Skip to main content

Advertisement

Log in

Emerging Role of Extracellular Vesicles in Intercellular Communication in the Brain: Implications for Neurodegenerative Diseases and Therapeutics

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are minute lipid-bilayer sacs discharged by cells, encompassing a diverse array of proteins, nucleic acids, and lipids. The identification of EVs as pivotal agents in intercellular communication has sparked compelling research pathways in the realms of cell biology and neurodegenerative diseases. Utilizing EVs for medicinal reasons has garnered interest due to the adaptability of EV-mediated communication. EVs can be classified based on their physical characteristics, biochemical composition, or cell of origin following purification. This review delves into the primary sub-types of EVs, providing an overview of the biogenesis of each type. Additionally, it explores the diverse environmental conditions triggering EV release and the originating cells, including stem cells and those from the Central Nervous System. Within the brain, EVs play a pivotal role as essential mediators of intercellular communication, significantly impacting synaptic plasticity, brain development, and the etiology of neurological diseases. Their potential diagnostic and therapeutic applications in various brain-related conditions are underscored, given their ability to carry specific cargo. Specially engineered EVs hold promise for treating diverse diseases, including neurodegenerative disorders. This study primarily emphasizes the diagnostic and potential therapeutic uses of EVs in neurological disorders such as Alzheimer’s Disease, Huntington’s Disease, Parkinson’s Disease, Amyotrophic Lateral Sclerosis, and Prions disease. It also summarizes innovative techniques for detecting EVs in the brain, suggesting that EVs could serve as non-invasive biomarkers for early detection, disease monitoring, and prognosis in neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., & Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tiwari, S., Kumar, V., Randhawa, S., & Verma, S. K. (2021). Preparation and characterization of extracellular vesicles. American Journal of Reproductive Immunology, 85(2), e13367. https://doi.org/10.1111/aji.13367.

    Article  CAS  PubMed  Google Scholar 

  3. Lee, K., Fraser, K., Ghaddar, B., Yang, K., Kim, E., Balaj, L., & Weissleder, R. (2018). Multiplexed profiling of single extracellular vesicles. ACS Nano, 12(1), 494–503. https://doi.org/10.1021/acsnano.7b07060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spitzberg, J. D., Ferguson, S., & Yang, K. S., et al. (2023). Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact. Nature Communications, 14, 1239 https://doi.org/10.1038/s41467-023-36932-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Théry, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, Chapter 3, Unit 3.22. https://doi.org/10.1002/0471143030.cb0322s30.

    Article  PubMed  Google Scholar 

  6. Shao, H., Chung, J., Balaj, L., Charest, A., Bigner, D. D., Carter, B. S., & Lee, H. (2012). Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nature Medicine, 18(12), 1835–1840. https://doi.org/10.1038/nm.2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cizmar, P., & Yuana, Y. (2017). Detection and characterization of extracellular vesicles by transmission and cryo-transmission electron microscopy. Methods in Molecular Biology, 1660, 221–232. https://doi.org/10.1007/978-1-4939-7253-1_18.

    Article  CAS  PubMed  Google Scholar 

  8. Sharma, S., Rasool, H. I., Palanisamy, V., Mathisen, C., Schmidt, M., Wong, D. T., & Gimzewski, J. K. (2010). Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano, 4(4), 1921–1926. https://doi.org/10.1021/nn901824n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vogel, R., Pal, A. K., & Jambhrunkar, S., et al. (2017). High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Scientific Reports, 7(1), 17479.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shimbo, K., Miyaki, S., & Ishitobi, H., et al. (2014). Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochemical and Biophysical Research Communications, 445(2), 381–387.

    Article  CAS  PubMed  Google Scholar 

  11. Katsuda, T., Kosaka, N., Takeshita, F., & Ochiya, T. (2013). The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics, 13(10-11), 1637–1653.

    Article  CAS  PubMed  Google Scholar 

  12. Longjohn, M. N., & Christian, S. L. (2022). Characterizing extracellular vesicles using nanoparticle-tracking analysis. Methods in Molecular Biology, 2508, 353–373. https://doi.org/10.1007/978-1-0716-2376-3_23.

    Article  PubMed  Google Scholar 

  13. Lawrie, A. S., Albanyan, A., Cardigan, R. A., Mackie, I. J., & Harrison, P. (2009). Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sanguinis, 96(3), 206–212.

    Article  CAS  PubMed  Google Scholar 

  14. Khan, M. A., Anand, S., Deshmukh, S. K., Singh, S., & Singh, A. P. (2022). Determining the size distribution and integrity of extracellular vesicles by dynamic light scattering. Methods in Molecular Biology, 2413, 165–175. https://doi.org/10.1007/978-1-0716-1896-7_17.

    Article  CAS  PubMed  Google Scholar 

  15. Doyle, L. M., & Wang, M. Z. (2019). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8(7), 727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lischnig, A., Bergqvist, M., Ochiya, T., & Lässer, C. (2022). Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles. Molecular & Cellular Proteomics, 21(9), 100273. https://doi.org/10.1016/j.mcpro.2022.100273.

    Article  CAS  Google Scholar 

  17. Kreimer, S., Belov, A. M., Ghiran, I., Murthy, S. K., Frank, D. A., & Ivanov, A. R. (2015). Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. Journal of Proteome Research, 14(6), 2367–2384. https://doi.org/10.1021/pr501279t.

    Article  CAS  PubMed  Google Scholar 

  18. Blandin, A., Dugail, I., & Hilairet, G., et al. (2023). Lipidomic analysis of adipose-derived extracellular vesicles reveals specific EV lipid sorting informative of the obesity metabolic state. Cell Reports, 42(3), 112169. https://doi.org/10.1016/j.celrep.2023.112169.

    Article  CAS  PubMed  Google Scholar 

  19. Lin, L., Liang, Y., Cao, T., Huang, Y., Li, W., Li, J., & Li, L. (2023). Transcriptome profiling and ceRNA network of small extracellular vesicles from resting and degranulated mast cells. Epigenomics, 15(17), 845–862. https://doi.org/10.2217/epi-2023-0175.

    Article  CAS  PubMed  Google Scholar 

  20. Welsh, J. A., Arkesteijn, G. J. A., Bremer, M., Cimorelli, M., Dignat-George, F., Giebel, B., & van der Pol, E. (2023). A compendium of single extracellular vesicle flow cytometry. Journal of Extracellular Vesicles, 12(2), e12299. https://doi.org/10.1002/jev2.12299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mangolini, V., Gualerzi, A., Picciolini, S., Rodà, F., Del Prete, A., Forleo, L., & Bedoni, M. (2023). Biochemical characterization of human salivary extracellular vesicles as a valuable source of biomarkers. Biology, 12(2), 227. https://doi.org/10.3390/biology12020227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krylova, S. V., & Feng, D. (2023). The machinery of exosomes: biogenesis, release, and uptake. International Journal of Molecular Sciences, 24(2), 1337. https://doi.org/10.3390/ijms24021337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raghav, A., Tripathi, P., Mishra, B. K., Jeong, G. B., Banday, S., Gautam, K. A., & Ahmad, J. (2021). Mesenchymal stromal cell-derived tailored exosomes treat bacteria-associated diabetes foot ulcers: A customized approach from bench to bed. Frontiers in Microbiology, 12, 712588. https://doi.org/10.3389/fmicb.2021.712588.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim, H. J., Kim, G., Lee, J., Lee, Y., & Kim, J. H. (2022). Secretome of stem cells: Roles of extracellular vesicles in diseases, stemness, differentiation, and reprogramming. Tissue Engineering and Regenerative Medicine, 19(1), 19–33. https://doi.org/10.1007/s13770-021-00406-4.

    Article  CAS  PubMed  Google Scholar 

  25. Gupta, S., Krishnakumar, V., Soni, N., Rao, E. P., Banerjee, A., & Mohanty, S. (2022). Comparative proteomic profiling of Small Extracellular vesicles derived from iPSCs and tissue-specific mesenchymal stem cells. Experimental Cell Research, 420(2), 113354. https://doi.org/10.1016/j.yexcr.2022.113354.

    Article  CAS  PubMed  Google Scholar 

  26. Jahanbani, et al. (2021). miR-133b-3p in extracellular vesicles from bone marrow mesenchymal stem cells alleviates Parkinson’s disease via regulating MERTK-mediated nuclear autophagy. Theranostics, 11(23), 11550–11567. https://doi.org/10.7150/thno.61016.

    Article  Google Scholar 

  27. Trajkovic, K., et al. (2008). Endocytosis regulates exosome secretion and selective accumulation of miRNAs in colorectal cancer cells. Nature Communications, 4, 1229. https://doi.org/10.1038/ncomms2328

  28. Théry, C., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Park, S. Y., Kim, D. S., Kim, H. M., Lee, J. K., Hwang, D. Y., Kim, T. H., You, S., & Han, D. K. (2022). Human mesenchymal stem cell-derived extracellular vesicles promote neural differentiation of neural progenitor cells. International Journal of Molecular Sciences, 23(13), 7047. https://doi.org/10.3390/ijms23137047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rädler, J., Gupta, D., Zickler, A., & Andaloussi, S. E. (2023). Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Molecular Therapy, 31(5), 1231–1250. https://doi.org/10.1016/j.ymthe.2023.02.013.

    Article  CAS  PubMed  Google Scholar 

  31. Santavanond, J. P., Rutter, S. F., Atkin-Smith, G. K., & Poon, I. K. H. (2021). Apoptotic bodies: mechanism of formation, isolation and functional relevance. Sub-Cellular Biochemistry, 97, 61–88. https://doi.org/10.1007/978-3-030-67171-6_4.

    Article  CAS  PubMed  Google Scholar 

  32. Li, M., Liao, L., & Tian, W. (2020). Extracellular vesicles derived from apoptotic cells: An essential link between death and regeneration. Frontiers in Cell and Developmental Biology, 8, 573511. https://doi.org/10.3389/fcell.2020.573511.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Naghibi, A. F., Daneshdoust, D., Taha, S. R., Abedi, S., Dehdezi, P. A., Zadeh, M. S., & Soleymani-Goloujeh, M. (2023). Role of cancer stem cell-derived extracellular vesicles in cancer progression and metastasis. Pathology Research and Practice, 247, 154558. https://doi.org/10.1016/j.prp.2023.154558.

    Article  CAS  PubMed  Google Scholar 

  34. Li, Q., Yu, H., Sun, M., Yang, P., Hu, X., Ao, Y., & Cheng, J. (2021). The tissue origin effect of extracellular vesicles on cartilage and bone regeneration. Acta Biomaterialia, 125, 253–266. https://doi.org/10.1016/j.actbio.2021.02.039.

    Article  CAS  PubMed  Google Scholar 

  35. Matsuzaka, Y., & Yashiro, R. (2022). Therapeutic Strategy of mesenchymal-stem-cell-derived extracellular vesicles as regenerative medicine. International Journal of Molecular Sciences, 23(12), 6480. https://doi.org/10.3390/ijms23126480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patel, D. B., Gray, K. M., Santharam, Y., Lamichhane, T. N., Stroka, K. M., & Jay, S. M. (2017). Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioengineering and Translational Medicine, 2(2), 170–179. https://doi.org/10.1002/btm2.10065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang, M., Huang, C. C., Gajendrareddy, P., Lu, Y., Shirazi, S., Ravindran, S., & Cooper, L. F. (2022). Extracellular vesicles From TNFα preconditioned MSCs: Effects on immunomodulation and bone regeneration. Frontiers in Immunology, 13, 878194. https://doi.org/10.3389/fimmu.2022.878194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mushahary, D., Spittler, A., Kasper, C., Weber, V., & Charwat, V. (2018). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A, 93(1), 19–31. https://doi.org/10.1002/cyto.a.23242.

    Article  CAS  Google Scholar 

  39. Tsiapalis, D., & O’Driscoll, L. (2020). Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells, 9(4), 991. https://doi.org/10.3390/cells9040991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blanchette, C. R., Scalera, A. L., Harris, K. P., Zhao, Z., Dresselhaus, E. C., Koles, K., & Rodal, A. A. (2022). Local regulation of extracellular vesicle traffic by the synaptic endocytic machinery. Journal of Cell Biology, 221(5), e202112094. https://doi.org/10.1083/jcb.202112094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hering, C., & Shetty, A. K. (2023). Extracellular vesicles derived from neural stem cells, astrocytes, and microglia as therapeutics for easing TBI-induced brain dysfunction. Stem Cells Translational Medicine, 12(3), 140–153. https://doi.org/10.1093/stcltm/szad004.

    Article  PubMed  PubMed Central  Google Scholar 

  42. You, Y., Muraoka, S., Jedrychowski, M. P., Hu, J., McQuade, A. K., Young-Pearse, T., & Ikezu, T. (2022). Human neural cell type-specific extracellular vesicle proteome defines disease-related molecules associated with activated astrocytes in Alzheimer’s disease brain. Journal of Extracellular Vesicles, 11(1), e12183. https://doi.org/10.1002/jev2.12183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiaradia, E., Tancini, B., Emiliani, C., Delo, F., Pellegrino, R. M., Tognoloni, A., & Buratta, S. (2021). Cells. Cells, 10(7), 1763. https://doi.org/10.3390/cells10071763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Van den Broek, B., et al. (2021). Advances in Drug Delivery Reviews.

  45. Theranostics, 12(13), 5776-5802. (2022, July 18). https://doi.org/10.7150/thno.73931.

  46. Chen, Y., Zhou, C., Zhao, X., Che, R., Wu, Y., Wan, S., & Hua, X. (2023). Extracellular vesicles derived from human umbilical cord mesenchymal stem cells promote trophoblast cell proliferation and migration by targeting TFPI2 in preeclampsia. Stem Cells International, 2023, 7927747. https://doi.org/10.1155/2023/7927747.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pan, J., Sheng, S., Ye, L., Xu, X., Ma, Y., Feng, X., & Zheng, J. C. (2022). Extracellular vesicles derived from glioblastoma promote proliferation and migration of neural progenitor cells via PI3K-Akt pathway. Cell Communication and Signaling, 20(1), 7 https://doi.org/10.1186/s12964-021-00760-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Niu, J., & Li, Z. (2020). The potential therapeutic roles of extracellular vesicles in Alzheimer’s disease. Journal of Alzheimer’s Disease, 78(4), 1383–1393. https://doi.org/10.3233/JAD-201040.

    Article  CAS  Google Scholar 

  49. Garcia-Contreras, M., & Thakor, A. S. (2021). Stem cell-derived extracellular vesicles in neurodegenerative disorders: A focus on Alzheimer’s disease. Stem Cell Research & Therapy, 12(1), 142. https://doi.org/10.1186/s13287-021-02179-2.

    Article  Google Scholar 

  50. Kim, D. K., Nishida, H., & An, S. Y., et al. (2021). Extracellular vesicles, especially derived from mesenchymal stem cells, promote therapeutic effects in Alzheimer’s disease. Advanced Drug Delivery Reviews, 173, 532–545. https://doi.org/10.1016/j.addr.2021.03.010.

    Article  CAS  Google Scholar 

  51. Katsuda, T., Tsuchiya, R., & Kosaka, N., et al. (2013). Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Scientific Reports, 3, 1197 https://doi.org/10.1038/srep01197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Godoy, M. A., Saraiva, L. M., & de Carvalho, L. R. P., et al. (2018). Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-beta oligomers. Journal of Biological Chemistry, 293(6), 1957–1975. https://doi.org/10.1074/jbc.RA117.000315.

    Article  PubMed  Google Scholar 

  53. Ma, T., Chen, Y., & Vingtdeux, V., et al. (2020). Regulation of memory formation by the transcription factor XBP1. Cell Reports, 30(9), 2865–2874.e3. https://doi.org/10.1016/j.celrep.2020.02.010.

    Article  CAS  Google Scholar 

  54. Sha, Y., & Han, Q. G. Y., et al. (2021). MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials Science, 9(8), 2621–2633. https://doi.org/10.1039/D0BM02050E.

    Article  Google Scholar 

  55. Apodaca, L. A., Baddour, A. A., & Aghajan, M., et al. (2021). Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Molecular Cell, 81(12), 2615–2630.e7. https://doi.org/10.1016/j.molcel.2021.05.035.

    Article  Google Scholar 

  56. Zhang, Y., Kim, M. S., & Jia, B., et al. (2021). Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature, 548(7665), 52–57. https://doi.org/10.1038/nature23282.

    Article  CAS  Google Scholar 

  57. Jang, S. C., Kim, O. Y., & Yoon, C. M., et al. (2013). Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 7(9), 7698–7710. https://doi.org/10.1021/nn402232g.

    Article  CAS  PubMed  Google Scholar 

  58. Dooley, K., McConnell, R. E., & Xu, K., et al. (2021). Engineering enhanced therapeutic exosomes. Advances in Drug Delivery Reviews, 175, 113761. https://doi.org/10.1016/j.addr.2021.113761.

    Article  Google Scholar 

  59. Alzheimer’s Association. (2021). Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 17(2), 195-225. https://doi.org/10.1002/alz.12328.

  60. Goetzl, E. J., Schwartz, J. B., & Abner, E. L., et al. (2018). High complement levels in astrocyte-derived exosomes of Alzheimer’s disease. Annals of Neurology, 83(3), 544–552. https://doi.org/10.1002/ana.25176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Badhwar, A., Haqqani, A. S., & Biomberg, M., et al. (2019). Increased tau phosphorylation and impaired presynaptic function in hypertriglyceridemic ApoB-100 transgenic mice. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5, 814–823. https://doi.org/10.1016/j.trci.2019.09.007.

    Article  Google Scholar 

  62. Dragatsis, I., Levine, M. S., & Zeitlin, S. (2000). Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nature Genetics, 26(3), 300–306. https://doi.org/10.1038/81593.

    Article  CAS  PubMed  Google Scholar 

  63. Byrne, L. M., Rodrigues, F. B., Blennow, K., Durr, A., Leavitt, B. R., Roos, R. A. C., & Wild, E. J. (2017). Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. The Lancet Neurology, 16(8), 601–609. https://doi.org/10.1016/S1474-4422(17)30124-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Parkin, G. M., Thomas, E. A., & Corey-Bloom, J. (2023). Plasma NfL as a prognostic biomarker for enriching HD-ISS stage 1 categorization: A cross-sectional study. EBioMedicine, 93, 104646. https://doi.org/10.1016/j.ebiom.2023.104646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abels, E. R., & Breakefield, X. O. (2016). Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cellular and Molecular Neurobiology, 36(3), 301–312. https://doi.org/10.1007/s10571-016-0366-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao, L., Chen, C., & Wang, H., et al. (2020). Extracellular vesicles: Emerging diagnostic and therapeutic tools in pharmacology. Journal of Clinical Pharmacology, 60(6), 651–658. https://doi.org/10.1002/jcph.1586.

    Article  CAS  Google Scholar 

  67. Loria, F., Vargas, J. Y., & Bousset, L., et al. (2017). α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathologica, 134(5), 789–808. https://doi.org/10.1007/s00401-017-1739-9.

    Article  CAS  PubMed  Google Scholar 

  68. Bliederhaeuser, C., Zondler, L., & Grozdanov, V., et al. (2016). Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes. Acta Neuropathologica, 131(3), 379–391. https://doi.org/10.1007/s00401-015-1508-5.

    Article  CAS  PubMed  Google Scholar 

  69. Zhao, Z. H., Chen, Z. T., & Zhou, R. L., et al. (2020). Increased DJ-1 and α-synuclein in plasma neural-derived exosomes as potential markers for Parkinson’s disease. Frontier in Aging Neuroscience, 12, 570549. https://doi.org/10.3389/fnagi.2020.570549.

    Article  Google Scholar 

  70. Gui, Y., Liu, H., & Zhang, L., et al. (2015). Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget, 6(35), 37043–37053. https://doi.org/10.18632/oncotarget.6159.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cooper, J. M., Wiklander, P. B., & Nordin, J. Z., et al. (2014). Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Movement Disorders, 29(13), 1476–1485. https://doi.org/10.1002/mds.25978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun, C., Yu, Y., & Wang, L., et al. (2018). Grafted bone marrow stromal cells: a contributor to glial repair after spinal cord injury. Neuroscientist, 24(2), 152–162. https://doi.org/10.1177/1073858417691000.

    Article  Google Scholar 

  73. Silverman, J. M., Christy, D., & Shyu, C. C., et al. (2019). CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)(G93A) ALS mice originate from astrocytes and neurons and carry misfolded SOD1. Journal of Biological Chemistry, 294(10), 3744–3759. https://doi.org/10.1074/jbc.RA118.007229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brenna, G., Sagona, A. P., & Gullo, C., et al. (2020). Prion protein modulates endosomal-nuclear translocation of transferrin receptor by regulating Rab11A-WDR44-mediated coalescence. Advanced Science, 7(20), 2001114. https://doi.org/10.1002/advs.202001114.

    Article  Google Scholar 

  75. D’Arrigo, D., Tabernacki, T., & Mottahedeh, J., et al. (2021). EV tracking and heterogeneous mobility of EVs reveals that EVs are integral components of the extracellular microenvironment. Journal of Extracellular Vesicles, 10(1), e12083. https://doi.org/10.1002/jev2.12083.

    Article  Google Scholar 

  76. Mantuano, E., Szychowski, J., & Murchie, R., et al. (2022). Circulating exosomal prions: A new target for early blood-based diagnosis of prion infection. PLOS Pathogens, 18(1), e1010002. https://doi.org/10.1371/journal.ppat.1010002.

    Article  CAS  Google Scholar 

  77. Orrù, C. D., Soldau, K., & Cordano, C., et al. (2018). Prion seeds distribute throughout the eyes of sporadic Creutzfeldt-Jakob disease patients. mBio, 9(6), e02095-18. https://doi.org/10.1128/mBio.02095-18.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Février, B., Vilette, D., & Archer, F., et al. (2004). Cells release prions in association with exosomes. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9683–9688. https://doi.org/10.1073/pnas.0308413101.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Winston, C. N., Goetzl, E. J., & Akers, J. C., et al. (2019). Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimer’s & Dementia, 15(5), 617–627. https://doi.org/10.1016/j.jalz.2018.09.003.

    Article  Google Scholar 

  80. Busch, J. I., Unger, T. L., & Jain, N., et al. (2016). Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes. Human Molecular Genetics, 25(13), 2681–2697. https://doi.org/10.1093/hmg/ddw116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shi, M., Liu, C., & Cook, T. J., et al. (2014). Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathologica, 128(5), 639–650. https://doi.org/10.1007/s00401-014-1314-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cao, Z., Wu, Y., & Liu, G., et al. (2018). α-Synuclein in salivary extracellular vesicles as a potential biomarker of Parkinson’s disease. Neuroscience Letters, 699, 104–110. https://doi.org/10.1016/j.neulet.2018.03.009.

    Article  CAS  Google Scholar 

  83. Wang, S., Liu, Z., & Ye, T., et al. (2017). LRRK2 regulates dynamic profile of mitochondria in rat kidney from prenatal to aging with urinary space dilation. Scientific Reports, 7(1), 717 https://doi.org/10.1038/s41598-017-00837-w.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zea Roca, J., Koszmarek-Weiss, U., Michalak, M., et al. (2019). Elevated SOD1 in extracellular vesicles drives motor neuron stresses to initiate paralytic ALS. bioRxiv, 870473. https://doi.org/10.1101/870473.

  85. Freischmidt, A., Müller, K., & Zondler, L., et al. (2014). Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. Brain, 137(11), 2938–2950. https://doi.org/10.1093/brain/awu244.

    Article  PubMed  Google Scholar 

  86. Feneberg, E., Steinacker, P., & Lehnert, S., et al. (2014). Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15(5-6), 351–356. https://doi.org/10.3109/21678421.2014.905421.

    Article  CAS  PubMed  Google Scholar 

  87. Katsu, M., Hama, Y., & Utsumi, J., et al. (2019). MicroRNA expression profiles of neuron-derived extracellular vesicles in plasma from patients with amyotrophic lateral sclerosis. Neuroscience Research, 160, 43–49. https://doi.org/10.1016/j.neures.2019.08.003.

    Article  CAS  Google Scholar 

  88. Liu, et al. (2021). Engineered extracellular vesicles for precision therapy in non-small cell lung cancer. Journal of Nanobiotechnology, 19(1), 108 https://doi.org/10.1186/s12951-021-00896-z.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Leavitt, M. G., Appel, S. H., & Nassif, M. (2020). Human neural stem cells-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease. Journal of Stem Cells and Regenerative Medicine, 16(1), 14–18.

    Google Scholar 

  90. Wang, et al. (2021). Extracellular vesicles microRNA-10b-5p delivered by mesenchymal stem cells-derived exosomes promotes the neurogenesis of damaged neurons through Smad4-mediated reduction of ischemia/reperfusion injury in mice. Stem Cell Research & Therapy, 12(1), 232. https://doi.org/10.1186/s13287-021-02314-3.

    Article  Google Scholar 

  91. Yang, et al. (2020). Intranasal delivery of brain-derived neurotrophic factor gene-modified MSCs in the treatment of traumatic brain injury. Journal of Neurotrauma, 37(15), 1947–1957. https://doi.org/10.1089/neu.2019.6782.

    Article  Google Scholar 

  92. Han, et al. (2020). Extracellular vesicles from genetically modified mesenchymal stem cells attenuate microglia activation and neuroinflammation as well as ameliorate neuropathic pain. Journal of Neuroinflammation, 17, 149 https://doi.org/10.1186/s12974-020-01846-5.

    Article  Google Scholar 

  93. Boido, et al. (2019). Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Molecular and Cellular Neurosciences, 97, 43–51. https://doi.org/10.1016/j.mcn.2019.06.008.

    Article  CAS  Google Scholar 

  94. Yin, et al. (2021). Regulatory T cell-derived extracellular vesicles modify microglial phenotype and attenuate neuroinflammation for Parkinson’s disease and epilepsy therapy. Journal of Nanobiotechnology, 19(1), 88 https://doi.org/10.1186/s12951-021-00876-3.

    Article  Google Scholar 

  95. Khadka, A., Spiers, J. G., Cheng, L., & Hill, A. F. (2023). Extracellular vesicles with diagnostic and therapeutic potential for prion diseases. Cell and Tissue Research, 392(1), 247–267.

    Article  PubMed  Google Scholar 

  96. Chabanon, et al. (2020). Cryo-EM structure of vesicular stomatitis virus in complex with a neutralizing nanobody. Nature, 579(7797), 581–585.

    Google Scholar 

  97. Nombela, et al. (2021). Profiling of RNA modifications and their response to the microbial patterns recognition in peripheral blood mononuclear cells from rheumatoid arthritis patients. Scientific Reports, 11(1), 17757.

    Google Scholar 

  98. Lee, et al. (2019). The isolation of exosome from blood plasma, urine and cell culture media through ultracentrifugation. Current Protocols in Stem Cell Biology, 50(1), e82.

    Google Scholar 

  99. Gilleron, et al. (2019). Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking, and endosomal escape. Nature Biotechnology, 38(1), 43–53.

    Google Scholar 

  100. Wang, et al. (2020). Profiling and quantification of the circular RNA in the porcine developing heart. Frontiers in Genetics, 11, 529.

    CAS  Google Scholar 

  101. Kovachich, et al. (2020). Enrichment technologies for extracellular vesicles: Advances and challenges. Trends in Analytical Chemistry, 124, 115781.

    Google Scholar 

  102. Safaei, et al. (2021). EVmiRNA: A database of miRNA profiling in extracellular vesicles. Scientific Reports, 11(1), 5640.

    Google Scholar 

  103. Kim, et al. (2023). Real-time imaging of biodistribution and trafficking of bioluminescent exosomes in mouse brain. Journal of Controlled Release, 334, 1–9.

    Article  Google Scholar 

  104. Li, et al. (2023). Engineered extracellular vesicles for blood–brain barrier crossing and therapeutic cargo delivery to the Alzheimer’s brain. Molecular Therapy, 31(10), 5253–5268.

    Google Scholar 

  105. Rodriguez, et al. (2023). Glial-cell-derived extracellular vesicles as regulators of neuronal damage and repair: New insights and therapeutic opportunities after traumatic brain injury. International Journal of Molecular Sciences, 24(3), 1607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.S. wrote the main text and prepared the figures and tables. S.P. conceptualized the idea and reviewed the manuscript.

Corresponding author

Correspondence to Somi Patranabis.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Patranabis, S. Emerging Role of Extracellular Vesicles in Intercellular Communication in the Brain: Implications for Neurodegenerative Diseases and Therapeutics. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01221-z

Keywords

Navigation