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Background

Stem cells are primordial, unspecialized and undifferentiated 
cells possessing the property of self-renewal through con-
tinuous cell division and differentiation into various other 
types of cells [1]. Stem cells are classified as embryonic 
and adult stem cells based on their origin. Embryonic stem 
cells (ESCs) are totipotent and are derived from the inner 
cell mass of the blastocyst [2]. Adult stem cells (ASCs) with 
multipotency can be obtained from most of the adult tis-
sues including bone marrow, adipose, cord blood, periph-
eral blood, amniotic fluid, dental tissues etc., [3, 4]. ESCs 
possess the ability to give rise to several cell types and can 
be used in clinical applications. However, the use of ESCs 
is beset with several ethical issues and the risk of adverse 
reactions such as tumor formation or immune rejection [5]. 
Patient-derived ASCs are harvested and are used within the 
same patient, thus eliminating the ethical concerns and the 
risk of immune rejection. The limited differentiation ability, 
however, restricts the universal use of ASCs in the patient 
[6].

The method of “Induced Pluripotent Stem Cells (iPSCs)” 
provides a means to achieve better control and refined dif-
ferentiation of cells of non-stem cell origin. In this process, 
specific transcription factors, such as Oct4, Sox2, Klf4, and 
c-Myc genes are introduced into the cells to induce pluripo-
tency [7]. Although iPSC approach has great potential, its 
clinical use has been rather limited, primarily because of the 
requirement of a large number of starting cells and the risk 
of teratomas [8].
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Cell therapies utilizing mesenchymal stem cells (MSCs) 
are currently being explored in a large number of clinical 
trials. MSCs exhibit the property of plasticity and fibro-
blast-like morphology and are identified by their plastic 
adherence, exhibiting certain cell surface antigens such as 
 CD105+,  CD73+,  CD90+,  CD34−,  CD45−, HLA. MSCs 
possess the ability to differentiate into multiple lineages [9] 
such as chondrocytes, osteoblasts, adipocytes, tenocytes and 
skeletal myocytes [10–12]. In specific differentiation media, 
they have the exquisite capability to differentiate into cells of 
endodermal and ectodermal origin, such as hepatocytes [13, 
14],cardio myocytes [15, 16] and neurons [17, 18].

Clinical Advantages of MSCs in Regenerative Medicine

As stated above, despite its potential, stem cell therapy is 
limited due to the substantial risks of malignant transfor-
mation of transplanted cells [19, 20]. In a case study, a boy 
suffering from a rare genetic disease known as Ataxia Tel-
angiectasia received human neural stem cells. After under-
going neural stem cell therapy, the boy developed abnor-
mal growths in his spine and brain [21]. In patients with 
hematologic cancers, allogeneic bone marrow transplanta-
tion of stem cells have some side effects including myeloid, 
lymphoid leukemias, lymphomas, and multiple myeloma 
[22–25]. There are several instances of development of bron-
chiolitis obliterans and other non-infectious pulmonary com-
plications upon stem cell therapy [26]. It was found that the 
risk of developing malignant disease was less when MSCs 
were used in regenerative therapies [27]. Thus, MSCs have 
emerged as a new therapeutic strategy as cellular vehicles for 
the targeted delivery and local production of biologic agents 
[28]. MSCs have the unique property of tropism, where 
they can migrate to inflammatory sites and tumor micro-
environments. They exert immunosuppressive effects upon 
cell-to-cell contact through regulatory T cells (Tregs), as 
shown with in-vitro and in-vivo models [29–33], by secret-
ing soluble factors such as β-growth factor [34], hepatocyte 
growth factor [35], nitric oxide (NO) [36], indoleamine 2,3- 
dioxygenase (IDO) [37], inter cellular adhesion molecule 1 
(ICAM1), chemokine (C-X-C motif) ligand 10 (CXCL10), 
chemokine (C-C motif) ligand 8 (CCL8) [38–40].

These unique properties, in addition to better efficien-
cies, make them an attractive material for cell therapy to 
target various disease models [41–44]. For example, there 
have been some positive findings regarding the transplanta-
tion of MSCs to the infarcted heart to promote repair and 
regeneration of the damaged cardiac tissue [45]. Systemic 
administration of MSCs to patients suffering from osteo-
genesisimperfecta showed significant improvement in the 
mechanical strength of the bone (bone calcium and col-
lagen) and improved locomotory functions [46]. Another 
study suggested that transplanting MSCs at the site of injury 

in stroke patients resulted in significant increase in neuro-
genesis, angiogenesis and synaptogenesis, thereby normal-
izing microenvironmental proliferation and replacing dam-
aged brain cells, apart from reducing inflammation and scar 
thickness [47]. These studies, described above, attribute the 
beneficial outcome with the use of MSCs to paracrine and 
trophic factors secreted by the transplanted MSCs.

Despite the beneficial effects of transplanted MSCs 
observed in some clinical applications, limited tendencies to 
engraft and differentiate [48] as well as gradual deterioration 
of functional stem cells with age [49] are some factors that 
limit their usage in therapies. The mode of action of donor 
cell populations in the recipient still needs investigations.

New studies to investigate the role of different growth 
factors in enhancing the therapeutic efficiency of MSCs are 
emerging. studies have shown that MSCs pre-conditioned 
with certain growth factors showed improvement in in-vivo 
cell functions, there by improving therapeutic efficiency, 
albeit with some limitations [50].

MSCs have been shown to be beneficial for treating 
ischemic strokes. Experimental evidence suggest that prim-
ing the MSCs with the serum of ischemic stroke rats had 
resulted in a better yield of stem cells that had increased 
proliferative capacity and neuro-restorative capacity com-
pared with MSCs cultured in fetal bovine serum [49, 51]. It 
has been demonstrated that treatment of MSCs with trophic 
factors increased cell viability and proliferation without 
changing the morphology and expression of surface mark-
ers. The beneficial outcome of the pre-treated cells has been 
attributed to increase in production of BDNF (brain-derived 
neurotrophic factor), VEGF (vascular endothelial growth 
factor) and HGF (hepatocyte growth factor) [52].

In another study, preconditioning of cells with hypoxic 
conditions before transplantation increased the resistance to 
ischemia and stimulated the production of angiogenic fac-
tors, thus improving the ability of cells to survive in dam-
aged tissues. The viability, proliferation, migratory proper-
ties, and therapeutic potential of these cells were reported 
to be increased by adding basic fibroblast growth factor 
(bFGF), epidermal growth factor (EGF), tumor necrosis fac-
tor-alpha (TNFα), insulin-growth factor-1 (IGF-1) and bone 
morphogenetic protein-2 (BMP-2) to the culture medium 
[53].

Human derived adipose stem cells (hASCs) cultured in 
low concentrations of bFGF and EGF showed a significant 
increase in proliferation [54]. These hASCs exhibited typical 
spindle-shaped cell morphology and enhanced differentia-
tion into the neural lineage with impaired mesodermal dif-
ferentiation. These findings suggest that even low concentra-
tions of EGF and bFGF may limit the differentiation ability 
of stem cells during stem cell expansion in-vitro [54].

Modifying MSCs with beneficial genes which can resist 
the uncongenial conditions such as hypoxia, ischemia, 
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oxidative stress and acute or chronic inflammations [38] that 
are associated with the disease conditions is important to 
improve their efficacy. However, in-vitro studies have shown 
that the MSCs are capable of surviving for only a limited 
period of time in the absence of oxygen [55]. Their survival 
capacity in the in-vivo environment is an important factor 
that determines the therapeutic effect exerted [56, 57]. Sev-
eral clinical studies are being conducted using MSCs, which 
are in different phases of clinical trials as shown in Table 1.

Main Text

Physical and Chemical Methods of Gene Delivery in MSCs

Different methods such as non-viral (physical and chemi-
cal) and viral vector-based methods are used to introduce 
beneficial genes.

Several physical methods (non-viral) such as electropo-
ration [62], nucleofection [63], sonotransfection [64] and 
nanoparticles [65] are used for delivery of beneficial genes 
into MSCs. In-vitro studies suggested that electroporation-
mediated transfer of SOX-5, SOX-6 and SOX-9 [66] and 
BMP-2 [67] genes enhanced the migration and differentia-
tion potential of MSCs into chondrogenic and osteogenic 
lineages respectively. Another study showed that the hom-
ing efficiency of MSCs in glioma patients was improved 
by delivering C-X-C gene for chemokine receptor type 4 
(CXCR4) using electroporation [68, 69]. Transfection of 
recombinant human bone morphogenetic protein (rhBMP-6) 
into adipose derived stem cells using nucleofection method 
(electroporation-based transfer of DNA or RNA into cells) 

resulted in efficient bone formation and spinal fusion in a 
lumbar paravertebral muscle in immune deficient mice [70].

Another physical method, sonofection, exploits ultra-
sonic waves to create cavitation for delivering DNA into 
the cells [71]. Transfection of plasmid DNA containing the 
growth/differentiation factor 11 (Gdf11)/Bmp11 in-vivo 
into dental pulp stem cells using sonofection significantly 
induced the expression of dentin sialoprotein (Dsp) and 
restored the amputated dental pulp in canine teeth [72]. 
Delivery of small interfering RNA (siRNA) into MSCs 
using sonofection significantly knocked down phosphatase 
and tensin homolog on chromosome 10 (PTEN), suggesting 
that this technique can be used for induced overexpression 
or knockdown of genes [64].

Nanoparticles such as magnetic nano-beads [73, 74], 
silica [75], carbon nanotubes [76], gold nanoparticles [77] 
and quantum dots [78] have been in use for gene delivery 
into MSCs. The gene for glial cell line-derived neuro-
trophic factor (GDNF) was successfully delivered through 
magnetized synthetic hydroxyapatite and natural bone min-
eral nanoparticles by magnetic field [79]. In another study, 
plasmid containing BMP-2 gene was effectively transferred 
into MSCs using mesoporous silica [80]. Carbon nanotube-
based composites have been shown to favor the attachment 
and osteogenic differentiation of MSCs and facilitate bone 
repair in rats [81–83]. It has been reported that carbon nano-
tube scaffolds enhance the neural differentiation of hMSCs, 
improve neural cell branching and the synaptic activity of 
cells in a monolayer culture as well as in tissue explants 
[84, 85]. In one case study, functionalized gold nanoparti-
cles with polyethyleneimine (PEI) were successfully used to 

Table 1  Showing the use of MSCs to treat different diseases and the stage of the clinical trials (Source: ClinicalTrials.gov)

Condition Intervention Phase Status Reference

Ovarian cancer MSC INFβ Phase 1 In-progress, Sep 2016
CMV infection MSC Phase 2 In-progress, Jan 2015 [58, 59]
Graft-versus-host-disease MSC (hPPL) Phase 1

Phase 2
Completed, Nov 2014

Bone atrophy BCP with autologous mesenchymal stem cells (MSC) Phase 1 In-progress, May 2016
Chronic myocardial ischemia Autologous mesenchymal stem cells Phase 1 In-progress, July 2016
Renal transplant rejection Kidney transplantation with MSCs infusion Completed, Feb 2011 [60]
Erectile dysfunction
Type 1 diabetes mellitus
Type 2 diabetes mellitus

Biological: HUC-MSCs
Biological: injectable collagen scaffold + HUC-MSCs

Phase 1 In-progress, April 2016

Skin burn degree second Allogeneic (MSC’s) Application to the Burn Wounds Phase 1 In-progress, Aug 2016
Prostate cancer Allogeneic human mesenchymal stem cells Phase 1 In-progress, April 2016 [61]
Focal segmental glomerulosclerosis Intravenous injection Phase 1 In-progress, Nov 2015
Brain injury Procedure: stereotactic hematoma evacuation

Biological: MSCs transplantation
Biological: injectable collagen scaffold 

with MSCs transplantation

Phase 1 In-progress, April 2016

Nerve and spinal cord injuries  Umbilical Cord mesenchymal stem cells Phase 3 In-progress, June 2015

http://www.ClinicalTrials.gov
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transfect hMSCs with the CCAAT/enhancer binding protein 
(C/EBP) beta gene, fused to enhanced green fluorescence 
protein (EGFP), to induce adipogenic differentiation [86].

In addition to the physical methods of gene delivery, sev-
eral chemical (non-viral) methods of transfection mediated 
by calcium phosphate [87], cationic lipids [88], cationic 
polymers [89], cationic peptides [90] and cationic polysac-
charides [91] have been used for gene delivery.

Calcium phosphate-mediated delivery involves the co-
precipitation of positively charged  Ca2+ ions and negatively 
charged DNA [92]. TGF-β1 was successfully expressed in 
MSCs by encapsulating DNA into calcium phosphate, and 
induced chondrogenesis [87].

Cationic lipid-based transfection or lipofection utilizes 
nano-sized lipoplex particles formed by the spontaneous 
assembly of DNA and cationic liposomes [93–96]. Lipo-
fectamine 2000, a commercially available lipoplex complex, 
was used to introduce forkhead box A2 (Foxa2) gene into 
MSCs to enhance damaged liver tissue regeneration [88]. 
Cationic polymers such as polyethylenimine (PEI) and poly-
amidoamine dendrimers (PAMAM) enable the release of 
DNA into the cytoplasm and nucleus [97]. PEI-based trans-
fection was used for introducing Bcl-2 gene in MSCs [98]. 
Likewise, cationic-based peptides (arginine-rich peptides) 
and polysaccharides (dextran) have also been used for DNA 
delivery into the cells [99, 100].

A major advantage of these non-viral mediated (physical 
and chemical methods) gene delivery techniques is the ease 
with which they can be carried out. However, both physical 
and chemical methods are in limited use because of their 
low efficiency [101], unsuitability for transfection of large 
population of cells [102] and their possibility of disrupting 
cellular and nuclear membranes [103]. The use of chemical 
agents could lead to toxicity at higher concentrations [104] 
and adverse reactions with negatively charged molecules 
both in-vitro and in-vivo [105]. Further, safety concerns 
have been raised because of their undegradable nature of 
certain polymers [106].

Genetic Modification of MSCs

Because of the limitations and disadvantages of non-viral 
methods of gene delivery mentioned above, several studies 
have used viral vectors to improve delivery of genes. The use 
of viral vectors for gene transfer exploits the natural ability 
of the viruses to infect the cells including MSCs. Transgenes 
may be incorporated either in addition to the genome or by 
replacing one or more genes. Genetic modification of MSCs 
with different beneficial genes could improve survival, repair 
and mediate recovery in the in-vivo environment, which may 
enhance their therapeutic potential during transplantation. 
The viruses that are currently being used as vectors are 

lentiviruses, retroviruses, adeno-associated viruses, adeno-
viruses and baculoviruses [107].

Retroviruses

Retroviruses are double-stranded RNA viruses having 
reverse transcriptase and a lipid envelope with receptor-
binding proteins. After binding to the receptor, the external 
layer of viral envelope integrates with the cellular mem-
brane, internalizing the virus and releasing the contents into 
the cytoplasm. The viral RNA reverse transcribed into DNA 
using reverse transcriptase, integrates into the host genome 
[108].

Retroviral vectors can only infect proliferating cells with 
very high efficiency. Post-mitotic cells such as myocytes or 
neurons are not susceptible to retroviral infection, thus limit-
ing the spectrum of cells that can be targeted. Integration of 
the viral genome into the host enables long-term expression 
of the transgenes.

In clinical trials on X-linked severe combined immuno-
deficiency (X-SCID),  CD34+ HSCs transduced with MLV 
retroviral vectors encoding the ADA gene were used. In the 
initial trial, patients transplanted with the HSCs exhibited 
sustained engraftment and their differentiation into different 
lineages, enhanced lymphocyte count, reduced toxic metab-
olites and increased immune function [8]. In an another 
trial, 9 out of the 10 patients involved in the trial, showed 
increased T cell counts and functions; 8 of them nolonger 
required enzyme replacement therapy and 5 showed an anti-
gen-specific immune response to vaccines [109].

However, silencing of viral transgenes due to methyla-
tion of the viral promoter during cell differentiation is one 
of the limiting factors [110]. Another important feature that 
must be considered while using retroviral vectors is the 
safety factor [111]. Due to random integration of the viral 
genome into the host genome, there is a risk of disruption 
of proto-oncogenes and tumorigenesis. An example of such 
a scenario is the clinical trial conducted for X-SCID [112] 
in which  CD34+ bone marrow cells were isolated and trans-
duced in-vitro with Moloney murine leukemia virus carrying 
a common γ chain cytokine receptor [113] and the altered 
cells were transplanted back into the patients. Though the 
immunodeficiency was corrected in eight of the nine patients 
and the study was considered successful, four of the patients 
developed leukemia over the next nine years due to inser-
tional oncogenesis [112].

Lentiviruses

Lentiviruses have double-stranded RNA as their genetic 
material and can transduce both quiescent and dividing 
cells. They integrate their vector genome into the host 
genome, ensuring long-term expression of the transgenes 
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[114]. Lentiviral vectors are capable of transducing dividing, 
non-dividing or slow-dividing cells,without affecting their 
viability and differentiation potential.

Various strategies have been explored to improve the 
viability and differentiation potential of MSCs. Transduc-
tion of MSCs with lentiviral vectors overexpressing HSP70 
increased survival and resistance to apoptosis under condi-
tions of hypoxia and ischemia [56]. Transplantation of MSCs 
overexpressing PGC-1α using lentiviral vectors attenuated 
neuronal apoptosis and enhanced the potential of axonal 
regeneration in a rat model of traumatic spinal cord injury 
(SCI) [115]. Another study showed that transplantation of 
MSCs transduced with GREM1 gene reduced apoptosis by 
oxidative injury, increased the angiogenic properties and 
enabled restoration of blood flow in a hind limb ischemic 
model [116]. Transplantation of adipose tissue-derived 
MSCs expressing HSV thymidine kinase gene using a len-
tiviral vector, along with ganciclovir treatment, has been 
shown to decrease the tumor size in mice pre-inoculated 
with U87 glioblastoma cells [117].

In a clinical trial for X-linked adrenoleukodystrophy 
(ALD), administering hematopoietic stem cells (HSCs) 
over-expressing ABCD1 gene pseudo-typed with a self-
inactivating-G glycoproteinto patients showed progressive 
myelination at 14, 20 and 36 months post-therapy [118]. In 
another trial, patients with βE/β0-thalassemia were admin-
istered with HSCs transduced with self-inactivated lenti-
viral vector expressing the β-globin gene. Results suggest 
that the hemoglobin levels of the patients were maintained 
in the range of 9–10 g/dl for almost 3 years, without any 
transfusions [119]. In another study transplantation of HSCs 
transduced with lentivirus encoding WAS gene in patients 
with Wiskott–Aldrich syndrome resulted in stable and long-
term engraftment with enhanced T cell function and protec-
tion against severe infections [120]. A phase I/II clinical 
trial used HSCs transduced with lentiviral vector encoding 
arylsulfatase-A gene for the treatment of metachromatic leu-
kodystrophy (MLD). Upon transplantation into patients, the 
HSCs showed a high level of engraftment in bone marrow 
and peripheral blood and the patients maintained normal 
and cognitive development for 2 years after therapy [121]. 
However, the major concern with the use of lentiviral vectors 
is that, they lack specificity, thus it can lead to the infection 
of cells that do not need to be transduced. In addition, the 
majority of developed lentiviruses are HIV-derived, raising 
safety concerns for in-vivo gene therapy applications [122].

Adeno-Associated Virus (AAV)

Adeno-associated viruses are small non-pathogenic, single-
stranded DNA viruses that are dependent on the adenovirus 
for replication [123]. AAVs enter the cells by endocytosis 
upon binding to the integrin αVβ5 and FGF4 receptor and 

integrate at a specific site in the host genome on chromo-
some 19. The site of integration is called AAVS1. This site 
specific integration avoids the risk of unpredictable inser-
tional oncogenesis and other deleterious consequences. 
Another valuable feature of AAV is their low immunogenic-
ity [124].

Although AAVs can infect a broad spectrum of cells, 
they exhibit certain serotype specificity towards the cell type 
being used [125]. Over-expression of Insulin-like growth 
factor I and Transforming Growth Factor β (TGF-β) with 
AAV vectors in human bone marrow-derived MSCs have 
been shown to induce differentiation towards chondrogenic 
and osteogenic lineages, suggesting an effective treatment 
strategy to treat articular cartilage defects [126, 127]. Human 
bone marrow-derived MSCs transduced with AAV either 
expressing SOX9 alone or SOX9 along with TGF-β showed 
proliferative, and chondrogenic activities [128, 129]. Over-
expression of TIMP-1 (which has anti-angiogenic proper-
ties) in MSCs enhanced the draining efficiency of lymph 
nodes in anti-TIMP IgG-1 immunized mice model [130]. 
In another study, it was shown that bone marrow-derived 
MSCs over-expressing antisense miRNA-937 significantly 
reduced the deposition of Aβ, enhanced the levels of BDNF 
and improved the performance in a social recognition test 
and plus-maze discrimination avoidance test in an Alzheimer 
disease model of APP/PS1 transgenic mice [131].

Despite the major advantages such as site-specific inte-
gration, low immunogenicity the use of AAVs is limited 
due to several reasons. Although AAVs can infect a broad 
spectrum of cells, they exhibit certain serotype specificity 
towards the cell type being used [125]. One of the major 
challenges in the clinical use of AAV is that a majority of 
the human population has antibodies to AAV which reduces 
the efficiency of the vector [132]. Such immune reactions 
have been found to be particularly more common against 
AAV2. Another impediment is the need for conversion of 
single-stranded DNA into double-stranded DNA before inte-
gration into the genome, which is a rate-limiting step. There-
fore, there is a need to extensively investigate the molecular 
details of the AAV and host interaction biology and develop 
strategies to overcome the limitations and make use of the 
advantages that AAVs offer.

Adenovirus (AV)

Adenoviruses are double-stranded DNA viruses that lack an 
envelope. Non-pathogenicity is a major advantage in their 
use as vectors for gene transfer. There is no risk of inser-
tional mutagenesis and the payload capacity of these vectors 
is high (~ 36Kb).

Several clinical studies have shown beneficial effects of 
MSCs modified with AVs. MSCs genetically engineered 
with bi-cistronic adenoviral vector expressing FGF2 and 
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PDGF-BB have shown to induce collateral vessel forma-
tion and angiogenesis in a hind limb ischemia model [133]. 
Human placenta-derived MSCs transduced with adenoviral 
vector encoding NK4, administered through tail vein, inhib-
ited the development of lung metastases in C-26 lung metas-
tasis model [134]. Human endometrial MSCs, engineered 
with adenoviral vector encoding soluble Flt-1, effectively 
regressed endometriotic lesions in NOD/SCID mice [135]. 
In order to develop a new treatment strategy for malignant 
brain tumors, umbilical cord-derived MSCs were transduced 
with a modified interleukin-12 (IL12M) encoding adenoviral 
vector. Intra-tumoral injection of the engineered MSC was 
shown to prolong the survival of glioma-bearing mouse. 
Further, when the tumor free mice were challenged again 
with tumor, they were found to be resistant to the ipsilateral 
and contralateral tumor, which is closely associated with 
tumor-specific longer T-cell immunity [136]. Another study 
has shown that intra-tumoral injection of human bone mar-
row-derived MSCs engineered with adenovirus encoding an 
immunotoxin, EphrinA1-PE38, inhibited tumor growth in 
malignant glioma tumor model [137].

Despite the well-documented usefulness, a major concern 
of using adenoviral vectors is their immunogenicity. Direct 
administration of Adenoviral vectors with a transgene into 
the host cells activates  CD4+,  CD8+ and antigen present-
ing cells. This activation of immune response caused by 
the expression of the transgene as well as the viral capsid 
proteins may sometimes lead to the elimination of the viral 
particle and silencing of the transgenes [138]. However, a 
few reports indicate that bone marrow MSCs transfected 
in-vitro and then transplanted into rat intravenously did not 
elicit any immune response [139]. Co-transfection with a 
second adenoviral vector encoding hemoxygenase 1 (an 
enzyme that prevents development of acute inflammation) 
is another approach to reduce the immune response [140]. 
Yet another drawback in the usage of adenoviral vectors is 
the transient expression of the transgene [141, 142]. Further, 
while some studies have reported that adenoviral vectors do 
not influence differentiation [143], some other studies have 
reported detrimental effects [144].

Baculovirus

Baculoviruses are a group of insect viruses among which 
Autographa californica multiple nucleopolyhedrovi-
rus (AcMNPV) with a circular double-stranded DNA 
genome is the most extensively used. These viruses can 
infect a wide spectrum of mammalian cells, and express 
the transgenes provided and these are under the control 
of a promoter that is active in mammalian cells [145, 
146]. Baculovirus are non-toxic to the mammalian cells 
and does not replicate inside the cells [146]. There is no 
evidence pointing to the integration of the viral genome 

into the host genome without selective pressure [147] and 
the viral DNA degrades over time [148]. An important 
advantage of these viruses is that they are non-pathogenic 
to humans. They are capable of transducing various stem 
cells including embryonic stem cells [149], induced pluri-
potent stem cells [150], neural stem cells [151], chondro-
cytes [152, 153] and bone marrow [154, 155] as well as 
adipose tissue-derived MSCs [156]. Bone marrow MSCs 
transduced with baculovirus encoding BMP-7 were shown 
to enhance postereo-lateral spinal fusion in rabbits [157]. 
Similarly, in another study, bone marrow MSCs transduced 
with baculovirus encoding BMP-7 showed a decrease in 
disk degeneration when transplanted in the rat tail [158]. 
Adipose-derived MSCs transduced with baculovirus 
expressing TGF-β3 effectively ameliorated chondrogenesis 
and formation of cartilage tissue. This approach provides a 
novel method for engineering cartilages [156]. In another 
study, rabbit MSCs engineered with baculovirus encoding 
BMP-2 and VEGF and seeded onto Tri-calcium phosphate 
(TCP) scaffolds showed enhanced postereo-lateral spine 
fusion in rabbit models [159]. MSCs transduced with bac-
ulovirus expressing herpes simplex virus thymidine kinase 
gene, when injected into mice pre-inoculated with human 
U87 glioma cells, showed inhibition of tumor growth and 
prolonged survival of the animals after ganciclovir injec-
tion [160].

Baculoviral vectors are being used for in-vivo applica-
tions as they do not replicate inside mammalian cells, but 
can efficiently deliver genes into many types of cells. How-
ever, there are disadvantages in using baculoviruses; One 
major disadvantage is the inactivation of the baculoviruses 
by the human complement system [146]. The other major 
disadvantage is with glycosylation; N-glycosylation pathway 
of the insects differs from the mammalian system such that 
the recombinant proteins will have a terminal paucimannose 
N-glycan instead of glycosylated and siaylated N-glycan. 
This is a major limitation as the N-glycans, especially sialic 
acid residues, are important for the function of the glyco-
protein [161].

In addition to the number of vectors for transducing 
transgenes into MSCs described above, several other viral 
vectors are also being explored. For example, Herpex Sim-
plex Virus & Vaccinia Virus (ds DNA viruses), Borna Dis-
ease Virus & Sendai viruses (negative strand RNA viruses). 
Some of the advantages of using these viral vectors include:

• Accommodating large fragments of foreign DNA [162]
• Attenuation of tumour toxicity through p53/p53-medi-

ated activation of p21 [163] or vaccine immunogenicity 
[162]

• Selective delivery towards the tumor sites [164–167]
• Intra nuclear replication and transcription to express 

overlapping open reading frames [168–171]
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• Long-term expression of transgenes in MSCs and iPSCs 
[172]

The above mentioned unique feature of these viruses 
could be exploited to improve the transfection efficacy. To 
date not many studies have been performed using these viral 
vectors. Considering the fact that half of the genes that are 
encoded for viral functions are non-essential [108], replacing 
them with genes of interest without losing the functionality 
of the vector could be a future strategy to use these vectors 
for clinical applications.

Currently, viral vector-based genetic modification of cells 
is being extensively exploited. However, several drawbacks 
have limited their use in clinical applications. One such fac-
tor is their low transduction efficiency. The low transduction 
efficiency of adenoviral and adeno-associated viral vectors 
can be enhanced by the following factors

• developing self-complementary AAV (sAAV) having an 
inverted repeat of the genome that can fold into dsDNA 
[173]

• altering the capsid fibers [174]
• brief exposure to UV light [175]
• creating mutations to surface receptors containing tyros-

ine residues [176]

Despite significant progress in the field, improving the 
transduction efficiency, controlling the immunomodulatory 
effects and preventing silencing of transgenes during dif-
ferentiation need be be addressed for successful cell-based 
therapies.

Further, viral vector-based approaches to administer spe-
cific transcriptional factors to decide the fate of the cells into 
specific lineages have been seriously criticized for trans-
lational medical applications because of their inadequate 
validation [177, 178].

Factors to Improve Cell-Based Therapies

Cell-based therapies are likely to replace a large number 
of chemical-based therapies in course of time. However, 
many aspects need be addressed before cell-based therapies 
become routine clinical practices. The understanding of the 
molecular mechanisms of “tropism” is essential for success-
ful cell-based therapies. Further studies on immune modu-
lation, uncontrolled proliferation, intrinsic and extrinsic 
cues from the micro environment and post-transplantation 
teratoma formations are needed. MSCs are heterogeneous 
in nature and selection of pure MSC population is a major 
bottleneck for cell-based therapies. Further research should 
focus on the methods to isolate pure population of MSCs to 
transfect with desirable genes.

Suicidal genes have been incorporated to increase the 
purity and success of transplantation of MSCs and to control 
the long-term deleterious effects of donor cell population 
during the time of maturation, thus enabling an efficient con-
trol over the pre-differentiated pluripotent cells [179–181]. 
Adaptation of novel computational tools such as CellNet 
that calibrate and compare the primary cell lineages with the 
engineered cells by quantitating the gene expression profiles 
would be useful [182]. Despite the clinical improvement in 
infusion and transplantation of donor bone marrow-derived 
MSCs [183, 184], complete engraftment of the whole bone 
marrow is still doubtful. In a case study describing the graft 
versus host diseases (GVHD), transplantation of MSCs with 
hematopoietic stem cells reduced the toxicity and minimized 
the graft rejection [185]. However, the efficacy of engraft-
ment was not validated [186, 187]. More detailed studies 
have to be carried out to increase the efficacy of MSCs by 
optimizing the prodrug dosages [188, 189] and anti angio-
genic agents after transplantation [190]. Despite all the diffi-
culties and impediments, there has been significant progress 
in the cell-based therapies using MSCs. The Fig. 1 shows the 
list and the number of cases in each disease that is attempted 
to treat using MSCs.

In addition, well-defined guidelines for general safety in 
terms of sterility of MSCs and monitoring of proliferative 
potency from donor cells, close monitoring of the genetic 
integrity of the donor cell population are required. There 
should be a mechanism to monitor the strict adherence to 
the prescribed guidelines.

Future Prospects

Over the decades, there has been significant progress in the 
translational efforts using stem cells for various pathologi-
cal conditions. Most of these are now at different stages of 
pre-clinical and clinical studies. In the coming years, many 
of these studies can be expected to lead to better stem cell 
therapies.

The advent of several new approaches and technologies 
such as CRISPR/Cas, Optogenetics and Pharmacogenomics 
are likely to influence and catalyze the cell-based transla-
tional approaches (Fig. 2).

Genome editing has been facilitated by the development 
of programmable sequence-specific DNA nuclease tech-
nologies that allow targeted modification of endogenous 
sequences with high efficiency [191]. RNA-guided Cas9 
nucleases from the CRISPR/Cas system can be employed to 
engineer targeted double-stranded breaks in eukaryotic cells. 
A 20 nucleotide guide sequence within single-guide RNA 
is used to direct the Streptococcus pyrogens Cas9 nuclease 
to the desired genomic target that is followed by a 5′NGG 
proto spacer adjacent motif via Watson–Crick base-pairing 
[192]. This enables the targeting of a desired genomic locus 
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with defined alterations. The cellular non-homologous end 
joining or homology-directed repair pathways can then be 
used to induce defined alterations [193]. This strategy could 
be exploited to introduce the genes of interest in MSCs with 
high efficiency.

A recent study has shown that CRISPR/Cas9 system 
coupled with iPSC technology improved the therapeutic 
potential for correcting Recessive Dystrophic Epider-
molysis Bullosa (RDEB) [194]. The ease and design of 
Cas9-based therapeutics could be exploited beyond the 

Fig. 1  The numbers in the pie diagram indicates the number of subjects recruited for the case study in MSC transplantation. (Data Source: 
ClinicalTrials.gov)

http://www.ClinicalTrials.gov
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direct genome modification of somatic tissue. A recent 
report described the use of S.pyrogenes Cas9 (SpCas9) and 
RNase iii (SpRNase) along with attached nuclear locali-
zation signals (NLSs) to ensure efficient transformation 
of the desired expression in mammalian cells [195]. The 
efficient use of this precise toolbox has been carried out 
extensively in cancer research, in the case of sarcoma to 
target genes such as TET2, APC, KRAS, SMAD4, PTEN 
and EML4 [196]. The CRISPR/Cas9 method has been 
proved to be a better alternative than Cre-Lox, zincfingers 
(ZFN) and transcription activator-like effector nucleases 
(TALENs) in terms of target design simplicity, efficiency 
and introducing multiplexed mutations.

The major challenges in using CRISPR/Cas9 system 
include

• Off-target effects, which are the consequence of the non-
specific activity of the Cas nuclease in the genome [197, 
198]

• Engineering Cas enzymes with higher fidelity and speci-
ficity [199–201], and

• The necessity to develop complex algorithms to design 
gRNAs [201]

However, the use of recombinant Cas9 protein and spe-
cific design of gRNAs (Cas9 RNP) would probably be 

Fig. 2  The figure shows three emerging technologies that can revo-
lutionize stem cell-based therapy (MSCs). CRISPR/Cas technology 
enables specific targeting of loci in genes of interest. Optogenetics 
provides handle to regulate the activation/inactivation of genes using 
light sensitive switches. Pharmacogenomics identifies the changes 
in gene/protein expression. The unification of CRISPR/Cas, Optoge-

netics and Pharmacogenomic tools for e targeting of cell types in 
humans. The figure shows the combined application of these technol-
ogies for identifying candidate genes/proteins and effective, specific 
gene delivery and regulated gene expression for personalized stem 
cell therapy
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preferential compared with traditional plasmid or mRNA 
delivery methods, as it has been shown to achieve lower 
rates of off-target effects [202–204].

Optogenetic approaches can be exploited to control 
the expression of gene of interest within the host by light 
sensitive pumps or channels such as Opsins. Exposure of 
these channels to light for milliseconds can activate or 
silence the gene expression in in-vivo as well as in-vitro 
models. Using optogenetics, it was possible to modify the 
mouse embryonic stem cells with light-sensitive switch 
(short and long pulses of light) to control the gene expres-
sion to determine the developmental cues for efficient dif-
ferentiation and control over the stem cell development 
[205]. In another study optogenetic stimulation of rodent 
hippocampus region transplanted with human stem cell-
derived neurons enabled neurons to integrate into existing 
brain circuits for efficient neural activity in an ischemic 
model, suggesting that shining light can integrate the neu-
rons into existing brain circuits and fire patterns that are 
critical for neural network activity [206]. It has been sug-
gested that turning on the light of different wavelengths 
could potentially allow stem cells to create complex three-
dimensional tissues/organ which could be used for trans-
plantation [205]. Developing strategies to exploit light-
activated gene expression could be an interesting area for 
further research. Exploring opsin and non-opsin natural 
light-sensitive proteins would help to control the gene 
expression within the cells and also to understand differ-
ent biological pathways [206].

This strategy could be adopted to manipulate stem cells 
to secrete specific proteins that drive a specific purpose in 
the target tissues that need to be treated. Optogenetics is 
thus a valuable tool that could help in identifying the lesser 
known mechanisms behind molecular pathways. There is 
an immediate need for further studies to demonstrate the 
potential of optogenetics in regenerative medicine.

However, there are a few limitations/drawbacks in using 
optogenetics to alter gene expression which are mentioned 
below

• Indiscriminately drives all cells within a genetically 
defined targeted population [207, 208]

• Expression of opsin proteins has the potential to alter 
the function of intrinsic cellular machinery, and inser-
tion of large numbers of foreign ion channels or pumps 
in cell membrane could lead to physiological differ-
ences [209]

• Poor penetration capacity of visible light in the biological 
tissues [210]. This limitation could probably be over-
come by replacing visible light with multichannel micro 
LEDs with different frequencies in the light spectrum 
that could enhance the light penetration inside the tissues 
and control the specific expression of opsin proteins.

Pharmacogenomics involves systemic identification of all 
human genes combined with changes in gene and protein 
expressions to enable personalized assessment of individu-
als towards health and diseases [211]. There is a growing 
concern regrading the substantial person-to-person varia-
tions in the outcome of stem cell therapy. Pharmacogenom-
ics should help optimize patient-specific therapy (drug/cell 
based) with respect to the patient genotype by identifying 
specific genetic variations associated with the disease. It 
would facilitate tailored treatment with maximum efficacy 
and limited adverse effects. This approach requires genomic 
(high-density microarrays) [212], proteomic and bio-infor-
matic tools to integrate with stem cell therapies. The vali-
dation of recipient and donor genotypes and selecting the 
appropriate cell types could increase the success of stem 
cell therapy.

Pharmacogenomics has the limitations as follows

• Pharmacogenomic analysis of individual genomic net-
work (both intrinsic and extrinsic pathways) and identify-
ing specific targets at the genome level [213]

• Predicting the impact of specific drug toxicity on miRNA 
and cell lineage mechanisms [214]

• Lack of large scale cell line libraries, and databases for 
the development of algorithms in relation to the com-
putational quantitative systems for effective selection of 
drugs to specific cell types [215].

Pharmacogenomic tools like Single-cell RNA sequenc-
ing may be one such technology that could identify targeted 
cells through a changed mRNA sequence and relate that to 
potential transcriptional changes.

Conclusions

The therapeutic potential of MSCs with beneficial genes 
using viral and non-viral methods are being tested in sev-
eral disease models, albeit with some limitations. However, 
unequivocal in-vivo evidence supporting the true differentia-
tion and regenerative potential of MSCs still needs further 
investigations. CRISPR/Cas and optogenetics are emerging 
as future technologies due to the rapidity and specificity 
of gene delivery using these techniques. Another potential 
future avenue is to adopt next generation sequencing and 
genotypic techniques (pharmacogenomics) as a new para-
digm to target the specific cell types for personalized medi-
cine. Development of these techniques is likely to revolu-
tionize stem cell-based therapy in general and MSC based 
therapy in particular.
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