Skip to main content
Log in

Sphingosine Kinase-1 Activation Causes Acquired Resistance Against Sunitinib in Renal Cell Carcinoma Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Multi-target tyrosine kinase inhibitor Sunitinib has been widely used in cancer treatment, including metastatic renal cell carcinoma. However, most patients who initially benefit from Sunitinib develop resistance with extended usage of Sunitinib, which is referred to as “acquired resistance”. The molecular mechanisms contributing to this acquired resistance remain poorly understood. In this present study, we established Sunitinib-resistant cell lines from human renal cell lines (786-O, A498, ACHN and CAKI1) by continuous treatment with Sunitinib to explore the molecular mechanism leading to Sunitinib resistance. We found that PDGFR-β expression in cell seems to be a protective factor against Sunitinib resistance formation. In addition, we found that both SK1 and ERK were activated in Sunitinib-resistance cell lines and SK1 and ERK inhibitors could resensitize Sunitinib-resistant cell lines. In conclusion, our observations suggest that SK1 and ERK activation is a feature of resistant cell lines, which serves as an alternative pathway evading anti-tumor activity of Sunitinib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antonelli, A., et al. (2007). The follow-up management of non-metastatic renal cell carcinoma: Definition of a surveillance protocol. BJU International, 99(2), 296–300.

    Article  PubMed  Google Scholar 

  2. Itsumi, M., & Tatsugami, K. (2010). Immunotherapy for renal cell carcinoma. Clinical and Developmental Immunology, 2010, 284581.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Faivre, S., et al. (2007). Molecular basis for sunitinib efficacy and future clinical development. Nature Reviews. Drug Discovery, 6(9), 734–745.

    Article  CAS  PubMed  Google Scholar 

  4. Irani, J. (2007). Sunitinib versus interferon-alpha in metastatic renal-cell carcinoma. Progres en Urologie, 17(5), 996.

    Article  PubMed  Google Scholar 

  5. Motzer, R. J., et al. (2007). Sunitinib efficacy against advanced renal cell carcinoma. Journal of Urology, 178(5), 1883–1887.

    Article  CAS  PubMed  Google Scholar 

  6. Huang, D., et al. (2010). Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Research, 70(3), 1063–1071.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Farber, E., & Rubin, H. (1991). Cellular adaptation in the origin and development of cancer. Cancer Research, 51(11), 2751–2761.

    CAS  PubMed  Google Scholar 

  8. Song, L., et al. (2011). Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3 K/Akt/NF-kappaB pathway in human non-small cell lung cancer. Clinical Cancer Research, 17(7), 1839–1849.

    Article  CAS  PubMed  Google Scholar 

  9. Marfe, G., et al. (2011). Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. Experimental Hematology, 39(6), 653–665.

    Article  CAS  PubMed  Google Scholar 

  10. Rupal S, B., et al. Sphingosine-1-phosphate (S1P) as a novel target in renal cancer (RCC). in AACR 101st Annual Meeting 2010. 2011. Washington, DC: Cancer Research.

  11. Kuroda, K., et al. (2009). Activated Akt prevents antitumor activity of gefitinib in renal cancer cells. Urology, 74(1), 209–215.

    Article  PubMed  Google Scholar 

  12. Martinelli, E., et al. (2010). Synergistic antitumor activity of sorafenib in combination with epidermal growth factor receptor inhibitors in colorectal and lung cancer cells. Clinical Cancer Research, 16(20), 4990–5001.

    Article  CAS  PubMed  Google Scholar 

  13. Morgillo, F., et al. (2011). Antitumor activity of sorafenib in human cancer cell lines with acquired resistance to EGFR and VEGFR tyrosine kinase inhibitors. PLoS One, 6(12), e28841.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Cho, S. Y., et al. (2011). Sphingosine kinase 1 pathway is involved in melatonin-induced HIF-1alpha inactivation in hypoxic PC-3 prostate cancer cells. Journal of Pineal Research, 51(1), 87–93.

    Article  CAS  PubMed  Google Scholar 

  15. Abrams, T. J., et al. (2003). SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Molecular Cancer Therapeutics, 2(5), 471–478.

    CAS  PubMed  Google Scholar 

  16. Chow, L. Q., & Eckhardt, S. G. (2007). Sunitinib: from rational design to clinical efficacy. Journal of Clinical Oncology, 25(7), 884–896.

    Article  CAS  PubMed  Google Scholar 

  17. Rubinson, D. A., et al. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 33(3), 401–406.

    Article  CAS  PubMed  Google Scholar 

  18. Li, H., et al. (2011). Blocking the PI3K/AKT and MEK/ERK signaling pathways can overcome gefitinib-resistance in non-small cell lung cancer cell lines. Advances in Medical Sciences, 56(2), 275–284.

    Article  CAS  PubMed  Google Scholar 

  19. Pchejetski, D., et al. (2011). Therapeutic potential of targeting sphingosine kinase 1 in prostate cancer. Nature Reviews Urology, 8(10), 569–678.

    Article  CAS  PubMed  Google Scholar 

  20. Huang, D., et al. (2010). Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Research, 70(3), 1053–1062.

    Article  CAS  PubMed  Google Scholar 

  21. Olson, P., et al. (2011). Imaging guided trials of the angiogenesis inhibitor sunitinib in mouse models predict efficacy in pancreatic neuroendocrine but not ductal carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 108(49), E1275–E1284.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Powles, T., et al. (2011). Sunitinib and other targeted therapies for renal cell carcinoma. British Journal of Cancer, 104(5), 741–745.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Mendel, D. B., et al. (2003). In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clinical Cancer Research, 9(1), 327–337.

    CAS  PubMed  Google Scholar 

  24. Schueneman, A. J., et al. (2003). SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Research, 63(14), 4009–4016.

    CAS  PubMed  Google Scholar 

  25. Tanaka, Y., et al. (2011). Sunitinib suppresses tumor growth and metastases in a highly metastatic mouse mammary cancer model. Anticancer Research, 31(4), 1225–1234.

    CAS  PubMed  Google Scholar 

  26. Seandel, M., et al. (2006). The activity of sunitinib against gastrointestinal stromal tumor seems to be distinct from its antiangiogenic effects. Clinical Cancer Research, 12(20 Pt 1), 6203–6204.

    Article  CAS  PubMed  Google Scholar 

  27. de Bouard, S., et al. (2007). Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro-Oncology, 9(4), 412–423.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Xin, H., et al. (2009). Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Research, 69(6), 2506–2513.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Oliner, J., et al. (2004). Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell, 6(5), 507–516.

    Article  CAS  PubMed  Google Scholar 

  30. Cenni, E. (2005). Inhibition of angiogenic activity of renal carcinoma by an antisense oligonucleotide targeting fibroblast growth factor-2. Anticancer Research, 25(2A), 1109–1113.

    CAS  PubMed  Google Scholar 

  31. Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews Cancer, 8(8), 592–603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Cuvillier, O., et al. (2010). Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting. Current Molecular Pharmacology, 3(2), 53–65.

    Article  CAS  PubMed  Google Scholar 

  33. Pyne, N. J., & Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nature Reviews Cancer, 10(7), 489–503.

    Article  CAS  PubMed  Google Scholar 

  34. Hu, S., et al. (2009). Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clinical Cancer Research, 15(19), 6062–6069.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Shukla, S., et al. (2009). Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metabolism and Disposition, 37(2), 359–365.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Funds of Chongqing Normal University (No. 12XLB025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H., Deng, L. Sphingosine Kinase-1 Activation Causes Acquired Resistance Against Sunitinib in Renal Cell Carcinoma Cells. Cell Biochem Biophys 68, 419–425 (2014). https://doi.org/10.1007/s12013-013-9723-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9723-4

Keywords

Navigation