Skip to main content

Advertisement

Log in

Investigating the Potential Mechanisms of Ferroptosis and Autophagy in the Pathogenesis of Gestational Diabetes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Ferroptosis and autophagy are two different cellular processes that have recently been highlighted for their potential roles in the pathogenesis and progression of gestational diabetes (GD). This research sought to uncover the crucial genes tied to ferroptosis and autophagy in GD, further investigating their mechanisms. Differentially expressed genes (DEGs) linked to ferroptosis and autophagy in GD were identified using publicly available data. Pathway enrichment, protein interactions, correlation with immune cell infiltration, and diagnostic value of DEGs were analyzed. HTR-8/SVneo cells were subjected to varying glucose levels to evaluate cell viability and the expression of markers related to ferroptosis and proteins associated with autophagy. Crucial DEGs were validated in vitro. A total of 12 DEGs associated with ferroptosis and autophagy in GD were identified, enriched in the PI3K-AKT signaling pathway. These genes exhibited significant correlations with monocyte infiltration, resting CD4 memory T cells, and follicular helper T cells. They exhibited high diagnostic value for GD (AUC: 0.77–0.97). High glucose treatment inhibited cell viability, induced ferroptosis, and activated autophagy in HTR-8/SVneo cells. Validation confirmed altered expression of SNCA, MTDH, HMGB1, TLR4, SOX2, SESN2, and HMOX1 after glucose treatments. In conclusion, ferroptosis and autophagy may play a role in GD development through key genes (e.g., TLR4, SOX2, SNCA, HMOX1, HMGB1). These genes could serve as promising biomarkers for GD diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sweeting, A., et al. (2022). A clinical update on gestational diabetes mellitus. Endocrine Reviews, 43(5), 763–793.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pace, N. P., Vassallo, J., & Calleja-Agius, J. (2021). Gestational diabetes, environmental temperature and climate factors—From epidemiological evidence to physiological mechanisms. Early Human Development, 155, 105219.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Y.-P, et al. (2022). Research advances in the roles of circular RNAs in Pathophysiology and early diagnosis of gestational diabetes mellitus. Frontiers in Cell and Developmental Biology, 9, 3643.

    Google Scholar 

  4. Yefet, E., et al. (2020). Markers for undiagnosed type 2 diabetes mellitus during pregnancy—A population‐based retrospective cohort study. Journal of Diabetes, 12(3), 205–214.

    Article  CAS  PubMed  Google Scholar 

  5. Ehrlich, S. F., et al. (2021). Exercise during the first trimester of pregnancy and the risks of abnormal screening and gestational diabetes mellitus. Diabetes Care, 44(2), 425–432.

    Article  PubMed  Google Scholar 

  6. Liu, Y., & Levine, B. (2015). Autosis and autophagic cell death: the dark side of autophagy. Cell Death & Differentiation, 22(3), 367–376.

    Article  CAS  Google Scholar 

  7. Nakashima, A., et al. (2019). Current understanding of autophagy in pregnancy. International Journal of Molecular Sciences, 20(9), 2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ji, L., et al. (2017). Systematic characterization of autophagy in gestational diabetes mellitus. Endocrinology, 158(8), 2522–2532.

    Article  CAS  PubMed  Google Scholar 

  9. Diceglie, C., et al. (2021). Placental antioxidant defenses and autophagy-related genes in maternal obesity and gestational diabetes mellitus. Nutrients, 13(4), 1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seibt, T. M., Proneth, B., & Conrad, M. (2019). Role of GPX4 in ferroptosis and its pharmacological implication. Free Radical Biology and Medicine, 133, 144–152.

    Article  CAS  PubMed  Google Scholar 

  11. Li, J., et al. (2020). Ferroptosis: past, present and future. Cell Death & Disease, 11(2), 88.

    Article  Google Scholar 

  12. Han, D., et al. (2020). SIRT3 deficiency is resistant to autophagy-dependent ferroptosis by inhibiting the AMPK/mTOR pathway and promoting GPX4 levels. J Cell Physiology, 235(11), 8839–8851.

    Article  CAS  Google Scholar 

  13. He, J. et al. (2022). Ferroptosis and ferritinophagy in diabetes complications. Molecular Metabolism, 60, 101470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo, E.-F., et al. (2021). Role of ferroptosis in the process of diabetes-induced endothelial dysfunction. World Journal of Diabetes, 12(2), 124.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gautam, S., et al. (2021). Role of ferritin and oxidative stress index in gestational diabetes mellitus. Journal of Diabetes & Metabolic Disorders, 20(2), 1615–1619.

    Article  CAS  Google Scholar 

  16. Ritchie, M. E., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47–e47.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou, N., & Bao, J. (2020). FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database, 2020.

  18. Wang, N.-N., et al. (2018). HAMdb: a database of human autophagy modulators with specific pathway and disease information. Journal of Cheminformatics, 10(1), 1–8.

    Article  ADS  Google Scholar 

  19. Yu, G., et al. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: a Journal of Integrative Biology, 16(5), 284–287.

    Article  CAS  PubMed  Google Scholar 

  20. Szklarczyk, D., et al. (2021). The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612.

    Article  CAS  PubMed  Google Scholar 

  21. Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal Complex Systems, 1695(5), 1–9.

    Google Scholar 

  22. Chen, B. et al. (2018). Profiling tumor infiltrating immune cells with CIBERSORT. Cancer Systems Biology: Methods and Protocols, 1711, 243–259.

    Article  CAS  Google Scholar 

  23. Robin, X., et al. (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12(1), 1–8.

    Article  Google Scholar 

  24. Hahn, T., et al. (2000). Hyperglycaemia-induced subcellular redistribution of GLUT1 glucose transporters in cultured human term placental trophoblast cells. Diabetologia, 43(2), 173–180.

    Article  CAS  PubMed  Google Scholar 

  25. Deng, Y., et al. (2023). Elevated galectin-3 levels detected in women with hyperglycemia during early and mid-pregnancy antagonizes high glucose-induced trophoblast cells apoptosis via galectin-3/foxc1 pathway. Molecular Medicine, 29(1), 115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McIntyre, H. D., et al. (2019). Gestational diabetes mellitus. Nature Reviews Disease Primers, 5(1), 47.

    Article  MathSciNet  PubMed  Google Scholar 

  27. Wu, Q., et al. (2023). Macrophages originated IL-33/ST2 inhibits ferroptosis in endometriosis via the ATF3/SLC7A11 axis. Cell Death Disease, 14(10), 668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen, X. et al. (2023). The role of ferroptosis in placental-related diseases. Reproductive Sciences, 30, 1–8.

    Article  Google Scholar 

  29. Yun, H. R., et al. (2020). Roles of autophagy in oxidative stress. International Journal of Molecular Sciences, 21(9), 3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiao, J., et al. (2011). MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. Journal of Biomedical Science, 18(1), 35.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abdelhady, R., et al. (2023). Unveiling the therapeutic potential of exogenous β-hydroxybutyrate for chronic colitis in rats: novel insights on autophagy, apoptosis, and pyroptosis. Frontiers in Pharmacology, 14, 1239025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, H., et al. (2020). Effect of miR-26b on gestational diabetes mellitus in rats via PI3K/Akt signaling pathway. European Review for Medical and Pharmacological Sciences, 24(4), 1609–1615.

    PubMed  Google Scholar 

  33. Wang, Q., et al. (2019). Down-regulated long non-coding RNA PVT1 contributes to gestational diabetes mellitus and preeclampsia via regulation of human trophoblast cells. Biomedicine & Pharmacotherapy, 120, 109501.

    Article  CAS  Google Scholar 

  34. Dhiman, G., et al. (2019). Metadherin: a therapeutic target in multiple cancers. Frontiers in Oncology, 9, 349.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Noch, E. K., & Khalili, K. (2013). The role of AEG-1/MTDH/LYRIC in the pathogenesis of central nervous system disease. Advances in Cancer Research, 120, 159–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saito Reis, C. A., et al. (2021). High‐mobility group box 1 is a driver of inflammation throughout pregnancy. American Journal of Reproductive Immunology, 85(1), e13328.

    Article  PubMed  Google Scholar 

  37. Giacobbe, A., et al. (2016). Association between maternal serum high mobility group box 1 levels and pregnancy complicated by gestational diabetes mellitus. Nutrition Metabolism and Cardiovascular Diseases, 26(5), 414–418.

    Article  CAS  Google Scholar 

  38. Feng, H., et al. (2016). Positive correlation between enhanced expression of TLR4/MyD88/NF-κB with insulin resistance in placentae of gestational diabetes mellitus. PloS One, 11(6), e0157185.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhu, A., et al. (2023). Hyperglycemia-induced endothelial exosomes trigger trophoblast dysregulation and abnormal placentation through PUM2-mediated repression of SOX2. Human & Experimental Toxicology, 42, 09603271221149656.

    Article  CAS  Google Scholar 

  40. Fadhil, R. A., & Sersam, L. W. (2020). Evaluation of maternal serum sestrin2 levels in preeclampsia and their relationship with the Disease severity. Mustansiriya Medical Journal, 19(2), 54–54.

    Article  Google Scholar 

  41. Lee, S., et al. (2020). Sestrin2 alleviates palmitate‐induced endoplasmic reticulum stress, apoptosis, and defective invasion of human trophoblast cells. American Journal of Reproductive Immunology, 83(4), e13222.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  42. Qiu, C., et al. (2012). Maternal serum heme-oxygenase-1 (HO-1) concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus. PloS One, 7(11), e48060.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Zhang, K., et al. (2021). A ferroptosis-related lncRNAs signature predicts prognosis and immune microenvironment for breast cancer. Frontiers in Molecular Biosciences, 8, 678877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, S., et al. (2021). Comprehensive analysis of ferroptosis regulators with regard to PD-L1 and immune infiltration in clear cell renal cell carcinoma. Frontiers in Cell and Developmental Biology, 9, 676142.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yue, P., et al. (2020). Development of an autophagy-related signature in pancreatic adenocarcinoma. Biomedicine & Pharmacotherapy, 126, 110080.

    Article  CAS  Google Scholar 

  46. Huang, X., et al. (2022). Decreased monocyte count is associated with gestational diabetes mellitus development, macrosomia, and inflammation. The Journal of Clinical Endocrinology & Metabolism, 107(1), 192–204.

    Article  Google Scholar 

  47. Heydarlou, H., et al. (2019). Investigation of follicular helper T cells, as a novel player, in preeclampsia. Journal of Cellular Biochemistry, 120(3), 3845–3852.

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

Conceptualization, writing–original draft, methodology and formal analysis: Xiaomei Lv; Formal analysis, investigation, resources and visualization: Jing Jiang; Conceptualization, visualization, project administration and writing–review & editing: Yujun An. All authors have read and approved the final manuscript.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun An.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to publish/participate

Research involving Human Participants and/or animals: Not applicable.

Informed consent

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Jiang, J. & An, Y. Investigating the Potential Mechanisms of Ferroptosis and Autophagy in the Pathogenesis of Gestational Diabetes. Cell Biochem Biophys 82, 279–290 (2024). https://doi.org/10.1007/s12013-023-01196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01196-3

Keywords

Navigation