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Abstract As the speed of mass spectrometers, sophis-
tication of sample fractionation, and complexity of
experimental designs increase, the volume of tandem
mass spectra requiring reliable automated analysis con-
tinues to grow. Software tools that quickly, effectively,
and robustly determine the peptide associated with
each spectrum with high confidence are sorely needed.
Currently available tools that postprocess the output
of sequence-database search engines use three tech-
niques to distinguish the correct peptide identifications
from the incorrect: statistical significance re-estimation,
supervised machine learning scoring and prediction,
and combining or merging of search engine results. We
present a unifying framework that encompasses each
of these techniques in a single model-free machine-
learning framework that can be trained in an unsuper-
vised manner. The predictor is trained on the fly for
each new set of search results without user interven-
tion, making it robust for different instruments, search
engines, and search engine parameters. We demon-
strate the performance of the technique using mixtures
of known proteins and by using shuffled databases to
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estimate false discovery rates, from data acquired on
three different instruments with two different ioniza-
tion technologies. We show that this approach outper-
forms machine-learning techniques applied to a single
search engine’s output, and demonstrate that combin-
ing search engine results provides additional benefit.
We show that the performance of the commercial
Mascot tool can be bested by the machine-learning
combination of two open-source tools X!Tandem and
OMSSA, but that the use of all three search engines
boosts performance further still. The Peptide iden-
tification Arbiter by Machine Learning (PepArML)
unsupervised, model-free, combining framework can
be easily extended to support an arbitrary number
of additional searches, search engines, or specialized
peptide—spectrum match metrics for each spectrum
data set. PepArML is open-source and is available from
http://peparml.sourceforge.net.

Keywords Bioinformatics - Peptide identification -
Tandem mass spectra - Machine-learning

Introduction

Peptide identification by tandem mass spectrometry is
widely used for protein characterization in complex
samples. High-throughput proteomics strategies such
as the liquid chromatography-tandem mass spectrom-
etry (LC-MS/MS)-based shotgun [1] and MudPIT [2]
workflows generate tens of thousands of tandem mass
spectra in a single acquisition, identifying peptide se-
quences and, by association, the protein content of the
analytical samples. As the speed of mass spectrometers,
the sophistication of sample fractionation, and the com-
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plexity of experimental designs increase, the volume
of tandem mass spectra requiring reliable automated
analysis will continue to grow. Consequently, software
tools that quickly, effectively, and robustly determine
the peptide associated with each spectrum with high
confidence are sorely needed.

In this high-throughput LC-MS/MS setting, peptides
are associated with tandem mass spectra by search
engines that compare peptide sequences with each
spectrum and rate the quality of the match with a
score. Each search engine generates a list of zero, one,
or in some cases, as many as ten of the best scor-
ing peptides for each tandem mass spectrum, along
with various measures of the quality of each peptide—
spectrum match. There are a large variety of these
search engines available [3-13], ranging from ma-
ture commercial offerings such as SEQUEST [3] and
Mascot [4] to more recent open-source offerings such
as X!Tandem [9], OMSSA [10], and MyriMatch [13].
All of these tools utilize the same basic algorithmic
framework but vary widely in the details, particularly in
the methodologies used to score and rank the candidate
peptide sequences. Further, many of these tools pro-
vide estimates of statistical significance for each peptide
identification, but each tool uses different significance
estimation techniques. Despite more than 10 years of
research on algorithms, scoring, statistical significance,
and software tools for peptide identification by se-
quence database search, there is little, if any, consen-
sus on the optimal scoring function for evaluating the
quality of a peptide assignment to a given spectrum.
Particularly problematic, given the variation in scoring
and statistical significance techniques, is distinguish-
ing correct peptide identifications from those that are
incorrect.

In addition to the array of sequence database search
engines now available, a variety of techniques have
been applied to their outputs in order to improve the
reliability of peptide identification. Broadly, these tools
treat the search engines as “black boxes,” attempting
to do a better job at discerning correct peptide identi-
fications from incorrect identifications than is possible
using only a search engine’s score or E-value. These
black-box tools employ one or more of various tech-
niques, including statistical significance re-estimation,
supervised and semisupervised machine learning scor-
ing and prediction, and combining or merging of search
engine results.

The popular decoy database strategy [14, 15] for esti-
mating false discovery rates (FDR) and the unsuper-
vised expectation-maximization (E-M) algorithm phase
of Peptide Prophet [16] use empirical properties of the
underlying search engine results as a null-model to re-
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estimate the statistical significance or likelihood asso-
ciated with peptide identification results. Other tools
re-estimate the significance of peptide identification
results using a theoretical model [17].

Supervised machine learning techniques [15, 16, 18—
20] have been applied to existing and novel features
derived from search engine results to derive score func-
tions that demonstrate superior sensitivity and speci-
ficity for specific data sets. The supervised machine
learning techniques are often combined with statistical
significance re-estimation techniques [15, 16] to nor-
malize the class prediction probabilities.

Lastly, result combiners [15, 21, 22] rely on peptide
identification results from multiple search engines to
improve sensitivity and specificity, under the premise
that search engine agreement increases the likelihood
that the identification is correct. These are often used
in conjunction with statistical significance re-estimation
techniques [15, 22], which are used to normalize
the scores from each search engine to make them
comparable.

The effectiveness of machine learning in combining
various measures of peptide identification confidence
from a single search engine into a single correctness
likelihood or prediction has already been demonstrated
[15, 16, 18-20]. In each case, the predictors are first
trained using tandem mass spectra generated from
controlled mixtures of known protein standards, for
which peptide identifications that correspond to pep-
tides from the known proteins are presumed correct.
The trained predictor can then be applied to previ-
ously unseen peptide identifications to distinguish cor-
rect from incorrect identifications. Various machine
learning technologies have been applied in this way,
from linear discriminant analysis (LDA) [16] to support
vector machines (SVM) [19], neural networks [20], and
random forest [15, 18]. In each case, these techniques
demonstrate a considerable boost in peptide identifi-
cation sensitivity and specificity, as compared to the
original search engine’s score or E-value.

A major concern with supervised machine learning
techniques, however, is the question of generalization
of the trained machine learning model to peptide iden-
tification results from a different instrument or search
engine. Unsupervised training, which can be applied on
the fly to each new data set, can adapt to the particular
features of a given set of results as needed. Peptide
Prophet [16], in particular, utilizes a supervised training
phase to establish the optimal linear weighting of the
various peptide identification properties and scores,
and an unsupervised empirical fit of a bimodal mix-
ture model to the discriminant scores to establish the
likelihood of correct peptide identifications. Peptide
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Prophet’s unsupervised significance re-estimation helps
to make its probabilities quite robust, as long as the
underlying linear discriminant model generalizes well
enough to distinguish correct and incorrect identifi-
cations well. Semisupervised machine-learning has re-
cently emerged [23, 24] as a solution to concerns about
the ability of supervised machine-learning to general-
ize well. Semisupervised learning uses decoy database
hits as known false peptide identifications to guide the
machine learning approach.

A second significant concern with black-box search
engine output re-analysis techniques is the require-
ment that correct (and incorrect) peptide identifications
respect some underlying mathematical model. Some-
times, these model assumptions are explicit, as in the
use of LDA [16] and SVM [19] machine learning tech-
niques, while in other cases, they are implicit, such as
the assumption built into most result combiners that
incorrect peptide identifications from different search
engines are uncorrelated [15, 21, 22].

In this work, we describe the application of a model-
free, result combining, unsupervised machine-learning
approach to the problem of distinguishing correct from
incorrect peptide identifications that outperforms each
of these basic techniques. Mixtures of standard proteins
and estimated FDR are used throughout to ensure that
the performance of our peptide identification results
arbiter is evaluated objectively. We demonstrate that
these techniques outperform search engine E-values
when applied to the results from a single search en-
gine, and that using machine learning to combine re-
sults from multiple search engines provides additional
benefit.

We first show the effectiveness of our machine learn-
ing combiner in a supervised setting, in which the true-
positive proteins are known in advance, and then show
how to use a heuristic, iterative training procedure to
achieve comparable performance in an unsupervised
fashion. Our model-free, unsupervised machine learn-
ing algorithm is applied anew to each set of search
engine results, making it robust across instruments,
search engines, search engine parameter settings, and
protein sequence databases without user intervention.

We apply this technique to three data sets derived
from synthetic protein mixtures, analyzed by three dif-
ferent instruments utilizing two distinct ionization tech-
niques. We use peptide identification results from three
different search engines: Mascot [4], X!Tandem [9],
and OMSSA [10]. We demonstrate that, in each case,
the use of additional metrics of peptide identification
confidence generated by each search engine can boost
identification reliability over using the search engines’
E-values alone. We also show that the performance of

the machine learning technique applied to the results
of just two open-source search engines, X!Tandem and
OMSSA, is almost as good as that obtained when using
results from all three.

Experimental Procedures
Tandem Mass Spectra

We use three MS/MS data sets created from known
protein mixtures on three different instruments uti-
lizing a variety of ionization, mass measurement, and
fragmentation technologies. We label these data sets
S17, AURUM, and OMICS throughout. A description
of MS/MS search engines and sequence database search
parameters, used to determine true-positive peptide
assignment statistics, follows.

S17 1,389 MS/MS spectra from the Sashimi
project data repository (http://sashimi.
sourceforge.net) data set 17mix_test2,
representing a tryptic digest of 17 standard
proteins analyzed using an electrospray
ionization quadrupole time-of-flight mass
spectrometer (Q-TOF Ultima) (Micromass/
Waters, Manchester, United Kingdom).
The S17 data set contains 241 (17.35%)
true-positive spectra assignable to peptides
from the expected or contaminant proteins.
10,097 MS/MS spectra from the Aurum
1.0 data set [25]. Spectra were generated
using a matrix assisted laser desorption/
ionization time-of-flight (MALDI TOF-
TOF) instrument (Applied Biosystems
4700, Foster City, CA, USA) from 246
commercially sourced human proteins syn-
thetically expressed in Escherichia coli,
checked for purity, digested with trypsin,
and spotted, one protein per MALDI
spot, for analysis. The AURUM data
set contains 4,101 (40.61%) true-positive
spectra assignable to peptides from the
expected or contaminant proteins.

19,000 MS/MS spectra from the data set
described in Keller et al. [26] representing
a tryptic digest of 18 standard proteins ana-
lyzed by electrospray ionization—ion trap
mass spectroscopy (Thermo Finnigan,
San Jose, CA, USA). The OMICS data
set contains 2,890 (15.2%) true-positive
spectra assignable to peptides from the
expected or contaminant proteins.

AURUM

OMICS
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MS/MS Search Engines and Sequence
Database Search

We use three sequence database search engines
to search the tandem mass spectra: X!Tandem [8],
Release 2008.02.01.1; MASCOT [4], version 2.2.03;
and OMSSA [10], version 2.1.1. We used the following
search parameters for all data sets: precursor mass
tolerance of 2.0 Da, fixed cysteine carbamidomethyl
modification, and variable methionine oxidation modi-
fications. Fully tryptic peptides with, at most, one
missed cleavage were specified for S17, AURUM, and
OMICS. Tandem’s refinement mode was not used. The
data sets S17, AURUM, and OMICS were searched
using fragment mass tolerances of 0.2, 0.4, and 0.6 Da,
respectively.

Two protein sequence databases were used:
UniProtKB/Swiss-Prot (version 53.0) and Human Inter-
national Protein Index (IPI-Human) (version 3.32).
Data sets S17 and OMICS were searched against
Swiss-Prot, while data set AURUM was searched
against IPI-Human. For each sequence database, we
create two decoy databases of independently shuffled
sequences. Decoy searches were conducted indepen-
dently of the target searches, and the search results
from the decoy databases were used for estimating
FDR as described in the experimental procedures to
follow.

Searching tandem mass spectra data sets against
protein sequence databases, each search engine gener-
ates zero, one, or more peptide assignments for each
spectrum (we will refer to these peptide-spectrum
assignments as peptide IDs for the remainder of this
paper). The peptide IDs differ between search engines,
as each search engine has its own heuristics for selecting
candidate peptides and filtering noisy spectra, as well as
different scoring functions for assessing the quality of
the peptide-spectrum match and different techniques
for assessing the statistical significance of a peptide
ID score.

We extract the top-ranked peptide, for each spec-
trum, from each search engine’s results. Peptide IDs
corresponding to an expected protein (in the synthetic
protein mix used to generate each data set) are consid-
ered correct, regardless of E-value, score, or number
of agreeing search engines. These peptide IDs are then
considered true assignments. In addition, we check for
contaminant proteins with highly statistically significant
identifications in all search engines, also labeling their
peptide IDs true. The peptide IDs not associated with
proteins in the synthetic protein mix or confidently
identified contaminant proteins are considered false
assignments.
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Use of Shuffled Decoy Databases

We use decoy database search results in a number of
ways. As described by others, we use decoy peptide
identifications to estimate the FDR of each of our
various algorithms for selecting the best peptide ID for
each spectrum. In addition, a number of our algorithms
require that scores or E-values be calibrated, where the
calibration is achieved using decoy peptide IDs. This
requires some care since we cannot use the same decoy
peptide IDs as algorithmic input data and to evaluate
the performance of the algorithm—this will overes-
timate the algorithm’s performance. For this reason,
decoy sequence databases are constructed by randomly
shuffling the order of the amino-acids in each protein
sequence. We create two independently shuffled decoy
sequence databases and compute decoy peptide IDs for
each. One set of decoy peptide IDs is used exclusively
for evaluating the performance of peptide ID selection
algorithms, while the other is used internally to cali-
brate search engine scores (voting heuristic combiner)
or prediction confidences (unsupervised machine learn-
ing). We point out that independent decoy peptide IDs
can only be achieved by shuffling, rather than reversing,
protein sequences.

Voting Heuristic Search Engine Combiner

To test whether machine learning is necessary to
achieve good performance, we designed a simple heu-
ristic search engine combiner based on the widely used
notion that, when different search engines give the
same peptide identification, the identification is more
likely to be correct than the single search engine E-
values or scores would otherwise suggest [15, 21, 22].

We considered a variety of heuristic result-combin-
ing schemes based on consensus identifications. Ulti-
mately, we selected a voting scheme that seemed to
consistently outperform the other consensus heuristics
we tried. Briefly, each search engine’s E-value is cali-
brated by the number of decoy peptide IDs, called
decoy hits, in the search engine’s decoy search results
with the same or better E-value. Each peptide ID
then has a minimum decoy hit count over the one
or more search engines with the same peptide ID.
Peptide IDs are ranked according to the number of
agreeing search engines (votes, decreasing), and then
by the minimum of their decoy hit counts (minimum
decoy hits, increasing). The minimum decoy hits value
is also used as the score of the peptide ID selection
for determining ROC curves and other performance
metrics.
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Machine Learning Search Engine Combiner

The Peptide identification Arbiter by Machine Learn-
ing (PepArML) result combiner models the pep-
tide identification problem as a classification problem.
PepArML classifies each spectrum’s peptide 1Ds, gen-
erated by one or more search engines, as either frue
or false with some confidence. For each spectrum, the
peptide ID classified as true with highest confidence is
the predicted correct peptide ID.

In addition to a score and E-value, search engines
compute additional metrics characterizing peptide IDs.
Using a machine learning framework makes it possible
to use these additional metrics to predict the correct-
ness of peptide IDs with little additional effort. We
construct a feature vector for each peptide—spectrum
pair consisting of scores and E-values from each search
engine, plus any additional metrics supplied by the
search engine. When search engines assign spectra to
different peptides, the score, E-value, and other metrics
computed by a search engine may be absent for a par-
ticular peptide—spectrum pair, in which case the values
are set to sentinels. An additional sentinel feature,
per search engine, is set to indicate the presence or
absence of the search engine’s features for a partic-

ular peptide—spectrum pair. Scores computed directly
from the spectrum or peptide, or both, can be eas-
ily added to the feature vector. We use a number of
spectrum- and peptide—specific features that are avail-
able for all peptide-spectrum pairs. We do not, at this
time, make any effort to eliminate features that are
correlated. The peptide ID feature vector is shown in
Table 1.

We chose the random forest machine-learning tech-
nique, implemented by the Weka [27] machine-learning
package, for the PepArML combiner due to the num-
ber of missing values, and the heterogeneous mix of
categorical, integer, and scale-free real values in a typ-
ical training data set. Early in the project, we exper-
imented with other machine-learning techniques, in-
cluding LDA, logistic regression, SVM, AdaBoost, and
naive Bayes, and found the random forest technique
to generally outperform the others. However, since a
thorough examination of the strengths and weaknesses
of a carefully tuned use of each technique is beyond
the scope of this work, we do not suppose to sug-
gest these techniques could not be made to work well
too. Having chosen the random forest technique, we
found that careful tuning of the training parameters
was necessary to reliably achieve good performance. To

Table 1 Peptide

- dentification features Search engine Feature S17 AURUM OMICS
and their InfoGain (Rank) - Precursor m/z 0.00 (24) 001 (21) 0.10 (18)
with respect to each Charge state 0.20 (13) 0.00 (25) 0.02 (24)
data set Peptide molecular weight 0.09 (22) 0.01 (21) 0.33 (6)
Molecular weight delta 0.28 (5) 0.29 (11) 0.14 (14)
Peptide length 0.02 (23) 0.00 (25) 0.09 (19)
# of agreeing search engines 0.36 (1) 0.39 (7) 0.38 (3)
Missed cleavages 0.09 (20) 0.09 (19) 0.07 (20)
# Tryptic termini 0.00 (24) 0.00 (23) 0.00 (25)
Tryptic N-terminal 0.00 (24) 0.00 (23) 0.00 (25)
Tryptic C-terminal 0.00 (24) 0.00 (25) 0.00 (27)
Tandem # of matched b-ions 0.14 (16) 0.28 (12) 0.10 (17)
b-ion score 0.16 (14) 0.20 (15) 0.07 (20)
E-value 0.31 (4) 0.48 (1) 0.26 (7)
Hyperscore 0.27 (8) 0.46 (2) 0.20 (9)
Sum of matched intensity 0.12 (17) 0.21 (14) 0.13 (15)
# of matched y-ions 0.24 (10) 0.39 (8) 0.14 (13)
y-ion score 0.21 (12) 0.25 (13) 0.17 (11)
Sentinel 0.12 (18) 0.16 (16) 0.07 (23)
Mascot E-value 0.32 (2) 0.43 (3) 0.33 (5)
# of matched peaks 0.16 (15) 0.16 (17) 0.11 (16)
# of matched ions 0.27 (9) 0.33 (10) 0.17 (10)
Score 0.32 (3) 0.42 (4) 0.33 (4)
Sentinel 0.09 (21) 0.13 (18) 0.07 (22)
OMSSA E-value 0.27 (7) 0.40 (5) 0.41(2)
# of matched ions 0.21 (11) 0.35(9) 0.25 (8)
p value 0.28 (6) 0.40 (6) 0.41 (1)
Sentinel 0.09 (19) 0.09 (19) 0.14 (12)
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train the random forest classifier, we first use the infor-
mation gain, called InfoGain by Weka, to eliminate
features with little predictive power, retaining features
with InfoGain at least 0.01. The tree-building algorithm
considers a random 25% of the remaining features at
each node split. We use 100 random trees, with the
prediction confidence of a peptide ID determined by
the number of random trees classifying the peptide ID
as true.

We trained classifiers using all possible combinations
of search engines. Classifiers using only the features of
Mascot, OMSSA, and Tandem are denoted C-M, C-O,
and C-T, respectively. Classifiers C-MO, C-TM, and
C-TO use features from Mascot and OMSSA, Tandem
and Mascot, and Tandem and OMSSA, respectively.
Classifier C-TMO uses features from all three search
engines.

Sampling Structure for Supervised Learning
Training and Evaluation

In order to get an unbiased estimate of the generali-
zation error of the machine-learning predictor, we
use fivefold stratified cross-validation by spectra. Each
spectrum is designated true if at least one of its peptide
IDs is known true, and false otherwise. The true and
false spectra are each partitioned randomly into five
similarly sized groups. In each cross-validation itera-
tion, one group of true and false spectra is withheld, and
the peptide IDs corresponding to the remaining spectra
are used to train a machine-learning classifier. Once
trained, the classifier is applied to the target and decoy
peptide IDs corresponding to the withheld spectra and
the predictions are used to evaluate the performance of
supervised learning.

The peptide ID training data sets formed by cross-
validation are typically quite unbalanced, with many
more false peptide IDs than true peptide IDs. We
uniformly down-sample the majority (false) class of
training instances before training so that the number
of false peptide IDs is, at most, five times the number
true peptide IDs. The factor five, like the random forest
training parameters, is the result of some tuning effort
but seems to work well across many data sets.

We apply each of these structured sampling pro-
cedures external to the feature selection and Weka
random forest training algorithm so that an unbiased,
conservative estimate of the generalization perfor-
mance of the machine-learning training can be
obtained. For the unsupervised learning algorithm to
follow, in which we do not use the identity of the known
true proteins and do not require the model to general-
ize, we evaluate the algorithm implemented using the
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fivefold cross-validation procedure and without cross-
validation.

Unsupervised Learning PepArML

For tandem mass spectra data sets derived from syn-
thetic protein mixes, training peptide IDs can be
deemed true or false based on the known protein con-
tent of the samples. In practice, however, the proteins
of a sample are not known in advance. We have devel-
oped an unsupervised training procedure that can be
applied in this case.

The unsupervised training procedure relies on two
key observations. First, typically, many of the proteins
in a sample can be confidently identified without fancy
result combiners or machine learning, even if some of
its peptides or spectra cannot. Second, machine learn-
ing techniques can often be successfully trained even
if the training labels contain some errors. We use an
iterative procedure in which putative true-positive pro-
teins are selected using the input search engine results.
The putative true-positive proteins are used to label
peptide IDs, as if the selected proteins were known to
be correct. Machine learning is then carried out and
peptide IDs predicted true or false with some predic-
tion confidence. The predictions, and their confidence
values, are then used to select a new putative true-
positive protein set, and the procedure is iterated until
convergence.

Figure 1 shows a schematic representation of unsu-
pervised PepArML training. We outline each step of
the unsupervised learning procedure in more detail.

Select putative true-positive proteins by consensus
First, consensus peptide IDs for which all search en-
gines agree are identified. Proteins containing at least
three nonoverlapping consensus peptides are selected.
When consensus peptides are contained in more than
one protein, all proteins meeting the criteria are se-
lected. The selected proteins become the initial putative
true-positive protein set.

Iteratively refine the putative true-positive proteins
Given putative true-positive proteins, all peptide IDs
associated with these proteins are labeled true, with
all other peptide IDs labeled false. A (new) clas-
sifier is trained on the labeled data as previously
described. Target and decoy peptide ID predictions
are obtained from the classifier, and estimated FDR
computed for each prediction confidence value. Pep-
tide IDs confidently predicted as true with estimated
FDR of at most 10% can then be determined. Pro-
teins with at least two such distinct peptides are
selected for addition to the putative true-positive pro-
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Fig. 1 Schematic representation of unsupervised PepArML
training

tein set. Previously selected proteins with no confi-
dently identified peptide IDs are removed from the
putative true-positive protein set.

Termination The iterative procedure continues until
the putative true-positive proteins do not change. The
parameters used to select the putative true-positive
proteins are intended to be somewhat conservative and
are similar to those required by some journals for the
publication of protein identification results. These set-
tings work well for each of our data sets, terminating in
three to four iterations in most cases. We stress that the
putative true-positive proteins need not be completely
correct in order for this iterative training procedure to
be successfully carried out, though we find that conser-
vative putative true protein selection parameters work
better than aggressive parameters. In the “Results and
Discussion” section, we show that this procedure
can robustly handle omission of some true-positive
proteins.

Performance Evaluation

We use a number of standard performance metrics to
evaluate the peptide ID predictions from the search
engines, the voting heuristic, and the machine learning
combiner, by reference to the ground truth for each
data set (correctness of each peptide ID as determined

by the corresponding synthetic protein mixture). Given
predictions on the feature vectors comprising a data
set, we select a subset of the predictions by threshold-
ing some confidence value, such as the search engine
E-value or classification confidence. For the selected
predictions, we can count the number of true positives
(TP), false positives (FP), false negatives (FN), and true
negatives (TN) with respect to the known ground truth.

Sensitivity, defined as TP/(TP+FN), measures the
proportion of known true peptide IDs that are cor-
rectly selected. Sensitivity is also known as true-positive
rate. Specificity, defined as TN/(FP+TN), measures the
proportion of known false peptide IDs that are cor-
rectly not selected. The false-positive rate is defined as
(1—specificity). The true FDR, defined as FP/(FP+TP),
measures the proportion of selected peptide IDs that
are known to be false. To compute true FDR requires
knowledge of ground truth, which is not available for
real data sets. We estimate the FDR using decoy pep-
tide IDs. The total number of selected peptide IDs
above a confidence threshold (number of positives—
NP), which is equal to (FP+TP), can be determined
without knowledge of the ground truth. The number
of decoy peptide IDs above a confidence threshold
(decoy positives—DP) represents an estimate of FP,
and furnishes estimated FDR, defined here as DP/NP.

We use a number of different metrics to evaluate
each method of predicting the true peptide IDs:

e Receiver operating characteristic (ROC) curves.
ROC curves are graphical plots of the sensitivity
vs. (1-specificity) for all possible threshold values.
Equivalently, ROC curves plot the true-positive
rate vs. the false-positive rate. ROC curves provide
a global view of the sensitivity/specificity trade-off
of a particular predictor, evaluating the predictor’s
ability to separate true from false peptide IDs.

e Area under ROC (AUROC). AUROC is a single-
value summary of a ROC curve, where higher val-
ues are desirable. A predictor that separates true
and false peptide IDs perfectly will have a square
ROC curve and an AUROC of 1.

e Sensitivity for given true FDR. Specificity-based
performance metrics can sometimes give a mislead-
ing impression as to the performance of a predictor
when the number of false data points is much larger
than the number of true data points, as is the case
for our peptide ID data sets. We compute the sen-
sitivity at 10% true FDR.

e Sensitivity for given estimated FDR. The sensitivity
at a given true FDR is uncomputable for data sets
for which the ground truth is not available. There-
fore, we evaluate the sensitivity of each predictor
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at a threshold corresponding to a fixed estimated
FDR level of 10%, to better evaluate the predictor
performance as it would be used on a real data set.

All performance metrics other than the ROC curves
are recorded for 20 independent trials, and presented as
boxplots to show the distribution of values arising from
the random behavior of the cross-validation, down-
sampling, and random forest classifier training. ROC
curves are plotted for one representative trial.

In order to benchmark our results against other
machine-learning techniques, we also evaluated the
performance of the Peptide Prophet algorithm (part of
the TPP package, version 4.1.1) applied to the Mascot
peptide IDs. However, due to the way in which the
Peptide Prophet algorithm is implemented, we cannot
compute estimated FDR via the decoy search method.
Therefore, for Peptide Prophet results, we use (1 — p),
where p is the Peptide Prophet probability, as the esti-
mated FDR. We note that, while this reflects the likely
use of Peptide Prophet on a real data set, it creates a
potential apples-to-oranges comparison of sensitivity at
10% estimated FDR in the results to follow.

Results and Discussion
Search Engine and Voting Heuristic Performance

At first glance, the labeling methodology described in
the “Experimental Procedures” section appears to cre-
ate data sets too easily classified since all true peptide
identifications must appear as the top-ranked peptide
ID in at least one search engine’s results. Nevertheless,
a cursory examination of each data set shows consider-
able room for improvement over Tandem, Mascot, or
OMSSA alone. Table 2 shows the sensitivity of each
search engine at 10% estimated FDR.

We observe that sensitivity varies wildly across
search engines and data sets, with a different search
engine achieving the best sensitivity for each data set.
We observe that a significant number of the true pep-

Table 2 Sensitivity (%) of Tandem, Mascot, OMSSA, and Vot-
ing heuristic at 10% estimated FDR

Tandem Mascot OMSSA Voting
heuristic
S17 4.7 46.1 43.6 52.7
AURUM 80.2 74.1 68.9 82.0
OMICS 41.5 46.7 56.9 59.6

Best single search engine sensitivity for each data set indicated in
boldface
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tide IDs cannot be recovered, even at this generous
significance cutoff. Examining the peptide identifica-
tion results more carefully, we observe that a significant
number of true peptide IDs have poor individual search
engine scores, a setting in which we hope that search
engine agreement might help distinguish true from false
peptide identifications. Finally, we see that the voting
heuristic dominates the best individual search engine
for each data set, though only by a few percent.

Supervised Learning PepArML Performance

Next, we examine the ability of machine learning
to combine search engine scores and features. Clas-
sifier and search engine ROC curves for each data
set are shown in Figs. 2 (OMICS), S1 (S17), and S4
(AURUM), using six ROC plots for each data set.
In each plot, the y axis represents true-positive rate
(sensitivity), and the x axis represents false-positive rate
(1-specificity). The three plots on the left of each figure
present ROC curves for classifiers C-T, C-M, and C-O
(solid lines) and for search engines Tandem, Mascot,
and OMSSA (dotted lines). The three plots on the right
of each figure present ROC curves for classifiers C-TM,
C-MO, and C-TO (solid lines). ROC curves for C-TMO
(dash-dotted lines) and the voting heuristic (dashed
lines) are included in all plots for comparison.

Classifier and search engine sensitivity (percent) for
each data set at 10% estimated FDR is shown in Fig. 3.
Sensitivity at 10% and 20% true and estimated FDR
is shown for each data set in Figs. S2, S5, and S7.
Sensitivity at 5%, 10%, and 15% false-positive rate and
AUROC is shown in Figs. S3, S6, and S8. Classifiers are
arranged along the x axis, with boxplots summarizing
the results of 20 independent trials. The performance
of Peptide Prophet applied to Mascot results (denoted
M*) is also shown next to the Mascot boxplot.

A thoughtful evaluation of these performance plots
provides considerable insight into the relative perfor-
mance of individual search engines, voting heuristics,
and machine learning for peptide identification.

First, the application of the machine learning to indi-
vidual search engine scores improves performance con-
siderably. In some cases, such as the OMICS data
set, the improvement is dramatic, with C-T yielding
420 additional peptide identifications at 10% estimated
FDR, a 35% increase over Tandem’s E-value alone.
In other cases, machine-learning applied to individual
search engine scores appears to have little benefit. Fur-
thermore, the relative benefit is not consistent across
data sets, with C-O showing little improvement over
OMSSA’s E-value for data set OMICS, but significant
improvement for data set S17.
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Surprisingly, Peptide Prophet applied to the Mascot
results generally reduces the sensitivity at fixed esti-
mated FDR. We conjecture that the reduced perfor-
mance may be due the failure of Peptide Prophet to
fit models in data sets S17 and OMICS to charge state
1+ and 3+, and 1+, spectra, respectively. However, sim-
ilarly degraded performance is seen for the AURUM
data set, which consists entirely of 1+ MALDI spectra.
It is also possible that more conservative estimated
FDR values are responsible, but a similar pattern is
observed with respect to true FDR and the AUROC.
Our application of Peptide Prophet to the Mascot re-
sults used the most recent release of the TPP (version
4.1.1) and appropriate settings as described in the
documentation—and as such, we believe these results
are representative of what would be obtained on real
data sets.

Fig.2 ROC curves for data
set OMICS. Classifiers 1

Tandem

Second, combining results from multiple search en-
gines using machine learning is very effective. Exam-
ining the performance of C-TMO, C-TM, C-TO, and
C-MO, we see that these classifiers generally achieve
much better sensitivity than the voting heuristic. In-
terestingly, while classifiers combining pairs of search
engine results generally dominate their constituent sin-
gle search engine classifiers, sometimes a single search
engine classifier is so good that it beats the classifier
that combines the two other search engines. Classifier
C-T demonstrates this for data set AURUM. Never-
theless, we see that, when we observe the performance
over 20 independent runs, the classifier C-TMO signifi-
cantly outperforms all of the other supervised learning
classifiers, the voting heuristic combiner, and the indi-
vidual search engines. Compared to the worst search
engine E-value for each data set, the C-TMO classifier
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Fig. 3 Sensitivity (%) at 10%
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improves the sensitivity at 10% estimated FDR from
43% (Tandem) to 78% for data set S17, from 69%
(OMSSA) to 88% for data set AURUM, and from 42%
(Tandem) to 73% for data set OMICS.

Third, in a number of cases, combining the results of
two search engines performs almost as well as combin-
ing the results of all three search engines. In particular,
the performance of C-TM is generally quite close to
that of C-TMO, except for data set OMICS, where the
performance of C-TO is closest to the performance of
C-TMO. This is particularly interesting in the case of
C-TO, which is comprised of the results of two free,
open-source search engines. It is not unexpected that
the use of three search engines results in marginal
improvement over the results of two search engines in
some cases, though it is unclear which pair of search
engines to choose a priori to achieve the best results.
The C-TMO classifier is consistently better than the
paired classifiers across all data sets.

Fourth, it is clear that the randomized cross-
validation, down-sampling, and random forest con-
struction results in some variation in the resulting
performance of the classifiers, and that this variation is
greatest for the machine-learning combiners with more
features. For similarly performing classifiers, this varia-
tion can sometimes change their relative performance
ranking, but the essential characteristics of relative
performance of the classifiers is retained.

Fifth, despite the rather small size of data set S17,
with each cross-validation fold containing around 200
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true-positive peptide IDs, the random forest training
procedure has no trouble constructing a good peptide
identification predictor. In fact, from these results, it
seems likely that the characteristics of the underlying
data set are more relevant to the performance of the
trained predictor, as the AURUM results (large data
set) look more impressive than the results for the small
S17 data set or the very large OMICS data set. The
very high sensitivity for the AURUM data set may also
be in part due to the use of IPI Human rather than
SwissProt for searching, as the smaller database is less
likely to contain high scoring random or homologous
peptides. Nevertheless, it is clear from the S17 results
that classifiers can be reliably trained on small spectral
data sets.

Supervised Learning Feature Evaluation

We assess the discriminating ability of each element
of the feature vector using the information gain met-
ric. The information gain of a feature measures the
reduction in entropy or randomness when the data set
is subdivided according to the feature’s values. Infor-
mation gain, called InfoGain by Weka, is one of many
good techniques for assessing the relative importance
of each feature in good classifiers, and it is a property of
the data set, independent of the particular classification
algorithm used. Larger InfoGain values indicate that a
feature is likely to be more useful in making accurate
predictions.
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Table 1 shows InfoGain values computed by Weka
for each feature of the feature vector. As might be
expected, each search engine’s E-value is very good
at distinguishing true from false peptide identifications,
although the relative importance of the different search
engines’ E-values vary considerably across data sets.
We note that the variation in InfoGain values is not due
to random variation induced by the down-sampling and
cross-validation as the standard-deviation of the largest
InfoGain values, computed over ten observations of
five cross-validation folds, is less than 0.015 for the
small data set S17 and less than 0.005 for the larger data
sets OMICS and AURUM.

The number of agreeing search engines is also very
powerful, providing significant support for the use of
consensus or voting heuristics in peptide identifica-
tion, although, again, the relative importance varies
with data set. The utility of the model-free machine-
learning technique becomes apparent when examining
the other, less obvious features. The mass difference be-
tween experimental and theoretical peptide molecular
weight is quite powerful in data sets S17 and AURUM,
but much less so in data set OMICS, perhaps reflecting
instruments providing more accurate precursor mea-
surements. Surprisingly, the peptide molecular weight
is a good indicator of true vs. false peptide identifica-
tions in data set OMICS, which typically occurs when
the data set contains many spectra matching very short,
rarely correct, peptides.

As expected, a number of features, such as peptide
length and number of tryptic termini, are uninformative
given the search parameters used. The tiny amount
of signal (InfoGain is non-zero, but less than 0.01)
attributable to the tryptic N-terminal feature is due to
the differences in search engines’ definition of tryptic
peptides—Mascot and OMSSA consider the peptide at
the N-terminus of a protein, with the initial methionine
removed, to be a tryptic peptide, while Tandem con-
siders this a semitryptic peptide. Unfortunately, these
types of search engine quirks can reduce the number of
consensus peptide IDs and make search engine com-
biners work much harder to discern true from false
peptide IDs.

Unsupervised Learning PepArML Performance

Table 1 shows that there is considerable variation in
InfoGain and relative rank for each feature between
data sets. This suggests that a classifier trained on one
data set may perform poorly when applied to another.
To understand the possible extent of the problem, we
applied the classifier trained on data set S17 to a data
set from a Thermo Finnigan LTQ instrument and eval-

uated the results (data not shown). We found that the
S17 classifier generalized extremely poorly, performing
worse than individual search engine E-values. Upon
reflection, we realized that, not only would the machine
learning algorithm chose suboptimal features for a data
set from a different instrument, but the weights and
thresholds estimated by training would not be valid if
the characteristics of the feature vector changed signif-
icantly. To understand this phenomenon, recall that E-
values change with sequence database size and precur-
sor mass tolerance and that search engine scores tend
to depend heavily on the instrument fragment mass
tolerance. To make a machine learning approach useful
in practice, we must be able to train on the specific
characteristics of each individual data set, despite the
lack of ground truth for its peptide IDs. The unsuper-
vised PepArML training procedure is able to make an
educated, and in practice, quite good, guess at the true
labels for each peptide ID, making it possible to train
a classifier. Iteration is merely an attempt to refine the
guessed labels.

In order for the unsupervised training procedure to
be useful in practice, we need to show that its perfor-
mance is comparable to that of the supervised training
procedure. The left side of Fig. 4 shows the ROC curves
of the supervised C-TMO classifier (dash-dotted line),
voting heuristic (dashed line), unsupervised learning
classifier with fivefold cross-validation U-TMO (solid
line), and unsupervised learning classifier with no cross-
validation U*-TMO (dotted line) applied to each data
set. Figure 3 shows the percent sensitivity at 10% esti-
mated FDR for U-TMO and U*-TMO in compari-
son to supervised learning classifiers. The ROC curves
demonstrate almost no difference between the super-
vised and unsupervised learning under the same cross-
validation regime, with a significant performance boost
once we use the unsupervised learning procedure to fif a
predictor to the data, rather than asking it to generalize.
The sensitivity boxplots indicate that there is a small
penalty in using the unsupervised learning procedure
under the fivefold cross validation regime, though the
U-TMO classifier still bests most of the other super-
vised learning classifiers. As with the ROC curves, it is
clear that, once we fit the predictor with respect to our
putative true proteins, we can boost the classification
performance beyond that of supervised learning.

The success of the unsupervised learning procedure,
as good or better than the supervised learning clas-
sifiers on each of these data sets, suggests that it is
able to select proteins so the resulting true/false labels
approximate the supervised learning labels well. It is
not unreasonable to suppose that protein sequence
homology or peptide sequence redundancy might dis-
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Fig. 4 Left column: ROC
curves for data sets S17, 1

Dataset S17

Dataset S17

AURUM, and
OMICS—C-TMO
(dash-dotted line), heuristic
combiner (dashed line),
U-TMO (solid line), and
U*-TMO (dotted line) shown.
Right column: AUROC after
each training iteration for
data sets S17, AURUM,

and OMICS—true protein

False Negative Rate

AUROC

labels at every iteration 0 0.1
(dash-dotted and asterisks),
true protein labels for

Dataset AURUM
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initialization only (solid and
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(dashed and circles), and
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(dotted and crosses)
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rupt the unsupervised learning procedure. To test
this, we searched data sets S17 and OMICS against
SwissProt, which contains considerable sequence ho-
mology. Despite the inclusion of homologous proteins
in the putative true protein set, the unsupervised learn-
ing achieved similar performance to the supervised
learning classifier whose true protein set did not include
homologous proteins.

We also checked whether data sets representing a
large number of proteins with relatively few peptide
IDs per protein might derail the unsupervised learning
procedure. The AURUM data set is one such data
set, containing the MS/MS spectra of peptides from
hundreds of proteins. The unsupervised procedure had
no trouble labeling the peptide IDs well enough to
achieve good performance on this data set either.

We checked whether peptide IDs from known
present low-abundance proteins with just one high-
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quality peptide ID would be lost due to the unsuper-
vised learning procedure. We found that high-quality
“one-hit-wonder” peptide IDs are correctly given high
confidence predictions by the unsupervised learning
classifier, as these represent a relatively small number
of incorrectly labeled training examples and do not
prevent the machine-learning algorithm from building
a good predictor.

Unsupervised Learning Initialization and Convergence

While the previous section demonstrates that the unsu-
pervised learning PepArML procedure achieves similar
performance to the supervised learning approach on all
three data sets, its rate of convergence and tolerance
for a poor initial putative true protein set needs to
be established. If too many iterations are required,
or if small errors in the initial protein set result in
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nonsense predictions, then the appropriateness of the
technique for real experimental data sets could be in
doubt.

Figure 4, right column, demonstrates the robustness
of the unsupervised learning procedure to the initial
protein set and its stability in comparison to supervised
learning. The x axis represents the training iteration
of the unsupervised procedure. The y axis represents
the AUROC of the classifier after each iteration, eval-
uated with respect to the known true protein set. We
conduct ten iterations of the machine-learning training
algorithm for U-TMO (fivefold cross-validation) under
various peptide ID-labeling regimes. First, we use the
true protein labels at each iteration (dash-dotted and
asterisks). Second, we initialize with true protein labels,
and then use the unsupervised learning procedure to
update the protein set (solid and box). Third, we use
the unsupervised learning procedure initial protein set
and update (dashed and circle). Finally, we use the
single putative true protein with the most consensus
peptide IDs as the initial protein set and update us-
ing the unsupervised learning procedure (dotted and
crosses). It is clear that there is little difference, for
these data sets, between ten iterations of supervised
learning and the unsupervised learning procedure ap-
plied as described in the “Experimental Procedures”
section. Even when we initialize with just one protein,
the predictor is able to achieve an AUROC value
equivalent to the supervised learning classifier after
just one iteration. Generally, the unsupervised learning
procedure terminates in about three iterations for these
data sets. As demonstrated in Fig. 4, the unsupervised
learning procedure is able get started even if only a
small number of the true-positive peptide IDs can be
correctly labeled.

Conclusions

In this paper, we have demonstrated a highly sensitive
and specific new technique for separating true from
false peptide identifications on three synthetic protein
mixture data sets from both electrospray and MALDI
instruments. PepArML uses machine learning to com-
bine the search results from many search engines,
achieving better results than machine-learning or result
combining alone. PepArML uses the model-free ran-
dom forest machine learning technique, which ensures
that the relative contributions of search engine agree-
ment and peptide-spectrum match scores can be used
optimally for each combination of spectra, search en-
gines, and search engine parameters. We have demon-
strated that PepArML can be trained effectively, with

no loss of performance, in an unsupervised manner,
making it possible to learn the properties of each data
set on the fly. Unsupervised PepArML removes the
need for extensive libraries of pretrained models based
on experimental spectra from synthetic protein mix-
tures from all instrument, search engine, and parameter
combinations. Unsupervised PepArML training also
alleviates concerns about suboptimal machine learning
models being applied beyond their ability to generalize
effectively.

PepArML does not rely on specialized features or
difficult-to-compute scores, but these can be easily
added to the model if desired. Similarly, PepArML
can be used with any number of different search en-
gines, or even multiple searches from the same search
engine. The model-free nature of PepArML combining
even makes it possible to combine results from dis-
parate peptide identification techniques, such as spec-
tral matching, alongside search engine results, or to use
paired searches with conservative and aggressive search
parameters.

The unsupervised training procedure could be ma-
nipulated in a variety of ways to exercise more control
over PepArML learning. Users could hand-select the
initial set of putative true proteins, or apply a species
constraint to the putative true protein set, if the sam-
ple is known to come from a particular organism. It
would also be straightforward to incorporate peptide
IDs to decoy peptides as known false identifications
just as other semisupervised learning approaches have
done. However, we believe that the addition of known
false peptide IDs is less powerful in this context than
correctly guessing true labels on a smaller number of
spectra.

The excellent performance of PepArML applied to
the results of Tandem and OMSSA, both open-source,
freely available search engines, raises the tantalizing
possibility that a PepArML-based metasearch engine
might offer superior identification performance than
costly commercial search engines. Such a metasearch
engine could wrap Tandem, OMSSA, and other free
search engines behind a single user interface.

It remains to be seen whether the iterated unsuper-
vised learning procedure proposed here can be applied,
as described, across the rich variety of experimental
data sets. Our experiments to investigate the robustness
of the procedure are encouraging, but it is possible our
simple technique for selecting putative true proteins,
in particular, may find too few true-positive proteins
for successful training. In future work, we plan to in-
vestigate whether protein identification tools, such as
Protein Prophet [28], or an E-M approach, which would
fit naturally into the iterative PepArML framework,
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might provide additional robustness for PepArML
when applied to experimental data sets.

We believe that the PepArML machine-learning

framework has the potential to solve the critical prob-
lems of combining multiple search engine results and
the use of machine-learning tools beyond training data
sets, resulting in robust, effective, and reliable tools for
peptide spectrum assignment.
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