Skip to main content
Log in

PCSK9 Inhibition Regulates Infarction-Induced Cardiac Myofibroblast Transdifferentiation via Notch1 Signaling

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that PCSK9 inhibition protects cardiomyocytes against ischemia-reperfusion injury after myocardial infarction. However, it is not clear whether PCSK9 inhibitor (PCSK9i) affects cardiac fibroblasts (CFs) activation after MI. In this study we used SBC-115076, an antagonist of PCSK9, to investigate the role of PCSK9i in the conversion of CFs to cardiac myofibroblasts (CMFs) after MI and provided a basic for its clinical application in cardiac fibrosis after MI. In vivo study, PCSK9i was injected into mice 4 days after MI. Cardiac function and degree of fibrosis were evaluated by echocardiographic and tissue staining after treatment. Western blot showed that PCSK9i treatment decreases expression of α-SMA, collagen and increases expression of Notch1 in border infarct area. Vitro studies showed that PCSK9i decreased the degree of fibrosis, migration, and collagen fiber deposition in CFs. Confocal microscopy imaging also showed that hypoxia contributes to the formation of α-SMA stress filaments, and PCSK9i alleviated this state. Moreover, overexpression of Notch1 further suppress the activation of CFs under hypoxia. These results revealed that SBC-115076 ameliorates cardiac fibrosis and ventricular dysfunction post-myocardial infarction through inhibition of the differentiation of cardiac fibroblasts to myofibroblasts via Notch1/Hes1 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Talman, V., & Ruskoaho, H. (2016). Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell and Tissue Research, 365, 563–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frangogiannis, N. G. (2019). Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine, 65, 70–99.

    Article  CAS  PubMed  Google Scholar 

  3. Tallquist, M. D. (2020). Cardiac fibroblast diversity. Annual Review of Physiology, 82, 63–78.

    Article  CAS  PubMed  Google Scholar 

  4. Pei, H., Du, J., Song, X., He, L., Zhang, Y., Li, X., Qiu, C., Zhang, Y., Hou, J., Feng, J., Gao, E., Li, D. & Yang, Y. (2016). Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radical Biology and Medicine, 97, 408–417.

    Article  CAS  PubMed  Google Scholar 

  5. Yu, L., Li, F., Zhao, G., Yang, Y., Jin, Z., Zhai, M., Yu, W., Zhao, L., Chen, W., Duan, W., & Yu, S. (2015). Protective effect of berberine against myocardial ischemia reperfusion injury: role of Notch1/Hes1-PTEN/Akt signaling. Apoptosis. 20, 796–810.

    Article  CAS  PubMed  Google Scholar 

  6. Bi, P. & Kuang, S. (2015). Notch signaling as a novel regulator of metabolism. Trends in Endocrinology and Metabolism, 26, 248–255.

    Article  CAS  PubMed  Google Scholar 

  7. Hu, B. & Phan, S. H. (2016). Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacological Research, 108, 57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sabatine, M. S., Giugliano, R. P., Keech, A. C., Honarpour, N., Wiviott, S. D., Murphy, S. A., Kuder, J. F., Wang, H., Liu, T., Wasserman, S. M., Sever, P. S. & Pedersen, T. R. (2017). Evolocumab and clinical outcomes in patients with cardiovascular disease. New England Journal of Medicine, 376, 1713–1722.

    Article  CAS  PubMed  Google Scholar 

  9. Abifadel, M., Varret, M. & Rabès, J. P. et al. (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nature Genetics, 34, 154–156.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen, J. C., Boerwinkle, E., Mosley, T. H. & Hobbs, H. H. (2006). Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. New England Journal of Medicine, 354, 1264–1272.

    Article  CAS  PubMed  Google Scholar 

  11. Ding, Z., Wang, X., Liu, S., Shahanawaz, J., Theus, S., Fan, Y., Deng, X., Zhou, S. & Mehta, J. L. (2018). PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovascular Research, 114, 1738–1751.

    Article  CAS  PubMed  Google Scholar 

  12. Cammisotto, V., Pastori, D., Nocella, C., Bartimoccia, S., Castellani, V., Marchese, C., Scavalli, A. S., Ettorre, E., Viceconte, N., Violi, F., Pignatelli, P. & Carnevale, R. (2020). PCSK9 regulates Nox2-mediated platelet activation via CD36 receptor in patients with atrial fibrillation. Antioxidants (Basel), 9, 296.

    Article  CAS  PubMed  Google Scholar 

  13. Qi, Z., Hu, L., & Zhang, J. et al. (2021). PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36. Circulation, 143, 45–61.

    Article  CAS  PubMed  Google Scholar 

  14. Andreadou, I., Tsoumani, M., Vilahur, G., Ikonomidis, I., Badimon, L., Varga, Z. V., Ferdinandy, P. & Schulz, R. (2020). PCSK9 in myocardial infarction and cardioprotection: importance of lipid metabolism and inflammation. Frontiers in Physiology, 11, 602497.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ding, Z., Wang, X., Liu, S., Shahanawaz, J., Theus, S., Fan, Y., Deng, X., Zhou, S. & Mehta, J. L. (2021). Corrigendum to: PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovascular Research, 114, 1738–1751.

    Article  Google Scholar 

  16. Lee, G. E., Kim, J., Lee, J. S., Ko, J., Lee, E. J. & Yoon, J. S. (2020). Role of proprotein convertase subtilisin/kexin type 9 in the pathogenesis of graves’ orbitopathy in orbital fibroblasts. Frontiers in Endocrinology, 11, 607144.

    Article  PubMed  Google Scholar 

  17. Poirier, S., Prat, A., Marcinkiewicz, E., Paquin, J., Chitramuthu, B. P., Baranowski, D., Cadieux, B., Bennett, H. P. & Seidah, N. G. (2006). Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system. Journal of Neurochemistry, 98, 838–850.

    Article  CAS  PubMed  Google Scholar 

  18. Roudaut, M., Idriss, S. & Caillaud, A. et al. (2021). PCSK9 regulates the NODAL signaling pathway and cellular proliferation in hiPSCs. Stem Cell Reports, 16, 2958–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, P., Zhang, W., Feng, Z., Zhang, J., Sun, Y. & Zhang, W. (2021). LDL‑induced NLRC3 inflammasome activation in cardiac fibroblasts contributes to cardiomyocytic dysfunction. Molecular Medicine Reports, 24, 526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amput, P., Palee, S., Arunsak, B., Pratchayasakul, W., Thonusin, C., Kerdphoo, S., Jaiwongkam, T., Chattipakorn, S. C. & Chattipakorn, N. (2020). PCSK9 inhibitor and atorvastatin reduce cardiac impairment in ovariectomized prediabetic rats via improved mitochondrial function and Ca(2+) regulation. Journal of Cellular and Molecular Medicine, 24, 9189–9203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kong, P., Christia, P. & Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences, 71, 549–574.

    Article  CAS  PubMed  Google Scholar 

  22. Norambuena-Soto, I., Núñez-Soto, C., Sanhueza-Olivares, F., Cancino-Arenas, N., Mondaca-Ruff, D., Vivar, R., Díaz-Araya, G., Mellado, R. & Chiong, M. (2017). Transforming growth factor-beta and Forkhead box O transcription factors as cardiac fibroblast regulators. BioScience Trends, 11, 154–162.

    Article  CAS  PubMed  Google Scholar 

  23. Ahn, J. S., Ann, E. J., Kim, M. Y., Yoon, J. H., Lee, H. J., Jo, E. H., Lee, K., Lee, J. S., & Park, H. S. (2016). Autophagy negatively regulates tumor cell proliferation through phosphorylation dependent degradation of the Notch1 intracellular domain. Oncotarget, 7, 79047–79063.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sarin, A., & Marcel, N. (2017). The NOTCH1-autophagy interaction: regulating self-eating for survival. Autophagy, 13, 446–447.

    Article  CAS  PubMed  Google Scholar 

  25. Hu, M., Ou-Yang, H. F., Wu, C. G., Qu, S. Y., Xu, X. T. & Wang, P. (2014). Notch signaling regulates col1α1 and col1α2 expression in airway fibroblasts. Experimental Biology and Medicine, 239, 1589–1596.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the investigators and supporters involved in this study.

Funding

This research was granted through the National Natural Science Foundation of China (grant no. 81974022) and Shanghai Municipal Health Commission (grant no. 201940206).

Author information

Authors and Affiliations

Authors

Contributions

C.W.: writing - original draft; writing - review & editing, D.-w.L.: writing - original draft, writing - review & editing, J.J.: writing - original draft; data curation and analysis, Y.-w.J.: writing - original draft; data curation, F.J.: data analysis; project administration, Y.-s.W.: writing - review & editing, supervision, funding acquisition.

Corresponding author

Correspondence to Yaosheng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Lin, D., Ji, J. et al. PCSK9 Inhibition Regulates Infarction-Induced Cardiac Myofibroblast Transdifferentiation via Notch1 Signaling. Cell Biochem Biophys 81, 359–369 (2023). https://doi.org/10.1007/s12013-023-01136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01136-1

Keywords

Navigation