Skip to main content
Log in

Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5’-monophosphate 2-methylthio cyclic N6-threonylcarbamoyladenosine (p-ms2ct6A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-ms2ct6A has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-ms2ct6A is stabilized by intramolecular interactions between N(3)…HC(2’), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (β) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-ms2ct6A. Further, molecular dynamics simulations of p-ms2ct6A revealed the role of ribose sugar ring puckering i.e. C2’-endo and C3’-endo on the structural dynamics of ms2ct6A side chain. The modified nucleotide p-ms2ct6A periodically prefers both the C2’-endo and C3’-endo sugar with ‘anti’ and ‘syn’ conformations. This property of p-ms2ct6A could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNALys of Bacillus subtilis containing ms2ct6A at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-ms2ct6A. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-ms2ct6A. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, ms2ct6A in recognition of the proper codons AAA/AAG during protein biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Murphy, IV, F. V., Ramakrishnan, V., Malkiewicz, A., & Agris, P. F. (2004). The role of modifications in codon discrimination by tRNA LysUUU. Nature Structural & Molecular Biology, 11(12), 1186–1191.

    Article  CAS  Google Scholar 

  2. Stuart, J. W., Gdaniec, Z., Guenther, R., Marszalek, M., Sochacka, E., Malkiewicz, A., & Agris, P. F. (2000). Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A. Biochemistry, 39, 13396–13404.

    Article  CAS  PubMed  Google Scholar 

  3. Moazed, D., & Noller, H. F. (1986). Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell, 47, 985–994.

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen, H. A., Hoffer, E. D., & Dunham, C. M. (2019). Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNACGGPro for decoding. Journal of Biological Chemistry, 294(14), 5281–5291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jackman, J. E., & Alfonzo, J. D. (2013). Transfer RNA modification: nature’s combinatorial chemistry playground. Wiley Interdisciplinary Review. RNA, 4(1), 35–48.

    Article  CAS  Google Scholar 

  6. Machnicka, M. A., Olchowik, A., Grosjean, H., & Bujnicki, J. M. (2014). Distribution and frequencies of post transcriptional modifications in tRNAs. RNA Biology, 11(12), 1619–1629.

    Article  PubMed  Google Scholar 

  7. Agris, P. F., Eruysal, E. R., Narendran, A., Vare, V. Y. P., & Vangaveti, S. (2018). Celebrating wobble decoding: Half a century and still much is new. RNA Biology, 15, 537–553.

    Article  PubMed  Google Scholar 

  8. Lin, C. A., Ellis, S. R., & True, H. L. (2010). The Sau5 protein is essential for normal translational regulation in yeast. Molecular and Cellular Biology, 30(1), 354–363.

    Article  CAS  PubMed  Google Scholar 

  9. Kang, B., Miyauchi, K., Matuszewski, M., D’Almeida, G. S., Rubio, M. A. T., Alfonzo, J. D., Inoue, K., Sakaguchi, K., Suzuki, T., Sochacka, E., & Suzuki, T. (2017). Identification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAs. Nucleic Acids Research, 45(4), 2124–2136.

    Article  CAS  PubMed  Google Scholar 

  10. Kamble, A. S., Sambhare, S. B., Fandilolu, P. M., & Sonwane, K. D. (2016). Structural significance of modified nucleoside 5-taurinomethyl-2- thiouridine, sm5s2U, found at ‘wobble’ position in anticodon loop of human mitochondrial tRNALys. Structural Chemistry, 27, 839–854.

    Article  CAS  Google Scholar 

  11. Kumbhar, B. V., Kumbhar, N. M., & Sonawane, K. D. (2012). Conformational preferences and MD simulation studies of the hypermodified nucleic acid base ms2hn6Ade present at the 3’-adjacent (37th) position in the Anticodon loop of hyperthermophilic tRNAs. Internet Electronic Journal of Molecular Design, 11, 33–48.

    Google Scholar 

  12. Kumbhar, N. M., Kumbhar, B. V., & Sonawane, K. D. (2012). Structural significance of hypermodified nucleic acid base hydroxywybutine (OHyW) which occur at 37th position in the anticodon loop of yeast tRNAPhe. Journal of Molecular Graphics and Modelling, 38, 174–185.

    Article  CAS  PubMed  Google Scholar 

  13. Kamble A. S., Fandilolu P. M., Sambhare S. B., & Sonawane K. D. (2017). Idiosyncratic recognition of UUG/UUA codons by modified nucleoside 5-taurinomethyluridine, τm5U present at ‘wobble’ position in anticodon loop of tRNALeu: A molecular modeling approach. PLoS ONE. 1–16.

  14. Fandilolu, P. M., Kamble, A. S., Sambhare, S. B., & Sonawane, K. D. (2018). Conformational preferences and structural analysis of hypermodified nucleoside, peroxywybutosine (o2yW) found at 37th position in anticodon loop of tRNAPhe and its role in modulating UUC codon-anticodon interactions. Gene, 641, 310–325.

    Article  CAS  PubMed  Google Scholar 

  15. Sambhare, S. B., Kumbhar, B. V., Kamble, A. D., Bavi, R. S., Kumbhar, N. M., & Sonawane, K. D. (2014). Structural significance of modified nucleosides k2Cand t6A present in the anticodon loop of tRNAIle. RSC Advances, 4, 14176–14188.

    Article  CAS  Google Scholar 

  16. Yarus, M. (1982). Translational efficiency of Transfer RNA’s: Uses of an extended anticodon. Science, 218, 646–652.

    Article  CAS  PubMed  Google Scholar 

  17. Devi, M., & Duncan Lyngdoh, R. H. (2018). Favored and less favored codon-anticodon duplexes arising from the GC codon family box encoding for alanine: some computational perspectives. Journal of Biomolecular Structure and Dynamics, 36(4), 1029–1049.

    Article  CAS  PubMed  Google Scholar 

  18. Fuller, W., & Hodgson, A. (1967). Conformation of the Anticodon loop in tRNA. Nature, 215, 817–821.

    Article  CAS  PubMed  Google Scholar 

  19. Benas, P., Bec, G., Kieth, G., Marquet, R., Ehresmann, C., Ehresmann, B., & Dumas, P. (2000). The crystal structure of HIV reverse –transcription primer tRNA (Lys, 3) shows a canonical anticodon loop. RNA, 6, 1347–1355.

    Article  CAS  Google Scholar 

  20. Sundaram, M., Crain, P. F., & Davis, D. R. (2000). Synthesis and characterization of the native anticodon domain of E.coli tRNALys: simultaneous incorporation of modified nucleosides mnm5s2U, t6A and Pseudouridine using phosphoramidite Chemistry. Journal of Organic Chemistry, 65, 5609–5614.

    Article  CAS  PubMed  Google Scholar 

  21. Miyauchi, K., Kimura, S., & Suzuki, T. (2012). A cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification. Nature Chemical Biology, 9, 105–111.

    Article  PubMed  Google Scholar 

  22. Ashraf, S. S., Sochacka, E., & Cain, R. (1999). Single atom modification (O–>S) of tRNA confers ribosome binding. RNA, 5, 188–194.

    Article  CAS  Google Scholar 

  23. Wei, F. Y., Suzuki, T., Watanabe, S., Kimura, S., Kaitsuka, T., Fujimura, A., Matsui, H., Atta, M., Michiue, H., Fontecave, M., Yamagata, K., & Suzuki, T. (2011). Tomizawa, K., Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice. The. Journal of Clinical Investigation, 121(9), 3598–3608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yarian, C., Townsend, H., Czestkowski, W., Sochacka, E., Malkiewicz, A. J., Guenther, R., Miskiewicz, A., & Agris, P. F. (2002). Accurate translation of the genetic code depends on tRNA modified nucleosides. The Journal of Biological Chemistry, 277(19), 16391–16395.

    Article  CAS  PubMed  Google Scholar 

  25. Matuszewski, M., Wojciechowski, J., Miyauchi, K., Gdaniec, Z., Wolf, W. M., Suzuki, T., & Sochacka, E. A. (2017). Hydantoin isoform of cyclic N6-threonylcarbamoyladenosine (ct6A) is present in tRNAs. Nucleic Acids Research, 45(4), 2137–2149.

    Article  CAS  PubMed  Google Scholar 

  26. Hehre, J., Radom, W. L., Schleyer, P. V. R., & Pople, J. A. (1986). Ab initio molecular orbital theory (pp. 4. New York: Wiley).

    Google Scholar 

  27. Kumbhar, N. M., & Sonawane, K. D. (2011). Iso-energetic multiple conformations of hypermodified nucleic acid base wybutine (yW) which occur at 37th position in anticodon loop of tRNAPhe. Journal of Molecular Graphics and Modelling, 29, 935–946.

    Article  CAS  PubMed  Google Scholar 

  28. Sonavane, U. B., Sonawane, K. D., & Tewari, R. (2002). Conformational preferences of base substituent in hypermodified nucleotide Queuosine 5’-monophosphate ‘pQ’ and protonated variant ‘pQH+’. Journal of Biomolecular Structure and Dynamics, 20(3), 473–485.

    Article  CAS  PubMed  Google Scholar 

  29. Pullman, B., & Pullman, A. (1974). Molecular orbital calculations on the conformation of amino acid residues of proteins. Advances in Protein Chemistry, 28, 347–526.

    Article  CAS  PubMed  Google Scholar 

  30. Tewari, R. (1987). Theorotical studies on conformational preferences of modified nucleic acid base N6-(N-glycylcarbonyl) Adenine. International Journal of Quantum Chemistry, XXX1, 611–623.

    Article  Google Scholar 

  31. Sonavane, U. B., Sonawane, K. D., Morin, A., Grosjean, H., & Tewari, R. (1999). N(7)- Protonation induced conformational flipping in hypermodified nucleic acid bases N6-(N-threonylcarbonyl) adenine and its 2-Methylthio- or N(6)-methyl-derivatives. International Journal of Quantum Chemistry, 75, 223–229.

    Article  CAS  Google Scholar 

  32. Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., DeFrees, D. J., Pople, J. A., & Gordon, M. S. (1982). Self-Consistent Molecular Orbital Methods. 23. A polarization-type basis set for 2nd-row elements. The Journal of Chemical Physics, 77, 3654–65.

    Article  CAS  Google Scholar 

  33. Frisch, M., Scalmani, G., Vreven, T., & Zheng, G. (2009). Analytic second derivatives for semiempirical models based on MNDO. Molecular Physics, 107, 881–887.

    Article  CAS  Google Scholar 

  34. Cornell, W. D., Cieplak, P., Bayly, C. I., & Kollman, P. A. (1993). Application of RESP charges to calculate conformational energies, hydrogen bond energies and free energies for solvation. Journal of American Chemical Society, 115, 9620–9631.

    Article  CAS  Google Scholar 

  35. Bayly, C. I., Ceiplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP Model. Journal of Physical Chemistry, 97, 10269–10280.

    Article  CAS  Google Scholar 

  36. Cieplak, P., Cornell, W. D., Bayly, C., & Kollman, P. A. (1995). Application of the Multimolecule and Multiconformational RESP Methodology to Biopolymers: Charge Derivation for DNA, RNA, and Proteins. Journal of Computational Chemistry, 16(11), 1357–1377.

    Article  CAS  Google Scholar 

  37. Dupradeau, F. Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., & Cieplak, P. (2010). The R.E.D. tools: advances in RESP and ESP charge deviation and force field library building. Physical Chemistry, Chemical Physics, 12, 7821–7839.

    Article  CAS  Google Scholar 

  38. Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327–341.

    Article  CAS  Google Scholar 

  39. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. V., & DiNola, A. H. J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690.

    Article  CAS  Google Scholar 

  40. Debye, P. J. W. (1954). The collected papers of Peter J.W. Debye. Interscience publishers, Inc., New York.

  41. Case, D. A., Cheatham, III, T. E., Darden, T., Gohlke, H., Luo, R., Merz, Jr, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber Biomolecular Simulation Programs. Journal of Computational Chemistry, 26(16), 1668–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera -A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  43. Sundaralingam, M. (1969). Stereochemistry of Nucleic Acids and Their Constituents.* IV. Allowed and Preferred Conformations of Nucleosides, Nucleoside Mono-, Di-, Tri-, Tetraphosphates. Nucleic Acids and Polynucleotide. Biopolymers, 7, 821–860.

  44. Altona, C., & Sundaralingam, M. (1973). Conformational Analysis of the Sugar Ring in Nucleosides and Nucleotides. Improved Method for the Interpretation of Proton Magnetic Resonance Coupling Constants. Journal of the American Chemical Society, 95(7), 2333–2344.

    Article  CAS  PubMed  Google Scholar 

  45. Saenger, W. (1984). Defining Terms for the Nucleic Acids. In: Principles of Nucleic Acid Structure, Springer, New York, 9–28.

  46. Cusack, S., Yaremchuk, A., & Tukalo, M. (1996). The crystal structures of T. Thermophilus lysyl-tRNA synthetase complexed with E. coli tRNALys and a T. thermophilus tRNALys transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. The EMBO Journal, 15(22), 6321–6334.

  47. Yokoyama, S., Watanabe, T., Murao, K., Ishikura, H., Yamaizumi, Z., Nishimura, S., & Miyazawa, T. (1985). Molecular mechanism of codon recognition by tRNA species with modified Uridine in the first position of the anticodon. Biochemistry, 82, 4905–1909.

    CAS  Google Scholar 

  48. Altona, C., & Sundaralingam, M. (1972). Conformational Analysis of the Sugar Ring in Nucleosides and Nucleotides. A New Description Using the Concept of Pseudorotation. Journal of American Chemical Society, 94(23), 8205–8212.

    Article  CAS  Google Scholar 

  49. Clay, M. C., Ganser, L. R., Merriman, D. K., & Al-Hashimi, H. M. (2017). Resolving sugar puckers in excited state exposes slow modes of repuckering dynamics. Nucleic Acids Research, 45(14), e134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Everaert, D. H., Peeters, O. M., De Ranter, C. J., Blaton, N. M., van Aerschot, A., & Herdewijin, P. (1993). Conformational analysis of substituent effects on the sugar puckering mode and the anti-HIV activity of 2’,3’-dideoxypyrimidine nucleosides. Antiviral Chemistry & Chemotherapy, 4(5), 289–299.

    Article  CAS  Google Scholar 

  51. Aakeroy, C. B., Wijethunga, T. K., & Desper, J. (2015). Molecular electrostatic potential dependent selectivity of hydrogen bonding. New Journal of Chemistry, 39, 822.

    Article  CAS  Google Scholar 

  52. Lescrinier, E., Nauwelaerts, K., Zanier, K., Poesen, K., Sattler, M., & Herdewijn, P. (2006). The naturally occurring N6-threonyl adenine in anticodon loop of Schizosaccharomyces pombe tRNAi causes formation of a unique U-turn motif. Nucleic Acids Research, 34(10), 2878–2886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

KDS gratefully acknowledges the financial support received from DST, New Delhi under the SERB-EMR project (EMR/2017/002688/BBM). ASD thankful to DST SERB for providing project fellowship. Authors are also thankful to Computer center, Shivaji University, Kolhapur for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailas D. Sonawane.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dound, A.S., Fandilolu, P.M. & Sonawane, K.D. Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5’-Monophosphate 2-Methylthio Cyclic N6-Threonylcarbamoyladenosine (p-ms2ct6A) Present at 37th Position in Anticodon Loop of tRNALys. Cell Biochem Biophys 80, 665–680 (2022). https://doi.org/10.1007/s12013-022-01086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01086-0

Keywords

Navigation