demonstrated that through 
abnormal expression of HDAC2, negative cell cycle regu-
lators p16/INK4A, p19/INK4D and p21/Cip1 are induced.

Furthermore, an oncogenic role has been reported for 
the miR-15a/16 family in chronic lymphocytic leukemia 
(CLL), pituitary adenomas, and gastric cancer [186, 187]. 
On the other hand, this miRNA family is shown to act 
as a tumor suppressor in a subset of B cell lymphoma, 
where deletion of this miRNA family in a subset of B 
cell lymphomas resulted in chronic lymphocytic leukemia 
in mice [188]. In fact, miR-15a and miR-16 display an 
anti-proliferative potential in this type of cancer stem cell 
by silencing BCL2 and activating the intrinsic apoptosis 
pathway [189, 190]. In addition, some studies revealed 
the miR-15a/16 family as regulator of various cyclins, 
including cyclins D1 and D2 and cyclin E1, and pRb [168, 
180, 191].

An additional miRNA that has been suggested as an 
oncomiR, through targeting multiple signaling pathways, 
is miR-21 [33]. Upregulation of miR-21 has an oncogenic 
potential in a wide range of tumors including lung, breast, 
pancreatic, brain and colon cancers, through downregulation 
of p21 and tumor suppressor genes PTEN and PDCD4 [33, 
192–194]. MiR-26a is also suggested as a negative regula-
tor of cancer cell proliferation by targeting cyclins D2 and 
E2, and CDK6. It has been established that overexpression 
of miR-26a results in cell cycle arrest in human liver cancer 
cells in vitro [195, 196].

Concluding Remarks and Future Prospects

A growing body of evidence has addressed the potential 
role of miRNAs in cell cycle regulation of stem cells. 
In light of recent discoveries about the role miRNAs in 
self-renewal, proliferation and differentiation, it is cru-
cial to unravel the complex mechanisms and molecular 
interactions within this field of research. In this review, 
we outlined the most established miRNAs involved in the 
cell cycle progression of stem cells. We highlighted sev-
eral clusters and single miRNAs that may control self-
renewal and maintenance of the pluripotency status in 
ESCs. These include but are not limited to ESCC miR-
NAs (miR-290-295, miR-302, miR-17-92, miR-106b-25 
and miR-106a-363), which are functionally upregulated 
to suppress negative regulators and to enhance pluripo-
tent transcription factors such as NANOG and MYC in an 
epigenetic manner [45].

Furthermore, specific profiles of miRNA expression in 
distinct somatic stem cell lineages are linked with devel-
opmental control by keeping several multipotent stem cells 
(e.g. HSCs) in a quiescent state. Previous research based on 
Dicer-knockout and Dgcr8-deficient mice have elucidated 
that miRNAs are expressed temporally and spatially among 
somatic stem cells and precursor cells [37]. It is crucial for 
somatic stem cells like HSCs to keep a balance between 
quiescent state and proliferating state. To accomplish that, 
a complex network of miRNAs exists that inhibit positive 
cell cycle regulators such as cyclins, as well as miRNAs 
modulating anti-apoptotic properties. Complex interactions 
between miRNAs, transcription factors and cell cycle-medi-
ated components may control the gene expression upon dif-
ferentiation of multipotent stem cells into progenitor cells 
and mature cells.

It is clear that abnormalities in the cell cycle are related 
to tumorigenesis and previous studies have highlighted 
the significant importance of miRNAs in the regulation of 
CSCs [132]. Since CSC features are linked to metastasis, 
invasion and therapeutic resistance, it is of main clinical 
relevance to unravel the interactive properties between 
CSC-related miRNAs and cell cycle components. From the 
data available so far it appears that there is a great over-
lapping role between ESCC miRNAs that are expressed 
in both ESCs and CSCs. However, a subset of miRNAs 
is characterized as tumor suppressor genes as they are 
expressed regarding anti-proliferating features by target-
ing oncogenic pathways including MYC. Those miRNAs, 
including let-7, miR-34, miR-31 and miR-17-92 family, 
are of major interest since they are associated with a good 
prognosis in cancer patients. Future research should focus 
on targeting the CSC-related miRNAs involved in onco-
genic pathways since they will provide a more effective 
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approach to exterminate CSCs. Subsequently, a miRNA 
based method for cancer treatment is highly target driven 
as it interferes with specific abnormalities in the cell cycle 
within the tumor microenvironment.

Collectively, this review marks several noteworthy 
insights into the cell cycle regulation of stem cells by 
miRNAs. Understanding the tightly regulated molecular 
networks in which miRNAs are interacting, will greatly 
enhance our knowledge in the development of both healthy 
and disease states of the human body.
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