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Abstract An increment model based on thermodynamics

lays bare that the cell size distributions of archaea, pro-

karyotes and eukaryotes are optimized and belong to the

same universal class. Yet, when a cell absorbs mass or

signals are processed, these conditions are disturbed.

Relaxation re-installs ideal growth conditions via an

exponential process with a rate that slows down with the

cell size. In a growing ensemble, a distribution of relaxa-

tion modes comes in existence, exactly defined by the

universal cell size distribution. The discovery of nano-

mechanic acoustic activities in cells led us to assume that

in a growing ensemble acoustic signals may contribute

significantly to the transmission of essential information

about growth-induced disturbances to all cells, initiating

that way coordinated relaxation. The frequency increases

with the cell number shortening the period between suc-

cessive signals. The completion of rearrangements

occurring at a constant rate is thus progressively impaired,

until cellular growth stops, totally. Due to this phenome-

non, the so-called ‘‘relaxation-frequency-dispersion’’

cell colonies should exhibit a maximum cell number. In

populations with large cell numbers, subsystems, behaving

similar-like colonies, should form network-like patterns.

Based on these ideas, we formulate equations that describe

the growth curves of all cell types, verifying that way the

general nature of the growth logistics.

Keywords Cell multiplication � Colonies � Populations �
Structure and dynamics � Relaxation � Growth logistics

Introduction

The growth of multi-cellular living systems is linked via

cell division to the growth of individual cells [1]. A phe-

nomenological description of these processes should

provide information about cooperation within cell ensem-

bles. If synchronized sequences of cell growth and division

occur in an unlimited manner, an exponential relation

describes the number of cells and in a semi-log plot a

straight-line results, not showing the sigmoidal bending of

experimental patterns. Various treatments [2–5] present

different approaches to a deeper understanding of the

observations by modelling universality and scaling. Yet,

limits of the characterization are also made out like the

question whether and how the cell ensemble structure

exercises an influence on the growth process.

Earlier treatments [6–8] identify the cell size distribu-

tions deduced by Kilian et al. [8] and Schlote [9] as

optimized patterns. Moreover, expressed in dimensionless

variables all of them coincide with one another. In order to

understand this striking symmetry, a quantitative descrip-

tion of growth is required which accounts for the essential
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features of the structural development. Of course, at the

present state of knowledge, this treatment needs sensible

simplifications and approximations.

One central assumption is that throughout all stages of

their lifecycle, cells tend to keep optimal process condi-

tions, which are disturbed, however, each time when mass

is taken up or signals are processed. To re-establish the

optimal state, intra-cellular relaxation has to occur. Since

the relaxation time increases with the cell size, a relaxa-

tion-time-distribution results, determined by the size

distribution of the cell ensemble. In addition, whenever a

cell grows, the momentary size distribution deviates from

its ideal version [6–8, 10]. All cells have to improve the

situation, by collective relaxation.

During these events, communication should coordinate

the numerous bio-molecular processes. Intercellular-

signalling may occur via cell-to-cell coupling that supports

synchrony across the whole population [11]. ‘‘Quorum-

sensing’’ is the ability of cells to detect and respond to their

population density. In any case, growth control needs col-

lective signals that exhibit at least these features: (a) Signals

should inform all cells of a growing ensemble about the

actual situation. (b) They should thus be transmitted fast

enough in respect to the mean rate of molecular reaction and

reorganization. (c) Via absorption and emission, cells

should be able to take individual action. (d) A frequency

spectrum should allow to generate precise messages.

In order to develop under these conditions a phe-

nomenological model, we refer to the observations of

nano-mechanical motions of the cell wall of Saccharomy-

cescerevisiae [12]. Systematic studies lead to the conclusion

that this ‘‘acoustic breathing’’ is a metabolically driven

process. One might then assume that cellular absorption of

biomass causes acoustic signals. Yet, the concerted activities

of all the communicating cells in a colony, including com-

plex effects of intercellular contacts [13], are not known to

the last details. We must content ourselves with approxi-

mating the succession of signals as an oscillating stress-field

with frequencies in the acoustic regime.

During growth, these frequencies increase steadily, thus

shortening the period between successive signals. Molec-

ular rearrangements that show a constant rate become more

and more incomplete. Finally, any further growth is

blocked. We call this whole phenomenon ‘‘relaxation-fre-

quency-dispersion’’. In colonies, the number of cells should

in principle be restricted to a maximum value. Any popu-

lation comprised of a number of cells beyond this limit

should form a transient network of subsystems with prop-

erties resembling those of a single colony.

Based on the above ideas, equations are formulated that

allow us to describe the growth of populations for different

cell types and under any culture condition, that way

revealing notable symmetries.

Stationary Properties

The Saturation Conditions

Ensembles of cultured cells from all biological kingdoms

exhibit cell size distributions with conspicuously similar

properties [9, 14]. By introducing an ‘‘increment model’’, it

can be discussed how they may come about [6–8]. We

suppose that in a growing cell energetically equivalent

molecule clusters are absorbed and relatively fast adjusted to

optimal conditions. These ‘‘equilibrated clusters’’ are

regarded as particles, dubbed increments of biomass (ICs).

Thermodynamics legitimates the assumption that the nutri-

ent solution should contain such increments as preformed

particles, that way formulating a virtual state of reference.

This characterization obviates the necessity of dealing with

the formation of ICs via a not fully known intracellular

biochemistry and processes of self-organization.

In terms of this model, growth of a cell is a sequential

addition of ICs in a re-iterated uniform reaction. The

reaction-energy Duc of an IC as difference between the

energy uc in the cell and the energy un in the nutrient is

Duc ¼ uc � un:

There are many reasons to suspect that keeping optimal

growth conditions needs unceasing re-adjustments. They

seem to happen analogous to the adaptation of equilibrium in

a streaming gas. Within every volume element, relaxation

installs thermal equilibrium, independent of the stationary

collective movement of all particles. In cells, disturbance of

the optimal internal structure occurs when biomass is

absorbed. Virtually independent of the quasi-stationary

collective growth of the total ensemble, relaxation should

always arrange optimal process conditions.

The disturbances are likely to be small enough to justify

the application of irreversible thermodynamics. At constant

absolute temperature T and pressure p, the differential of

the Gibbs-free-energy (dgy)T,p within a growing cell com-

prised of ya ICs with y = ya - 1 contacts, can according to

[15] be defined by

dgy

� �
T ;p
¼ �AydnyðtÞ ð1Þ

ny(t) is the reaction coordinate. The affinity Ay [ 0 measures

the distance from stationary conditions at Ay = 0. If, on

average, each increment experiences the same growth-

induced disturbance, the affinity can be written as Ay = yA0.

The affinity per increment A0 is then equal to

A0 ¼ �
X

mklk ¼ ln � lc; mn ¼ �1; mc ¼ 1: ð2Þ

The chemical potential of an IC in the nutrient solution

is ln, and in the cell lc. mj are the stoichiometric

coefficients: the negative term (mn = -1) indicates that an

IC disappears from the reservoir when it is linked in a cell
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(mc = +1). With the definition lj = uj - Tsj (j = c, n) the

relations per IC emerge

uc � un þ A0 ¼ Tðsc � snÞ;
Duo ¼ Duc þ A0 ¼ TDsc:

ð3Þ

Since in every cell the values of the reaction energy Duc

und the affinity A0 are supposed to be invariant, the

reaction energy Duy of a cell with y contacts is equal to

Duy = yDu0. The reaction entropy Dsy = sy - syn is the

difference of the entropy sy of ya ICs in the cell with y

contacts and the entropy syn of these ICs in the reservoir.

Postponing the explicit formulation of Dsy, the ‘‘saturation

conditions’’ emerge

Duy ¼ yDu0 ¼ TDsy; ymin� y� ymax: ð4Þ

The smallest cells have ymin contacts; ymax counts the

contacts in cells of maximum size. Under optimal process

conditions, the entropy term TDsy and the reaction energy

Duy should become equal for each cell size (ymin B y

B ymax). Via ever-present structural fluctuations, the

entropy should rapidly adapt to the value demanded

according to Eq. 4.

Cell Size Distributions

Under these circumstances, cell ensembles should display

topologically identical cell size distributions. To verify this

statement, the total reaction entropy Dsy must be given in

greater detail. Assumed to be comprised of the intracellular

contribution Dsyi and the mixing entropy Dsymix

Dsy ¼ Dsyi þ Dsymix; ð5Þ

we have to explain these components.

As approximation, independent structural fluctuations in

three orthogonal directions within a cell are supposed to

determine Dsyi. The number of microstates Xyi in the

direction i should then be related to the number of incre-

ments ya = y + 1 according to

Xyi ¼ yai
a ¼ yþ 1ð Þai � yai ; i ¼ 1; 2; 3:

Empirically, ai accounts for the way how a stationary

number of microstates in the direction i is produced. The

total number of microstates Xy in a cell is then

Xy ffi Xy1Xy2Xy3 ¼ ya1þa2þa3 ¼ y p; p ¼ a1 þ a2 þ a3:

Related to the state of reference at y = 1, the intracellular

reaction entropy Dsyi is defined by

Dsyi ¼ kB lnðXyÞ � lnðX1Þ
� �

¼ kB lnðy pÞ; ð6Þ

where kB is Boltzmann’s constant. Since cell size distri-

butions are experienced to belong without any exception to

the (p = 3)-class, the intracellular entropy Dsyi may be

represented as if exactly y configurations are independently

activated in each direction i so that Xy = y3 (p = 3) [6, 8].

Dsmix arises now since according to thermodynamics, a

growing cell colony is a multi-component system with cells

in different size as its components [16]. When a cell divides,

two smaller daughter cells replace the bigger mother cell.

Within more or less tightly packed patterns, growth of a cell

enforces cooperative rearrangements of the positions of

neighbouring cells that are growing too. Not dominated

by diffusion, these not strictly synchronized processes

accomplish de facto an ideal mixing of cells of different

size. The mixing entropy Dsmix [16] is then given by

Dsmix ¼ �kB

Xymax

y¼ymin

ny lnðxyÞ; xy ¼
ny

Rny
: ð7Þ

The fraction xy is defined by relating the number of cells

with y contacts ny to the total cell number in the ensemble

Rny. Since at the state of reference (qsmix/qny)r = 0, the

mixing entropy contribution of a cell with y contacts Dsymix

is equal to

Dsymix ¼ osmix=ony

� �
c
� osmix=ony

� �
r
¼ �kB ln xy

� �
: ð8Þ

If smallest cells with ymin contacts are in existence, the

parameter y should be replaced by Dy = y - ymin.

Equations 6 and 8 inserted into Eq. 4, the fraction xy of

cells with Dy contacts xy is obtained to be equal to [7]

xy ¼ cDy p exp ��DyDu0f g ¼ cDyp exp ��Dy DucþA0ð Þf g
ð9Þ

with

c ¼
Xymax

y¼ymin

Dy p exp ��DyDu0f g
 !�1

; � ¼ ðkBTÞ�1:

ð10Þ

Given the parameters p = 3, Du0, A0 and ymin, the set of

fractions xy describes a cell-size distribution with optimal

properties. When Eq. 9 is re-formulated in terms of the

dimensionless variable g given by relating the reaction

energy per cell (y - ymin) Du0 to the thermal energy kBT

g ¼ ðy� yminÞDu0=kBT ¼ ðy� yminÞ�Du0; ð11Þ

the universal function U(g) emerges (7)

UðgÞ ¼ xy

�
CA ¼ g p exp �gf g; CA ¼ c= �Du0½ �p: ð12Þ

Figure 1 demonstrates that the cell size distributions of

archaea, prokaroytes and eukaryotes coincide within the

limits of accuracy with the universal (p = 3)-version of

U(g), i.e. p should not depend on kinetic or genetic factors.

Fluctuation of the intracellular structure according to

the (p = 3)-version of Eq. 12 indicates an unexpected

symmetry of the intra-cellular dynamics.
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The Growth Process

The Relaxation Mode Factor

Micoulet et al. [17] deformed single cells and studied

relaxation processes. They observed ‘‘quasi-Hookian’’

stress–strain behaviour. When the strain reaches a defined

value, the stress shows a first-order exponential decay,

characterized by one single relaxation time. The relaxation

time should increase with the cell size (see Appendix). In

cell ensembles, the cell size distribution should thus cause

a relaxation-time-distribution. In order to substantiate this

structure–dynamics interrelation, the relaxation time sy of a

cell with y contacts is written as product of the dimen-

sionless ‘‘relaxation mode factor’’ s0y and the kinetic factor

skin [8, 18]

sy ¼ s0yskin: ð13Þ

In the Appendix, these relations are deduced

s0y ¼ X0y; skin ¼
1

alkBT
: ð14Þ

The mode factor s0y should be proportional to the

number of microstates X0y within a cell with y-contacts that

increases with the size in qualitative accordance with Eq. 6.

In contrast, motions of molecular segments should only

affect next neighbours, so that skin should not depend on

the ensemble structure. a is Onsager’s coefficient. The

definition of the parameter l is given in the Appendix.

The Relaxation-mode-spectra

Relating the reaction entropy Dsy to a state of reference

with Xn = 1

Dsy

kB

¼ lnðX0yÞ � lnðXnÞ ¼ lnðX0yÞ

and combining Eqs. 4, 12 and 14, one arrives at these

relations

g ¼ ðy� yminÞ�Du0 ¼
Dsy

kB

¼ lnðX0yÞ ¼ lnðs0yÞ:

At constant p, the identities emerge

UðgÞ ¼ U
Dsy

kB

� �
¼ Uðs0yÞ ð15Þ

with

UðgÞ ¼ gp exp �gf g;

U
Dsy

kB

� �
¼ Dsy

kB

� �p

exp
�Dsy

kB

� 	
;

Uðs0yÞ ¼
lnp s0y

� �

s0y
:

U(g) = U(Dsy/kB) confirms the interrelation between

reaction energy and entropy as demanded according to

Eq. 4. To fulfil the condition U(g) = U(s0y), the course of

the mode spectrum U(s0y) has to coincide with the

universal (p = 3)-cell size distribution U(g), i.e. all cell

types should exhibit the same universal (p = 3)-relaxation-

mode spectrum U(s0y).

The Connection Between xc and t

If by absorption of ICs the intra-cellular growth conditions

are disturbed with the frequency x0, the frequency xc of all

signals in a colony comprised of n0c(t) cells

n0cðtÞ ¼ 2t=tc ¼ exp lnð2Þ ðt=tcÞf g ð16Þ

is as function of time t related to tc, the period of a cell

cycle, set equal to

xcðtÞ ¼ x0n0cðtÞ ¼ x02t=tc ¼ x0 exp lnð2Þ t=tcð Þf g: ð17Þ

In the time domain, the ideal law of cell multiplication

given in Eq. 16 should characterize the exponential part of

the growth process. To achieve this, we introduce the

parameter q

xc=x0ð Þq ¼ exp lnð2Þ t=tcð Þf g:

Experimentally, q is always observed to be approxi-

mately equal to ln(2) so that we are led to

t

tc

¼ ln
xc

x0

� �
: ð18Þ

The time dependent functions n0c(t) and n00c (t) are

therefore obtained by plotting n0c(xc) and n00c (xc) against t

given by
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Fig. 1 (a, b) Linear and double logarithmic plot of the U(g, p = 3)-

master curves of various cell systems [8]. The solid lines are

calculated with the (p = 3)-version of Eq. 12
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t ¼ tc ln
xc

x0

� �
: ð19Þ

A Principal Limitation

When a cell absorbs mass, its energy increases, including

strain energy that characterizes the initial disturbance via

cell deformation; the stress increases spontaneously,

evoking acoustic signals which should convey information

on the actual local situation. Since in a colony with many

cells, nutrient is absorbed in an almost regular sequence

[19], these events may be described by a periodic stress-

field with the frequency xc. If the number of communi-

cating cells grows, xc increases, and the time interval

between two successive signals, i.e. the time for molecular

reorganization shortens. Since the molecular relaxation

processes occur at a constant rate, during growth optimi-

zation of the whole ensemble is increasingly constrained.

When a network structure develops, reorganization-modes

‘‘freeze’’ selectively starting with the slowest highly

cooperative events. The growing reaction energy of the ICs

drives then A0 to increasing positive values (Eq. 3).

According to Fig. 13, this effect is experimentally con-

firmed. Finally, at the highest frequency xcmax, cell growth

and division are totally blocked. Usually, a tissue like

pattern with an optimal ensemble structure emerges.

An Instructive Analogy

When a macromolecular network is extended rapidly, the

conformational entropy of its flexible chains is reduced

because they become stretched. Moreover, they are forced

into a non-equilibrium state [20]. The set of optimal con-

formations has to be installed via relaxation; this requires

time since sequential cooperative molecular processes

participate. The theory of networks considers the chains as

equivalent visco-elastic subsystems. At small strains c the

total deformation energy w* per chain is as a function of the

elastic strain energy w0 and the dissipated part w00 defined by

w� ¼ w0 þ iw00 ¼ 1

2
G�c2 ¼ 1

2
G0 þ iG00ð Þc2:

In the Hookian regime, the complex modulus G* per

chain is then comprised of the real part G0 and the

imaginary part G00. Since network chains are energy-

equivalent subsystems, the strain energy W* of the whole

network grows proportional to the number of chains

W� ¼ nw� ¼ n
G�

2
c2

� �
: ð20Þ

If periodic deformation is applied, the reorganization of

the conformation of chains at increasing frequencies is

constrained steadily, and finally these processes freeze

totally: the network is in the glassy state. Apparently,

the phenomenon of relaxation-frequency-dispersion

typifies the glass transition of a macromolecular network

[18, 21].

A growing cell ensemble shows now topologically

analogous features since cells operate as equivalent widely

autonomous visco-elastic subsystems. They are locally

deformed whenever a cell absorbs biomass. Strain-energy

is stored, and then in parts dissipated during relaxation. As

approximation growing cell ensembles are supposed to be

automatically submitted to a collective quasi-periodic

deformation, represented by an oscillating stress-field with

the increasing frequency xc. Optimal process conditions

should be adjusted via relaxation, exhibiting analogous to a

freezing macromolecular network, the phenomenon of

relaxation-frequency-dispersion. We may thus adopt ideas

of the theory of rubber elasticity and of the phenomeno-

logical classification of relaxation [22].

For the stress r(t) at the amplitude r0

rðtÞ ¼ r0 exp ixctf g

alternating with the frequency xc (Eq. 17), the

accompanying strain c(t) is

cðtÞ ¼ c0 exp ixct � df g:

The phase-shift d originates from the dissipation of

strain-energy. In a growing cell with y contacts, the real

part Gy
0 (xc) and the imaginary component Gy

00 (xc) of the

complex modulus Gy*(xc) should be defined by [22]

G0y ¼ DG0
x2

cs
2
y

1þ x2
cs

2
y

; G00y ¼ DG0
xcsy

1þ x2
cs

2
y

:

DG0 = G0max - G0min is the ‘‘relaxation-strength’’, as

the difference between the maximum value of the modulus

at the largest frequency and its minimum under static

conditions. In order to describe the growth of a cell

ensemble, it is appropriate to introduce the complex

function X�y (xcsy) per cell

X�y ðxcsyÞ ¼ X0yðxcsyÞ þ iX00yðxcsyÞ;

X0y xcsy

� �
¼

G0y
DG0
¼

x2
cs

2
y

1þ x2
cs

2
y

;

X00y xcsy

� �
¼

G00y
DG0
¼ xcsy

1þ x2
cs

2
y

:

ð21Þ

X�y (xcsy) characterizes the phenomenon of relaxation-

frequency dispersion of a cell with y contacts and the

relaxation time sy linked in a colony, while a stress-field

with the frequency xc is active. According to Fig. 2a,

the real part Xy
0(xcsy), giving the relative strain-energy

exhibits a sigmoidal pattern while the relative loss

Xy
00(xcsy) goes through a maximum at xcsy = 1 (grey

bar).
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The Growth of a Cell Colony

First, we introduce the normalized (p = 3)-relaxation-mode

distribution

hyðs0yÞ ¼
Uðs0y; p ¼ 3Þ

Ps0y max

s0y min
Uðs0y; p ¼ 3Þ : ð22Þ

Treating growth of a cell ensemble as a linear process,

the total cell number nc
0(xc) is obtained by adding all the

fractions hy(s0y) of differently large cells, each one

multiplied by the conjugated factor in Eq. 21. Calling the

maximum number of newly formed cells in the grownup

colony Dn0c and accounting for the existence of the mother

cell, the total cell number n0c(xc) and the corresponding

loss n00c (xc) are equal to

n0cðxcÞ ¼ 1þ
X

y

n0cyðxcÞ ¼ 1þ Dn0c
X

y

hyðs0yÞX0yðxcsyÞ;

n00c ðxcÞ ¼
X

y

n00cyðxcÞ ¼ Dn0c
X

y

hyðs0yÞX00yðxcsyÞ: ð23Þ

At the lower limit n0c(xc) is equal to 1, i.e. the colony

develops from a single mother cell. At high frequencies, the

maximum cell number comes out to be n0cmax (xc) =

1 + Dn0c. Plotting ncol
0(xc) = n0c/n0cmax and n00col(xc) = n00c /

n0cmax against t/tc, Fig. 2b illustrates that the width of the

dispersion regime embraces the principal contribution

according to Eq. 21 (Fig. 2a) plus the additional

broadening caused by the existence of the spectrum hy(s0y)

(Eq. 22).

The growth curve n0t(t) is obtained by presenting n0c(xc)

in dependence of the time t that is related to xc as

formulated in Eq. 19; the width of the dispersion regime

depends strongly on tc.

The Growth of Cell Populations

Perfect coordination of all processes is only possible in

colonies with a number of cells below a maximum value. A

cell population with optimal properties should thus be

comprised of n0 equivalent subsystems that show qualities

similar to a cell colony.

Let a culture experiment begin with n0 cells, each one

operating as the mother cell of a subsystem. If coordinated

growth of the subsystems leads to an affine transformation

of the ensemble structure, n0 stays constant. In a growing

population, the cell number n0c(xc) and n00c (xc) are then

equal to

n0cðxcÞ ¼ n0 1þ Dn0c
X

y

hyðs0yÞX0yðxcsyÞ
 !

;

n00c ðxcÞ ¼ n0Dn0c
X

y

hyðs0yÞX00yðxcsyÞ:
ð24Þ

with

n0c min ¼ n0; n0c max ¼ n0 1þ Dn0c
� �

:

Growth curves of populations are simply scaled by the

structure factor n0. If the number of subsystems is large

(n0»1), the maximum cell number n0cmax = n0(1 + Dn0c)

may exceed by far the maximum size of a single subsystem

(1 + Dn0c). Since the maximal number of newly formed

cells Dn0c is usually very large, the approximation
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Fig. 2 (a) Real part X0y(xcsy)
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the complex relaxation function

X�y (xcsy) dependent on xc

calculated with Eq. 21 at
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n0cðxcÞ ’ Dn0cc

X

y

hyðs0yÞX0yðxcsyÞ; Dn0cc ¼ n0Dn0c;

n00c ðxcÞ ’ Dn0cc

X

y

hyðs0yÞX0yðxcsyÞ ð25Þ

indicates that all patterns calculated with a constant value

of Dn0cc = n0Dn0c but different combinations of n0 and Dn0c
are identical, i.e. we cannot determine the absolute value of

the structure-parameter n0 by describing a growth curve

with the use of Eq. 24.

The W0- and W00-functions

It seems to be a necessity that growth laws guarantee

statistically reliable optimal properties of living systems.

The growth logistics given in generally applicable terms

should evidence this symmetry. To prove this, we define

the W*-function by relating n0c(xc) and n00c (xc) in Eq. 24 to

the maximum cell number n0cmax = n0(1 + Dn0c) and

by plotting this ratio against the dimensionless variable

t/tc = ln(xc/x0).

W�ðxcÞ ¼ W0ðxcÞ þ iW00ðxcÞ

W0ðxcÞ ¼
n0n0cðxcÞ

n0ð1þ Dn0cÞ

¼ 1

1þ Dn0c
þ Dn0c

1þ Dn0c

X

y

hyðs0yÞX0yðxcsyÞ

W00ðxcÞ ¼
n0Dn0c

n0ð1þ Dn0cÞ
X

y

hyðs0yÞX0yðxcsyÞ:

The structure parameter n0 drops out: according to

our model, cell populations or colonies should exhibit

the same growth characteristics. Since Dn0c is large

1/(1 + Dn0c) & 0 and Dn0c/(1 + Dn0c) & 1, so that the

relations emerge

W0ðxcÞ ffi
X

y

hyðs0yÞX0yðxcsyÞ

W00ðxcÞ ffi
X

y

hyðs0yÞX00yðxcsyÞ:
ð26Þ

W0(xcsy), giving the relative strain-energy, exhibits a

sigmoidal pattern while the loss W00(xcsy) goes through

a maximum at xcsy = 1 (Fig. 2b). Since the (p = 3)-

relaxation-mode-spectrum hy(s0y) is invariant, the

growth logistics should be the same for cells of every

kind.

The general applicability of the model is easily tested

experimentally by checking whether at the same parameter

skin, the ratio n0c(xc)/n
0
cmax plotted against of t/tc coincides

with the universal (p = 3)-W0-function.

Results

Eukaryotic Cells

Adherent Mammalian Cells

The cell number n0c(t) and the individual DNA content of

Chinese Hamster Ovary (CHO)-cells were determined by

flow cytometry [23]. Each growth curve in Fig. 3a, b starts

at the cell number ninitial listed in Table 3. Since the ninitial

cells adjust rapidly optimal conditions, each experimental

data set in Fig. 3 can completely be fitted with Eqs. 19 and

24, using apart from skin the same set of parameters

(Table 3). The growth curves have then the same shape but

different positions on the time axis. The position of each

pattern is fitted by assigning the kinetic factor to values as

shown in Table 3. According to Fig. 3e, the kinetic factor

increases nearly linear with ninitial. Apparently, at t = 0

the virtual age of the patterns increases with the initial

concentration of the nutrient.

Since the growth curves show altogether the same shape,

a master curve is obtained by ‘‘simply shifting’’ each ori-

ginal data set along the time-axis until the pattern in

Fig. 3c, d results that corresponds to a theoretical curve

calculated at skin = 4 9 10-6 h.

Each dotted line in Fig. 3b–d describes the energy loss

during growth. Unfortunately, the dissipation heat has not

been measured until now. Yet, the calculation reveals that

in the regime of exponential growth (in Fig. 3d between 30

and 60 h) ln(n0c(t)) and ln(n00c (t)) converge more or less,

suggesting that a network-like structure is developing as in

a gel [24].

The Growth of a Cell Colony

Because of being unable to determine the absolute number

n0 of subsystems by fitting a growth curve (Eq. 24), we

studied growing colonies of adherent A549 human lung

cancer cells. Cells from an exponentially growing culture

were counted with a flow cytometer. They were seeded in

25 cm2 culture vessels at approximately ten cells in 10 ml

nutrient and incubated for up to 3 weeks. After 7 and

14 days, cultures were fed with fresh medium or were

stained to determine cell numbers in the colonies (see the

legend of Fig. 4a).

Micrographs from different times are depicted in Fig. 4.

Calculations with the use of Eqs. 19 and 24 reproduce the

data satisfyingly (Fig. 5a, b). When replacing the nutrient

repeatedly, marginal extra-fluctuations of data points are

observed occasionally, may be caused by the technical

interventions. The protracted convergence to a final max-

imum cell number may be due to loosely packed cells on
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the boundary (arrow in Fig. 4c) where occasional cell

divisions may occur. Still, the estimated cell number in a 3-

week-old colony (&650,000) significantly lags behind the

2–5 Mio cells obtained in the same culture vessel within

one week after seeding 10–50,000 cells.

Cell Populations

Consistent with the model’s predictions, we succeed in

describing the growth pattern of a population by using

apart from n0 and skin the same parameters as in the pre-

ceding section. Within the limits of accuracy, the plots in

Fig. 5c, d demonstrate the satisfying fit achieved with Eqs.

19 and 24. Setting Dn0colmax equal to 6.5 9 105 cells, the

population embracing n0cmax = 1.17 9 107 cells should be

formed by n0 = n0cmax/n0colmax = 18 subsystems linked in a

network.

Showing the growth curve of a colony and of a popu-

lation at the same position on the time axis (Fig. 5e),

the remarkable similarity demonstrates that the growth-

logistics in populations and colonies is identical. The

subsystems in cell populations seem to exhibit about

the same properties as colonies. According to Fig. 5f

represented in terms of the dimensionless variables
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Fig. 3 (a) Experimentally

determined number of

CHO-cells cultured from the

initial cell concentrations ninitial

as indicated [23]. The solid lines

are computed with Eqs. 19 and

24 and the parameters in

Table 3. The upper limit of the

mode spectrum is equal to

ln(s0y.max) = 12.7, i.e.

relaxation mode distribution and

the universal cell size

distribution exhibit the same

shape (Eq. 15). (b) Semi-

logarithmic plot of the original

data and the theoretical curves

in (a). (c) Master-curve for

n0 = 105 cells. (d) Logarithmic

plot of the data in (c). (e) skin

against ninitial
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(n0c/n0cmax; t/tc), all the data coincide with the (p = 3)-W0-
function, proving the validity of our concept. If in corre-

spondence with Pelling et al. [12] the frequency x0 of

signals emitted by a single cell (Eq. 17) is set equal to

x0 & 1 kHz the values of xc indeed match the range of

acoustic waves in liquids at room temperature [25].

Most likely, relaxation-frequency-dispersion limits the

size of a colony to a maximum cell number, usually smaller

than the maximal cell number of a grown-up population.

As an optimal structure, any cell population should form an

assembly of equivalent subsystems into a transient

network.

The Influence of the Nutrient

We regard the growth process in CHO-cultures, started

with 105 cells at 100% nutrient concentration in the first

culture (C1) and 30% in the second (C2). With Eqs. 19 and

24 and the same value of tc = 0.55d both experimental

patterns in Fig. 6 are fitted fairly well. Hence, the period of

cell cycles does not depend on the amount of nutrient that

is available. For different culture media, remarkable

modifications are observed [26].

The maximum cell number in the (C1)-pattern

n0cmax = n01(1 + Dn0c) is equal to 1.5 9 107 cells. Assign-

ing Dn0c1 = Dn0c2 of the subsystems to 6.5 9 105 cells (as

observed in the previous experiments), the (C1)-population

should contain n01 = n0cmax/Dn0c1 = 16.1 subsystems. If

the ratio n02/n01 agrees with the ratio of the nutrient con-

centrations 30/100 the number of subsystems in the (C2)-

population drops to n02 = 6.9 (n0cmax = 6.9 (1 + Dn0c) =

4.5 9 106 = 0.30 9 1.5 9 107 cells). When a culture

experiment is started, the initial concentration of nutrient

seems to exercise a crucial influence on the optimal

ensemble structure that is adjusted, rapidly.

In order to obtain in the calculation at t = 0 exactly

ninitial = 105 cells, the kinetic factor, must be assigned to

the different values skinC1 = 3.5 9 10-5d and skinC2 to

1.15 9 10-4d. At t = 0 the virtual age of (C2)-subsystems

is about thrice the one of (C1)-subsystems. Since at t = 0,

the size of (C2)-subsystems is then about 3.34 times the

size of (C1)-patterns, in both cultures the cell number is

equal to n0c = ninitial = 105 cells.

In terms of our model, the number of mother cells n0

seems to increase with the concentration of the nutrient. If

the subsystem’s ensemble structure undergoes then at

n0 = const a growth induced affine transformation, the

underlying processes run off on optimal conditions. Of

course, as long as the product of n0Dn0c remains con-

stant, very intricate growth processes are theoretically

equivalent.

The W0-function and the Cell Cycle

During the cell cycle, every growing cell passes through

the phases shown in Fig. 7. The fractions fG1(t), fS(t) and

fG2M(t), defined in this figure, are deduced from flow

cytometric measurements of the DNA content [23].

According to Fig. 8, in the grown-up population about 95%

of the cells are in the G1-phase, virtually no cells in the

S-phase, and about 5% of the cells in the G2M-phase. The

fraction fG1(t) and the total cell number (dotted line) run

parallel, i.e. fG1 grows analogous to the (p = 3)-W0(xc)-

function (Eq. 26). During growth, the cell cycle distribution

should then show the characteristics

a

A549 at days 7,14,21 

b
7 days  
100-200 cells

c

21 days
5 105cells 

Fig. 4 A 549 cells were seeded at 10 cells/10 ml in 25 cm2 culture

flasks. They were incubated for 7, 14 and 21 days, respectively (a).

After 7 and 14 days, cultures were fed with fresh medium or were

stained to determine cell numbers in the colonies. (a) After 1 week,

colonies were hardly visible. Upon microscopic inspection, their cell

numbers ranged around 200 (b). Counting under the microscope the

cells along the diameter of the three weeks old colonies (c), the

maximum cell number was extrapolated to &5 9 105 cells; the arrow

should point to the declining cell-density in the ensemble boundaries
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fG1 ¼ eG11W
0 xcð Þ þ eG12

fS ¼ eS 1�W0 xcð Þð Þ
fG2M ¼ ðeG2M � eG2M0) 1�W0 xcð Þð Þ þ eG2M0: ð27Þ

When a culture experiment is started, and optimal process

conditions are adjusted, the distribution is characterized by

the parameters e11, e12 and eS (eG2M = 1 - eG12 - eS). In the

grown-up colony eG2M0 gives the fraction of cells in the

G2M-phase. The solid lines in Fig. 8 are calculated with the

use of Eqs. 19 and 27 and the parameters in Tables 3a,b and 8

(only skin is slightly reduced: skin = 2.5 9 10-6 h )
skin = 7 9 10-7 h).

During growth, the fraction of G1-cells, and possibly

the transitions into the S-phase, are directly related to the

phenomenon of relaxation-frequency-dispersion. On the

biochemical level, cell cycle checkpoints with related

regulatory proteins [27] are the means to translate the

processes represented by the stress field into a frequency-

dependent cellular response.

Human Melanocytes

Human melanocytes exhibit growth curves as shown in

Fig. 9 [28]. For technical reasons, the initial cell concen-

trations vary systematically, in each case collecting data
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Fig. 5 (a) h � data of various

A549 colonies, dependent on

time; d the mean values. The

solid line is calculated with Eqs.

19 and 24. (b) Logarithmic plot

of (a). (c) Cell number of A549

populations; the solid line is

computed with Eqs. 19 and 24.

(d) Logarithmic plot of (c). (e)

Comparison of the logarithmic

growth curves of a colony and a

population. (f) The universal

W0-function; for x0 = 103 Hz

[12] the frequency xc falls in

the range of acoustic signals in

liquids at temperatures of

20–25�C [25]
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over 12 culture days. The individual patterns can be fitted

with Eq. 19 and 24 by using (apart from skin) always the

same parameters (Table 9). In analogy to the precedent

example of CHO-cell patterns, skin is set to those individual

values that are indicated with each curve. The conspicuous

resemblance of the growth curves is a precondition to

construct the master curve in Fig. 9b, c by shifting each

data set along the time axis. In agreement with our model,

rheological simplicity is again proven to typify the growth

process of cell cultures.

Murine Leukaemia Cells and S. cerevisiae

With the use of Eqs. 19 and 24, we also come to a full

reproduction of the growth curves of murine leukaemia

cells [29] (Fig. 10) and S. cerevisiae [30] (Fig. 11).

Prokaryotic Cells

Escherichia coli

Finally, we discuss the modification of the cell size dis-

tribution structure during growth. Figure 12 shows the

growth curve of an E. coli population measured by Schlote

[9]. The growth curve can be fitted with the use of Eqs. 19

and 24.

The inserts in Fig. 12 present the cell size distributions

determined at the time points 3–6 along the growth curve

[9]. The width of the distributions decreases in the course

of time. Equation 9 allows us to reproduce these patterns,

and to identify them as members of the universal U(g,

p = 3)-class (Fig. 1).

An optimal structure of a growing cell ensemble is

installed even in presence of increasing constraints,

originating from the formation of a transient cellular

network. According to Fig. 13, all the values of ßDu0(t)

fall below 0.023; compared with the mean thermal

energy kBT the contact energy of ICs is relatively small.

Hence, ever-present structural fluctuations support

even complicated molecular rearrangements during

relaxation.

Discussing the changes of the reaction energy, we

should keep in mind that at a given time this parameter is

the same for all ICs irrespective of the size of the incor-

porating cell. At the beginning of a culture experiment

ßDu0(t) usually drops within Dt & tc to optimized patterns

with a minimal reaction energy, increasing then in corre-

spondence with the growth process. Du0(t) is thus described

by

Du0ðtÞ ¼ v1

X

y

exp �v
2
t=sy


 �
þ Duc þ A0ðtÞ;

A0ðtÞ ¼ f W0ðxcÞ	 0:
ð28Þ

The exponential term accounts for the rapid initial

adaptation immediately after the experiment has been

started. Afterwards, the density of constraints grows

according to A0(t), i.e. controlled by the relaxation-

frequency-dispersion.

According to the underlying concept, the mean size of

the cells \y[ should decrease during growth. From Eq. 9

\y[ is deduced to be (7)

\yðtÞ[ Du0ðtÞ ¼ ðpþ 1ÞkBT ¼ const. ð29Þ

The above relation causes the ratio of\y[min/\y[max to

be equal to Du0max/Du0min. With the data of Fig. 13 we

arrive at

\y [ min=\y [ max ¼ Du0 max=Du0 min ffi 0:37: ð30Þ

The mean size of E.coli cells in a grown-up population

is only about 37% of the initial value; these relatively small

0 5 10
104

105

106

107

 time / h

n
c
' Table 6

 100%  
    30% 

calculation
p=3; t

c1
=t

c2
=0.55 d; ∆n

c
'=1.5 105

∆n'
c1

=105=∆n'
c02

  n
01

=16.1;    τ
kin.1

=3.5 10-5 d

  n
02

=   5.31;  τ
kin.2

=2 10-4 d

Fig. 6 Growth curves of K562 leukaemic cells, each one started with

105 cells in presence of 100% (d), respectively, 30% (h) nutrient.

The solid lines are computed with Eqs. 19 and 24, using the

parameters in Table 6
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DNA. During the S-phase, the DNA is replicated. G2-phase:

preparation for division, accomplished in mitosis, M. The definition

of the fractions fG1, fS and fG2M depicted at the bottom, gives the

relative number of cells in the phases as indicated
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cells have to stay mainly in a G1-like state (see above). It

seems that the initiation of DNA-replication is directly

related to the conditions set up by the relaxation-frequency-

dispersion.

Concluding Remarks

Optimal growth of cell ensembles requires the balance of

energy and entropy (according to Eq. 4). This implies a
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Fig. 9 (a) Cell density n0c(t) of

adherently growing human

melanocytes [28].
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24, the individual values of skin

are indicated with each curve.

(b) The master curve.

(c) Logarithmic plot
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structure–dynamics interrelation as formulated in the

increment model. The compulsory dynamics is perpetuated

by thermally driven molecular rearrangements of the

liquid-like fluctuating cytoplasm. As part of the controlled

process of growth and cell division these rearrangements

are tantamount to a relaxation process which enables

optimization of the individual cell as well as of the whole

cell ensemble. The universal validity of the (p = 3)-cell

size distribution confirms this principal characteristics.

Our description of the growth of cell ensembles shows

that complete co-ordination is accomplished under the

following premises: with an individual cell size-dependent

relaxation time, each cell acts as a largely independent

visco-elastic element linked in an ensemble characterized

by a universal relaxation mode distribution. All cells par-

ticipate in an all-embracing signal–response system,

always related to a thermodynamically defined state of

reference, an appropriate situation specificity and an ample

adaptability to complex global conditions of the ensemble.

Besides the various known biochemical processes which

are governed by diffusion or active molecular transloca-

tion, intercellular communication might rely on the much

faster acoustic signals as observed by Pelling et al. [12],

emitted and perceivable by every growing cell in a popu-

lation. The overlaid signals seem to be represented by a

quasi-periodic field that allows for a collective response via

20 40 60 80 100 120

10

100

0 30 60 90
0

50

100

150

200

250 ω
c
<τ

y
>=1b

n
c
''

n
c
'

Murine leukemia cells

 exp.1
 exp.2
 exp.3

ω
c
<τ

y
>=1

n
c
''

n
c
'

a

 n
c',

n c''
 1

04 /m
l

Table 10

p=3
t
c
=9 h

n
0
=1 cell/ml

∆n
c
´=2.3 108

τ
kin

=3 10-5 h

time / h

Fig. 10 (a, b) Linear and

logarithmic plot of the number

of cells per ml of L1210 murine

leukaemia cells according to

[29]; x, o, I; data, solid lines

n0c(t), and dotted lines nc
00(t)

computed with Eqs. 19 and 24

and the parameters in Table 10

0 5 10 15 20
0,0

3,0x106

6,0x106

5 10 15 20
105

106

107

ω
c
<τ

y
>=1

Saccharomyces cerevisiae

a

n
c
´´(t)

n
c
´(t)

Table 11

p=3
t
c
=1.35 h

τ
kin

=7 10-5 h
n

0
=1 cell

∆n
c
' =6.63 106

 data

nu
m

be
r 

of
 c

el
ls

, n
c'(t

),
 n

c''(
t)

ω
c
<τ

y
>=1

time / h

b

n
c
´´(t)

n
c
´(t)

Fig. 11 (a, b) Linear and semi-

logarithmic plot of n0c(t) and

n0c(t)-curves of S.cerevisiae
according to [30]. � data, solid

and dotted lines computed with

Eqs. 19 and 24 and the

parameters in Table 11

Cell Biochem Biophys (2008) 51:51–66 63



relaxation. This relaxation occurs at the restricted rate of

the molecular reconfigurations, while the signal sequence

accelerates steadily with the growing cell number. The

resulting phenomenon of relaxation-frequency-dispersion

then becomes the central controlling and limiting mecha-

nism of the growth process. It is important to note that it

also enables the organization of cells in statistically

equivalent optimized tissue-like structures. The process is

identical in cells of all kinds as it always follows the same

rules. The highly co-operative events are the first to be

blocked. Therefore, they typify the topological features of

the structure of every grown-up cell ensemble. However,

less complex rearrangements take place under optimal

conditions, still.

The universal character of our concept is compellingly

demonstrated in Fig. 14: independent of intrinsic factors

like cell shape or environmental parameters given by cul-

ture conditions, the (p = 3)-version of the W0-function

typifes the topologically uniform growth behaviour of cell

ensembles of widely different species. The same laws

should likely control the growth and development of

higher, i.e. multicellular organisms, as well.

Hence, throughout growth of cell colonies or popula-

tions, the outlined relations define an invariable logistic

framework that guarantees reproducible structural proper-

ties, installed under nearly optimal process conditions,

independent of exogenous or endogenous factors. Different

genetic patterns can thus develop on an individual as well

as on an evolutionary scale. These results may allow us to

extend the Taylor and Weibel principle [31]: ‘‘Biological

structures are formed, controlled by a general growth

logistics to meet but not to exceed maximum

requirements’’.
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Schlote [9] (s number of Escherichia cells). The solid line (n0c(t)) and

the dotted line (n00c (t)) are computed with Eqs. 19 and 24 and the

parameters in Table 12. n00c (t) is maximal at\sy[xc = 1, indicated by

a grey bar. The inserts (3), (4), (5), (6) show stationary size

distributions. The solid lines are computed with Eq. 9, putting ßDu0

and the birth length Lmin to the values as indicated (Lmin = y/q0,

y = volume, q0 as cross-section of the rod-shaped cells) [7]
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Table 13

τ
kin

=2 10-7 h; t
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=0.81 h

ß∆u
00

=0.0025; ßζ=7.5 10-3

ßχ
1
=1.7 10-4; χ

2
=3 106

t / h

ß∆u
0

Fig. 13 ßDu0(t) determined from the description of the cell size

distributions at the time points 1–6 in Fig. 12 by using Eq. 9;

the solid line is computed with Eq. 28 and the parameters in

Table 13
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Fig. 14 (a) The growth curves of the systems studied here in terms of

the dimensionless variables n0c/n0cmax and t/tc = ln(xc/x0). The solid

line is the (p = 3)-W0-function, calculated with Eq. 26 plotted then

against t/tc at the kinetic factor of skin = 6 9 10-5 units and

ln(s0ymax) = 12.7; the dotted line gives the W00-function (b) the

logarithmic plot
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Appendix

In order to describe the relaxation process of a cell with y

contacts by a single exponential function, we introduce the

reaction variable ny. Under isothermal-isobaric conditions,

the differential of the Gibbs-potential dgy is equal to [15]

dgy

� �
T ;p
¼ �Aydny:

The affinity Ay [ 0 measures the distance from optimal

conditions (Ay = const). At small distances from this state

of reference, the reaction-rate obeys the differential

equation

_ny ¼ aAy; Ay ¼ const [ 0; a ¼ const [ 0:

a = const [ 0 is Onsager’s coefficient. Neglecting

enthalpy contributions

�AyðnyÞ ¼
ogyðnyÞ

ony

� �

T ; p

¼
ohyðnyÞ

ony

� �

T ; p

� T
osyðnyÞ

ony

� �

T ; p

� �T
osyðnyÞ

ony

� �

T ; p

;

we are led to

_ny ¼ aT
osyðnyÞ

ony

� �

T ; p

: ð31Þ

Defining the entropy sy(ny) as function of the microstates

Xy in a cell with y contacts by sy(ny) = kB ln(Xy(ny))

Eq. 31 reads

_ny ¼ akBT
o ln XyðnyÞ

ony

� �

T ; p

¼ akBT

XyðnyÞ
oXyðnyÞ

ony

� �

T ; p

:

ð32Þ

At a small distance from the optimal growth conditions,

the approximation should be appropriate

XyðnyÞ ’ X0y þ
oXyðnyÞ

ony

� �

0

ny þ
1

2

o2XyðnyÞ
on2

y

 !

0

n2
y ;

oXyðnyÞ
ony

� �
’

oXyðnyÞ
ony

� �

0

þ o2XyðnyÞ
on2

y

 !

0

ny

and Eq. 32 is then

_ny þ a
kBT

X0y

oXyðnyÞ
ony

� �

0

�
o2XyðnyÞ

o2ny

 !

o

" #

ny

¼ a
kBT

X0y

oXyðnyÞ
ony

� �

0

:

Introducing the phenomenological relaxation time sy

_ny þ
1

sy
ny ¼ a

kBT

X0y

oXyðnyÞ
ony

� �

0

;

we arrive at

sy¼
X0y

akBT ðoXyðnyÞ
�
onyÞ�o2XyðnyÞ

�
o2ny

� �
0

¼ X0y

akBTl
[0

l¼ oXyðnyÞ
ony

� �
�

o2XyðnyÞ
o2ny

" #

0

:

It is convenient to define the relaxation time sy as the

product [18]

sy ¼ s0yskin: ð33Þ

The mode- and the kinetic-factors are then equal to

s0y = X0y; skin ¼
1

akBTl
: ð34Þ
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