Skip to main content

Advertisement

Log in

Lysophosphatidate Promotes Sphingosine 1-Phosphate Metabolism and Signaling: Implications for Breast Cancer and Doxorubicin Resistance

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) promote vasculogenesis, angiogenesis, and wound healing by activating a plethora of overlapping signaling pathways that stimulate mitogenesis, cell survival, and migration. As such, maladaptive signaling by LPA and S1P have major effects in increasing tumor progression and producing poor patient outcomes after chemotherapy and radiotherapy. Many signaling actions of S1P and LPA are not redundant; each are vital in normal physiology and their metabolisms differ. In the present work, we studied how LPA signaling impacts S1P metabolism and signaling in MDA-MB-231 and MCF-7 breast cancer cells. LPA increased sphingosine kinase-1 (SphK1) synthesis and rapidly activated cytosolic SphK1 through association with membranes. Blocking phospholipase D activity attenuated the LPA-induced activation of SphK1 and the synthesis of ABCC1 and ABCG2 transporters that secrete S1P from cells. This effect was magnified in doxorubicin-resistant MCF-7 cells. LPA also facilitated S1P signaling by increasing mRNA expression for S1P1 receptors. Doxorubicin-resistant MCF-7 cells had increased S1P2 and S1P3 receptor expression and show increased LPA-induced SphK1 activation, increased expression of ABCC1, ABCG2 and greater S1P secretion. Thus, LPA itself and LPA-induced S1P signaling counteract doxorubicin-induced death of MCF-7 cells. We conclude from the present and previous studies that LPA promotes S1P metabolism and signaling to coordinately increase tumor growth and metastasis and decrease the effectiveness of chemotherapy and radiotherapy for breast cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ATX:

Autotaxin

COX-1,2:

Cyclooxygenase-1,2

DOX:

Doxorubicin

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

LPA:

Lysophosphatidate at physiological pH but often referred to as lysophosphatidic acid

LPA1-6 :

LPA receptors 1-6

LPC:

Lysophosphatidylcholine

LPP:

Lipid phosphate phosphatases

PA:

Phosphatidate

PLD:

Phospholipase D

S1P:

Sphingosine 1-phosphate

S1P1-5 :

S1P receptors 1-5

SPH:

Sphingosine

SphK1:

Sphingosine kinase-1

References

  1. Benesch, M. G. K., Tang, X., & Brindley, D. N. (2020) Autotaxin and breast cancer: towards overcoming treatment barriers and sequelae. Cancers, 12, 374.

  2. Hemmings, D. G., & Brindley, D. N. (2020). Signalling by lysophosphatidate and its health implications. Essays in Biochemistry, 64, 547–563.

    Article  CAS  PubMed  Google Scholar 

  3. Geffken, K., & Spiegel, S. (2018). Sphingosine kinase 1 in breast cancer. Advances in Biological Regulation, 67, 59–65.

    Article  CAS  PubMed  Google Scholar 

  4. Pyne, N. J., & Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nature Reviews Cancer, 10, 489–503.

    Article  CAS  PubMed  Google Scholar 

  5. Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New England Journal of Medicine, 315, 1650–1659.

    Article  CAS  Google Scholar 

  6. Schafer, M., & Werner, S. (2008). Cancer as an overhealing wound: an old hypothesis revisited. Nature Reviews Molecular Cell Biology, 9, 628–638.

    Article  CAS  PubMed  Google Scholar 

  7. Venkatraman, G., Benesch, M. G., Tang, X., Dewald, J., McMullen, T. P., & Brindley, D. N. (2015). Lysophosphatidate signaling stabilizes Nrf2 and increases the expression of genes involved in drug resistance and oxidative stress responses: implications for cancer treatment. FASEB Journal, 29, 772–785.

    Article  CAS  PubMed  Google Scholar 

  8. Meshcheryakova, A., Svoboda, M., Jaritz, M., Mungenast, F., Salzmann, M., Pils, D., Cacsire Castillo-Tong, D., Hager, G., Wolf, A., Braicu, E. I., Sehouli, J., Lambrechts, S., Vergote, I., Mahner, S., Birner, P., Zimmermann, P., Brindley, D. N., Heinze, G., Zeillinger, R., & Mechtcheriakova, D. (2019). Interrelations of Sphingolipid and lysophosphatidate signaling with immune system in ovarian cancer. Computational and Structural Biotechnology Journal, 17, 537–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Busnelli, M., Manzini, S., Parolini, C., Escalante-Alcalde, D., & Chiesa, G. (2018). Lipid phosphate phosphatase 3 in vascular pathophysiology. Atherosclerosis, 271, 156–165.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, Y., Hasse, S., Zhao, C., & Bourgoin, S. G. (2019). Targeting the autotaxin—lysophosphatidic acid receptor axis in cardiovascular diseases. Biochemical Pharmacology, 164, 74–81.

    Article  CAS  PubMed  Google Scholar 

  11. Hisano, Y., Kono, M., Cartier, A., Engelbrecht, E., Kano, K., Kawakami, K., Xiong, Y., Piao, W., Galvani, S., Yanagida, K., Kuo, A., Ono, Y., Ishida, S., Aoki, J., Proia, R. L., Bromberg, J. S., Inoue, A., & Hla, T. (2019). Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes. Journal of Experimental Medicine, 216, 1582–1598.

    Article  CAS  Google Scholar 

  12. Nakanaga, K., Hama, K., Kano, K., Sato, T., Yukiura, H., Inoue, A., Saigusa, D., Tokuyama, H., Tomioka, Y., Nishina, H., Kawahara, A., & Aoki, J. (2014). Overexpression of autotaxin, a lysophosphatidic acid-producing enzyme, enhances cardia bifida induced by hypo-sphingosine-1-phosphate signaling in zebrafish embryo. Journal of Biochemistry, 155, 235–241.

    Article  CAS  PubMed  Google Scholar 

  13. Panetti, T. S. (2002). Differential effects of sphingosine 1-phosphate and lysophosphatidic acid on endothelial cells. Biochimica et Biophysica Acta, 1582, 190–196.

    Article  CAS  PubMed  Google Scholar 

  14. Tang, X., & Brindley, D. N. (2020) Lipid phosphate phosphatases and cancer. Biomolecules, 10, 1263.

  15. Tang, X., Benesch, M. G., & Brindley, D. N. (2015). Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. Journal of Lipid Research, 56, 2048–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao, Y., Kalari, S. K., Usatyuk, P. V., Gorshkova, I., He, D., Watkins, T., Brindley, D. N., Sun, C., Bittman, R., Garcia, J. G., Berdyshev, E. V., & Natarajan, V. (2007). Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. Journal of Biological Chemistry, 282, 14165–14177.

    Article  CAS  Google Scholar 

  17. Delon, C., Manifava, M., Wood, E., Thompson, D., Krugmann, S., Pyne, S., & Ktistakis, N. T. (2004). Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. Journal of Biological Chemistry, 279, 44763–44774.

    Article  CAS  Google Scholar 

  18. Ramachandran, S., Shida, D., Nagahashi, M., Fang, X., Milstien, S., Takabe, K., & Spiegel, S. (2010). Lysophosphatidic acid stimulates gastric cancer cell proliferation via ERK1-dependent upregulation of sphingosine kinase 1 transcription. FEBS Letters, 584, 4077–4082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Le Stunff, H., Galve-Roperh, I., Peterson, C., Milstien, S., & Spiegel, S. (2002). Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. Journal of Cell Biology, 158, 1039–1049.

    Article  CAS  Google Scholar 

  20. Kim, R. H., Takabe, K., Milstien, S., & Spiegel, S. (2009). Export and functions of sphingosine-1-phosphate. Biochimica et Biophysica Acta, 1791, 692–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saba, J. D. (2019). Fifty years of lyase and a moment of truth: sphingosine phosphate lyase from discovery to disease. Journal of Lipid Research, 60, 456–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benesch, M. G., Zhao, Y. Y., Curtis, J. M., McMullen, T. P., & Brindley, D. N. (2015). Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate. Journal of Lipid Research, 56, 1134–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hooks, S. B., Santos, W. L., Im, D. S., Heise, C. E., Macdonald, T. L., & Lynch, K. R. (2001). Lysophosphatidic acid-induced mitogenesis is regulated by lipid phosphate phosphatases and is Edg-receptor independent. Journal of Biological Chemistry, 276, 4611–4621.

    Article  CAS  Google Scholar 

  24. Samadi, N., Gaetano, C., Goping, I. S., & Brindley, D. N. (2009). Autotaxin protects MCF-7 breast cancer and MDA-MB-435 melanoma cells against Taxol-induced apoptosis. Oncogene, 28, 1028–1039.

    Article  CAS  PubMed  Google Scholar 

  25. Hembruff, S. L., Laberge, M. L., Villeneuve, D. J., Guo, B., Veitch, Z., Cecchetto, M., & Parissenti, A. M. (2008). Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance. BMC Cancer, 8, 318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang, F., Wang, Z., Lu, M., Yonekubo, Y., Liang, X., Zhang, Y., Wu, P., Zhou, Y., Grinstein, S., Hancock, J. F., & Du, G. (2014). Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Molecular and Cellular Biology, 34, 84–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pilquil, C., Dewald, J., Cherney, A., Gorshkova, I., Tigyi, G., English, D., Natarajan, V., & Brindley, D. N. (2006). Lipid phosphate phosphatase-1 regulates lysophosphatidate-induced fibroblast migration by controlling phospholipase D2-dependent phosphatidate generation. Journal of Biological Chemistry, 281, 38418–38429.

    Article  CAS  Google Scholar 

  28. Mitra, P., Maceyka, M., Payne, S. G., Lamour, N., Milstien, S., Chalfant, C. E., & Spiegel, S. (2007). Ceramide kinase regulates growth and survival of A549 human lung adenocarcinoma cells. FEBS Letters, 581, 735–740.

    Article  CAS  PubMed  Google Scholar 

  29. Mitra, P., Oskeritzian, C. A., Payne, S. G., Beaven, M. A., Milstien, S., & Spiegel, S. (2006). Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 16394–16399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olivera, A., & Spiegel, S. (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature, 365, 557–560.

    Article  CAS  PubMed  Google Scholar 

  31. Cascales, C., Mangiapane, E. H., & Brindley, D. N. (1984). Oleic acid promotes the activation and translocation of phosphatidate phosphohydrolase from the cytosol to particulate fractions of isolated rat hepatocytes. Biochemical Journal, 219, 911–916.

    Article  CAS  PubMed Central  Google Scholar 

  32. Young, K. W., Willets, J. M., Parkinson, M. J., Bartlett, P., Spiegel, S., Nahorski, S. R., & Challiss, R. A. (2003). Ca2+/calmodulin-dependent translocation of sphingosine kinase: role in plasma membrane relocation but not activation. Cell Calcium, 33, 119–128.

    Article  CAS  PubMed  Google Scholar 

  33. Shen, H., Giordano, F., Wu, Y., Chan, J., Zhu, C., Milosevic, I., Wu, X., Yao, K., Chen, B., Baumgart, T., Sieburth, D., & De Camilli, P. (2014). Coupling between endocytosis and sphingosine kinase 1 recruitment. Nature Cell Biology, 16, 652–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Donoviel, M. S., Hait, N. C., Ramachandran, S., Maceyka, M., Takabe, K., Milstien, S., Oravecz, T., & Spiegel, S. (2015). Spinster 2, a sphingosine-1-phosphate transporter, plays a critical role in inflammatory and autoimmune diseases. FASEB Journal, 29, 5018–5028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takabe, K., Kim, R. H., Allegood, J. C., Mitra, P., Ramachandran, S., Nagahashi, M., Harikumar, K. B., Hait, N. C., Milstien, S., & Spiegel, S. (2010). Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. Journal of Biological Chemistry, 285, 10477–10486.

    Article  CAS  Google Scholar 

  36. Hobson, J. P., Rosenfeldt, H. M., Barak, L. S., Olivera, A., Poulton, S., Caron, M. G., Milstien, S., & Spiegel, S. (2001). Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science, 291, 1800–1803.

    Article  CAS  PubMed  Google Scholar 

  37. Yamanaka, M., Shegogue, D., Pei, H., Bu, S., Bielawska, A., Bielawski, J., Pettus, B., Hannun, Y. A., Obeid, L., & Trojanowska, M. (2004). Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. Journal of Biological Chemistry, 279, 53994–54001.

    Article  CAS  Google Scholar 

  38. Edsall, L. C., Cuvillier, O., Twitty, S., Spiegel, S., & Milstien, S. (2001). Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. Journal of Neurochemistry, 76, 1573–1584.

    Article  CAS  PubMed  Google Scholar 

  39. Doll, F., Pfeilschifter, J., & Huwiler, A. (2005). The epidermal growth factor stimulates sphingosine kinase-1 expression and activity in the human mammary carcinoma cell line MCF7. Biochimica et Biophysica Acta, 1738, 72–81.

    Article  PubMed  CAS  Google Scholar 

  40. Shu, X., Wu, W., Mosteller, R. D., & Broek, D. (2002). Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Molecular and Cellular Biology, 22, 7758–7768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sukocheva, O. A., Wang, L., Albanese, N., Pitson, S. M., Vadas, M. A., & Xia, P. (2003). Sphingosine kinase transmits estrogen signaling in human breast cancer cells. Molecular Endocrinology, 17, 2002–2012.

    Article  CAS  PubMed  Google Scholar 

  42. Xia, P., Gamble, J. R., Rye Kam Wang, L., Hii, C. S., Cockerill, P., Khew-Goodall, Y., Bert, A. G., Barter, P. J., & Vadas, M. A. (1998). Tumor necrosis factor-a induces adhesion molecule expression through the sphingosine kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 95, 14196–14201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feistritzer, C., & Riewald, M. (2005). Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood, 105, 3178–3184.

    Article  CAS  PubMed  Google Scholar 

  44. van Koppen, C. J., Meyer zu Heringdorf, D., Alemany, R., & Jakobs, K. H. (2001). Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sciences, 68, 2535–2540.

    Article  PubMed  Google Scholar 

  45. Meyer zu Heringdorf, D., Lass, H., Kuchar, I., Lipinski, M., Alemany, R., Rumenapp, U., & Jakobs, K. H. (2001). Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors. European Journal of Pharmacology, 414, 145–154.

    Article  CAS  PubMed  Google Scholar 

  46. Johnson, K. R., Becker, K. P., Facchinetti, M. M., Hannun, Y. A., & Obeid, L. M. (2002). PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). Journal of Biological Chemistry, 277, 35257–35262.

    Article  CAS  Google Scholar 

  47. Auge, N., Nikolova-Karakashian, M., Carpentier, S., Parthasarathy, S., Negre-Salvayre, A., Salvayre, R., Merrill, Jr, A. H., & Levade, T. (1999). Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. Journal of Biological Chemistry, 274, 21533–21538.

    Article  CAS  Google Scholar 

  48. Kleuser, B., Cuvillier, O., & Spiegel, S. (1998). 1Alpha,25-dihydroxyvitamin D3 inhibits programmed cell death in HL-60 cells by activation of sphingosine kinase. Cancer Research, 58, 1817–1824.

    CAS  PubMed  Google Scholar 

  49. Buehrer, B. M., Bardes, E. S., & Bell, R. M. (1996). Protein kinase C-dependent regulation of human erythroleukemia (HEL) cell sphingosine kinase activity. Biochimica et Biophysica Acta, 1303, 233–242.

    Article  PubMed  Google Scholar 

  50. Doll, F., Pfeilschifter, J., & Huwiler, A. (2007). Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocrine-Related Cancer, 14, 325–335.

    Article  PubMed  CAS  Google Scholar 

  51. Olivera, A., Edsall, L., Poulton, S., Kazlauskas, A., & Spiegel, S. (1999). Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma. FASEB Journal, 13, 1593–1600.

    Article  CAS  PubMed  Google Scholar 

  52. Pitson, S. M., Moretti, P. A., Zebol, J. R., Lynn, H. E., Xia, P., Vadas, M. A., & Wattenberg, B. W. (2003). Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO Journal, 22, 5491–5500.

    Article  CAS  Google Scholar 

  53. Jarman, K. E., Moretti, P. A., Zebol, J. R., & Pitson, S. M. (2010). Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. Journal of Biological Chemistry, 285, 483–492.

    Article  CAS  Google Scholar 

  54. Hayashi, S., Okada, T., Igarashi, N., Fujita, T., Jahangeer, S., & Nakamura, S. (2002). Identification and characterization of RPK118, a novel sphingosine kinase-1-binding protein. Journal of Biological Chemistry, 277, 33319–33324.

    Article  CAS  Google Scholar 

  55. Kihara, A., Anada, Y., & Igarashi, Y. (2006). Mouse sphingosine kinase isoforms SPHK1a and SPHK1b differ in enzymatic traits including stability, localization, modification, and oligomerization. Journal of Biological Chemistry, 281, 4532–4539.

    Article  CAS  Google Scholar 

  56. Du, G., Huang, P., Liang, B. T., & Frohman, M. A. (2004). Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Molecular Biology of the Cell, 15, 1024–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shida, D., Fang, X., Kordula, T., Takabe, K., Lepine, S., Alvarez, S. E., Milstien, S., & Spiegel, S. (2008). Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Research, 68, 6569–6577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sobue, S., Hagiwara, K., Banno, Y., Tamiya-Koizumi, K., Suzuki, M., Takagi, A., Kojima, T., Asano, H., Nozawa, Y., & Murate, T. (2005). Transcription factor specificity protein 1 (Sp1) is the main regulator of nerve growth factor-induced sphingosine kinase 1 gene expression of the rat pheochromocytoma cell line. Journal of Neurochemistry, 95(940-949), PC12.

    Google Scholar 

  59. Paugh, B. S., Bryan, L., Paugh, S. W., Wilczynska, K. M., Alvarez, S. M., Singh, S. K., Kapitonov, D., Rokita, H., Wright, S., Griswold-Prenner, I., Milstien, S., Spiegel, S., & Kordula, T. (2009). Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. Journal of Biological Chemistry, 284, 3408–3417.

    Article  CAS  Google Scholar 

  60. Sobue, S., Murakami, M., Banno, Y., Ito, H., Kimura, A., Gao, S., Furuhata, A., Takagi, A., Kojima, T., Suzuki, M., Nozawa, Y., & Murate, T. (2008). v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins. Oncogene, 27, 6023–6033.

    Article  CAS  PubMed  Google Scholar 

  61. Takabe, K., Paugh, S. W., Milstien, S., & Spiegel, S. (2008). “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacological Review, 60, 181–195.

    Article  CAS  Google Scholar 

  62. Bekele, R. T., Venkatraman, G., Liu, R. Z., Tang, X., Mi, S., Benesch, M. G., Mackey, J. R., Godbout, R., Curtis, J. M., McMullen, T. P., & Brindley, D. N. (2016). Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance. Scientific Reports, 6, 21164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Watson, C., Long, J. S., Orange, C., Tannahill, C. L., Mallon, E., McGlynn, L. M., Pyne, S., Pyne, N. J., & Edwards, J. (2010). High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. The American Journal of Pathology, 177, 2205–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported by grants from the Canadian Cancer Society Research Institutes and Canadian Institutes of Health Research to DNB and Natural Sciences and Engineering Research Council of Canada to DGH. A Northern Cancer Foundation (Sudbury) grant to AMP helped support the creation of the MCF-7CC and MCF-7DOX2 cell lines and a grant from the American Heart Association to GD (19TPA34910051) supported the creation of the PA sensors.

Author contributions

G.V. and X.T. (methodology, investigation, and illustrations); G.D. (conceptualization, preparation and characterization of PA sensor); A.M.P. (conceptualization, preparation, and characterization of DOX-resistant MCF-7 cells); D.G.H. (conceptualization, funding acquisition, and writing) and D.N.B. (conceptualization, methodology, funding acquisition, project administration, resources, supervision, and writing). All authors contributed to editing the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denise G. Hemmings or David N. Brindley.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, G., Tang, X., Du, G. et al. Lysophosphatidate Promotes Sphingosine 1-Phosphate Metabolism and Signaling: Implications for Breast Cancer and Doxorubicin Resistance. Cell Biochem Biophys 79, 531–545 (2021). https://doi.org/10.1007/s12013-021-01024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01024-6

Keywords

Navigation