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Abstract
In this study, we leveraged machine learning (ML) approach to develop and validate new assessment tools for predict-
ing stroke and bleeding among patients with atrial fibrillation (AFib) and cancer. We conducted a retrospective cohort 
study including patients who were newly diagnosed with AFib with a record of cancer from the 2012–2018 Surveillance, 
Epidemiology, and End Results (SEER)-Medicare database. The ML algorithms were developed and validated separately 
for each outcome by fitting elastic net, random forest (RF), extreme gradient boosting (XGBoost), support vector machine 
(SVM), and neural network models with tenfold cross-validation (train:test = 7:3). We obtained area under the curve (AUC), 
sensitivity, specificity, and F2 score as performance metrics. Model calibration was assessed using Brier score. In sensitivity 
analysis, we resampled data using Synthetic Minority Oversampling Technique (SMOTE). Among 18,388 patients with AFib 
and cancer, 523 (2.84%) had ischemic stroke and 221 (1.20%) had major bleeding within one year after AFib diagnosis. In 
prediction of ischemic stroke, RF significantly outperformed other ML models [AUC (0.916, 95% CI 0.887–0.945), sensitiv-
ity 0.868, specificity 0.801, F2 score 0.375, Brier score = 0.035]. However, the performance of ML algorithms in prediction 
of major bleeding was low with highest AUC achieved by RF (0.623, 95% CI 0.554–0.692). RF models performed better 
than  CHA2DS2-VASc and HAS-BLED scores. SMOTE did not improve the performance of the ML algorithms. Our study 
demonstrated a promising application of ML in stroke prediction among patients with AFib and cancer. This tool may be 
leveraged in assisting clinicians to identify patients at high risk of stroke and optimize treatment decisions.
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Introduction

In the United States (US), atrial fibrillation (AFib) is 
projected to affect 12 million people by 2030 [1]. AFib 
has been recorded as the primary diagnosis for more than 

454,000 hospitalizations and contributed to more than 
158,000 deaths annually [2–4]. The coexistence of cancer 
among patients with AFib increases incidence of adverse 
events such as ischemic stroke, venous thromboembolism 
(VTE), bleeding, and death compared with AFib patients 
without cancer [5–8]. Current management of patients with 
AFib and cancer with oral anticoagulants (OACs) remains 

Handling Editor: Vittorio Fineschi.

 * Jingjing Qian 
 jzq0004@auburn.edu

 Bang Truong 
 bct0022@auburn.edu

 Jingyi Zheng 
 jzz0121@auburn.edu

 Lori Hornsby 
 hornslb@auburn.edu

 Brent Fox 
 foxbren@auburn.edu

 Chiahung Chou 
 czc0109@auburn.edu

1 Department of Health Outcomes Research and Policy, 
Auburn University Harrison College of Pharmacy, 4306d 
Walker Building, Auburn, AL 36849, USA

2 Department of Mathematics and Statistics, Auburn 
University College of Sciences and Mathematics, Auburn, 
AL, USA

3 Department of Pharmacy Practice, Auburn University 
Harrison College of Pharmacy, Auburn, AL, USA

http://orcid.org/0000-0002-8654-5444
http://orcid.org/0000-0003-4624-9963
http://crossmark.crossref.org/dialog/?doi=10.1007/s12012-024-09843-8&domain=pdf


366 Cardiovascular Toxicology (2024) 24:365–374

suboptimal due to insufficient evidence regarding risk 
assessment and treatment optimization from clinical practice 
guidelines [9].

CHA2DS2-VASc score, a composite score of conges-
tive heart failure (1 point), hypertension (1), age ≥ 75 (2), 
diabetes mellitus (1), prior stroke, TIA, or thromboembo-
lism (2), vascular disease (e.g. peripheral artery disease, 
myocardial infarction, aortic plaque) (1), age 65–74 years, 
and sex category (1), has been used to evaluate of risk of 
stroke in patients with AFib [10, 11]. The clinical guide-
lines recommend OACs for patients with  CHA2DS2-VASc 
scores ≥ 2 [11, 12]. However,  CHA2DS2-VASc score is not 
highly predictive in patients with AFib and cancer [13, 14]. 
HAS-BLED score has been widely used for risk of bleeding 
stratification. The HAS-BLED is calculated by the presence 
of hypertension (1), abnormal renal/liver function (1 + 1), 
stroke (1), bleeding tendency or predisposition (1), labile 
INR for patients taking warfarin (1), age ≥ 65, drugs (con-
comitant aspirin or NSAIDs) or excess alcohol use (1 + 1) 
[15]. The 2020 European Society of Cardiology (ESC) 
guideline suggests a score of ≥ 3 indicates “high risk” [12]. 
However, it is not recommend against the use of anticoagu-
lants, but caution and regular monitoring after treatment 
initiation are needed [12]. Nonetheless, the usefulness of 
HAS-BLED in cancer patients are inconclusive because can-
cer is an independent risk factor of bleeding among patients 
with AFib [16]. Pastori et al. compared the performances 
of multiple bleeding risk scores among cancer patients and 
found that HAS-BLED was not highly predictive of major 
and gastrointestinal bleeding [17].

Therefore, it is an urgent need to develop new risk 
assessment tools for stroke and bleeding in patients with 
AFib and cancer. Traditional risk assessment tools such as 
 CHA2DS2-VASc and HAS-BLED are simple and easy for 
implementation among clinicians because they are linear 
combinations of patients’ diseases and conditions. However, 
when the relationships between patients’ characteristics and 
outcomes become more complicated, these tools may not 
perform well in patients with AFib and cancer. Recently, 
machine learning (ML) algorithms have been increasingly 
used to support clinical decision-making such as or iden-
tifying patients with dementia in primary care, anticoagu-
lation monitoring, and measuring pretreatment quality of 
care before treatment in patients with hepatitis C [18–20]. 
Compared with conventional regression-based methods, ML 
models are able to learn from the data when the associa-
tion between predictors and outcome variables is not linear. 
ML models have overperformed parametric regressions in 
handling high-dimensional data and interactions between 
variables in a complex data structure [20–22].

In this study, we developed and validated ML algorithms 
to predict risk of stroke and bleeding events among patients 

with AFib and cancer, using US cancer registry and 
administrative claims linked datasets.

Materials and Methods

Study Design and Data Source

We followed the Transparent Reporting of a multivariable 
prediction model for individual Prognosis Or Diagnosis 
(TRIPOD) guideline to develop and validate ML algorithms 
to separately predict risk of stroke and risk of bleeding in 
patients with AFib and cancer [23]. We conducted a retrospec-
tive cohort study using the 2011–2019 Surveillance, Epidemi-
ology, and End Results (SEER) registry linked to Medicare 
database. SEER registry contains demographics, cancer char-
acteristics, treatment, and follow-up of cancer patients across 
the US, [24] while Medicare data capture health care services 
utilization (medical claims, procedures, and prescriptions) of 
beneficiaries [25]. The study design and approach are illus-
trated in Figures S1, S2.

Participants

We included individuals aged ≥ 66, newly diagnosed non-val-
vular atrial fibrillation (NVAF) from 1/1/2012 to 12/31/2018. 
AFib was defined as any International Classification of 
Disease-9th Revision-Clinical Modification (ICD-9-CM) 
codes 427.31 or 427.32 or any International Classification of 
Disease-10th Revision-Clinical Modification (ICD-10-CM) 
codes I48.xx in any position on one Medicare inpatient claim 
or on two outpatient claims at least 7 days but < 1 year apart 
[26]. We removed patients with valvular diseases, repair or 
replacement, venous thromboembolism, or joint replacement 
during the 12 months baseline period because OACs are also 
indicated for these conditions and their clinical management 
are different from AFib [27, 28]. Eligible records were then 
linked to SEER files to identify patients with breast, lung, or 
prostate cancer—the most common cancer types with AFib—
from at any time before the initial AFib diagnosis (ICD-O-3 
codes C50.0–C50.9 for breast; C34.0, C34.1, C34.2, C34.3, 
C34.8, C34.9, C33.9 for lung; C61.9 for prostate cancer). 
Patients were required to continuously enroll in Medicare part 
A, B, D, and without Medicare Advantage or Health Main-
tenance Organization (HMO) for at least 12 months before 
and 12 months after NVAF diagnosis. Since OAC initiation 
during follow-up may modify the risk of stroke and bleeding, 
we excluded patients who initiated warfarin or direct antico-
agulants (DOACs) within 12 months before or after NVAF 
diagnosis. All ICD codes to identify these conditions can be 
found in Table S1, Supplementary materials.
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Outcomes

The outcomes of interest were ischemic stroke and major 
bleeding events identified within 12 months after AFib 
diagnosis. We defined major bleeding and ischemic stroke 
using validated algorithms defined by ICD-9-CM and ICD-
10-CM codes in the primary diagnosis from Medicare medi-
cal claims files [29–31].

Predictors

We selected potential predictors from literature review and 
based on availability in SEER-Medicare data [29, 32, 33]. 
The following predictors were included: demographics 
(index age, sex, race/ethnicity, calendar year, geographi-
cal region, urbanicity), socioeconomic factors (household 
median income, percentage of household with education 
level below high school, and Medicaid eligibility), comor-
bidities (hypertension, congestive heart failure, diabetes, 
prior stroke, vascular diseases, prior bleeding, renal dis-
eases, liver diseases, alcohol use disorders, asthma/chronic 
obstructive pulmonary disease, hematological disorders, 
dementia, depression, thrombocytopenia, acute kidney 
disease, peptic ulcer disease), cancer characteristics (time 
from cancer diagnosis to the onset of AFib, cancer type, 
cancer stage, tumor grade, active cancer status [29, 32]), 
cancer treatment (radiation, and cancer-directed surgery, and 
potentially interacting antineoplastic agents), and medication 
history (antiplatelet/non-steroidal anti-inflammatory drugs, 
angiotensin-converting enzyme (ACE) inhibitors/angioten-
sin II receptor blockers (ARBs), calcium channel blockers, 
beta blockers, antiarrhythmic medications, diuretics, statin, 
pump proton inhibitors, and serotonin reuptake inhibitors). 
Features were obtained during 12 months before the index 
date. All diagnosis codes and procedure codes for covari-
ate ascertainment are described in Table S1, Supplementary 
materials.

Algorithms, Model Training and Validation

Descriptive statistics was used to compare the characteristics 
of the full cohort and between patients with and without 
the outcomes. MissForest was used to impute missing val-
ues for predictors [34, 35]. The original dataset was then 
randomly split into two datasets: training (70%) and testing 
datasets (30%) [36, 37], with similar distribution of the out-
comes in both datasets. In the algorithm training process, 
ML models (elastic net logistic regression, random forest 
(RF), support vector machine (SVM), extreme gradient 
boosting (XGBoost), and neural network) were fitted with 
ten-fold cross-validation (CV) [38]. The fitted models were 
then tested on the rest of the data. Since stroke and bleed-
ing occurred in less than 10% within one year among AFib 

patients [29, 39], our classification is severely imbalanced 
due to the prediction of minority class (stroke and bleeding) 
[40]. Therefore, we shifted the decision threshold to the true 
event probability rather than using the default threshold of 
0.50 [40, 41]. The description of the models can be found in 
Technical Appendix.

Model Performance, Calibration, and Evaluation

To assess algorithm discrimination, we calculated the area 
under the receiver operating characteristic curve (AUROC 
or AUC) as the main metrics and compared the AUC across 
algorithms using DeLong’s test [42]. Other performance 
metrics were also extracted, including sensitivity, specific-
ity, and F2 score. Since true positive (patients actually hav-
ing stroke/bleeding) is more important and false negative 
cases (patients at high risk of the event were not identified) 
are more costly, we selected F2 score over F1 score [41, 
43]. In addition, we generated feature importance plots to 
identify the contribution of each variable in predicting the 
outcomes [44]. Since feature importance using Gini index 
in tree-based algorithms (i.e., RF and XGBoost) are subject 
to bias [45], we computed out-of-bag impurity reduction 
feature importance as an alternative [46]. Model calibra-
tion was performed to compare the true probability of the 
outcome versus a model’s prediction with Brier score [47]. 
We also compared the performances of ML algorithms with 
 CHA2DS2-VASc score or HAS-BLED score in predicting 
ischemic stroke and major bleeding, respectively. In pre-
dicting ischemic stroke, we fitted logistic regressions with 
 CHA2DS2-VASc score as the predictor using the training 
data and validated the model on the testing data. Likewise, 
we predicted the risk of major bleeding on HAS-BLED 
score. Sensitivity, specificity, and AUC were obtained for 
these models. ML algorithms were developed using RStudio 
(version 3.6.2; Boston, MA, USA) and data analysis was 
conducted using SAS (version 9.4, SAS Institute, Inc., Cary, 
NC, USA).

Sensitivity Analyses

Since our classification problem was severely imbalanced, 
we used Synthetic Minority Oversampling Technique 
(SMOTE) to account for imbalance distribution of the out-
come variables [48]. Model development and validation 
were conducted on the resampling dataset.
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Results

Study Sample and Characteristics

The final cohort consisted of 18,388 patients, of whom 
523 (2.84%) had ischemic stroke and 221 (1.20%) had 
major bleeding within one year after AFib diagnosis 
(Fig. 1). The characteristics of study sample are described 
in Table S2. Overall, the mean (standard deviation) age 
was 76.59 (7.13), 8483 (46.13%) were women, and 
the majority were White (85.11%) and residing in the 
Northeast (39.13%), or West (34.40%) region. The median 
(interquartile range) duration from cancer diagnosis to 
AFib onset was 17 (2–40) months. Compared with non-
stroke patients, patients who had stroke were more likely 
to have breast cancer [(227 (43.40%) vs. 5416 (30.32%)], 
use potential interaction agents [139 (26.58%) vs. 825 
(21.41%)], diabetes [188 (35.95%) vs. 5433 (30.41)], 
history of stroke [96 (18.36) vs. 1446 (8.09)], and 
vascular diseases [136 (26.00) vs. 4249 (23.78)] but 
less likely to have lung cancer [106 (20.27%) vs 6059 

(33.92%)]. Compared with non-bleeding patients, 
patients who had bleeding were more likely to have breast 
cancer [84 (38.01%) vs. 5559 (30.60%)], history stroke 
[53 (23.98%) vs. 1489 (8.20%)], vascular diseases [63 
(28.51%) vs. 4322 (23.79%)], and history of bleeding [72 
(32.58%) vs. 3771 (20.76%)] (Table S3).

Algorithm Performance and Comparison

Ischemic Stroke Prediction

The performances of ML models in the original sample 
are described in Table 1. The AUCs of elastic net, RF, 
XGBoost, SVM, and neural network were 0.684 (95% CI 
0.641–0.727), 0.916 (95% CI 0.887–0.945), 0.737 (95% 
CI 0.698–0.777), 0.545 (95% CI 0.502–0.588), and 0.625 
(95% CI 0.579–0.672), respectively. RF outperformed 
other ML models in AUC (0.916, 95% CI 0.887–0.945), 
sensitivity (0.868), specificity (0.801), and F2 score (0.375). 
The best calibration was achieved in RF algorithm (Brier 
score = 0.035) (Table 1). Although  CHA2DS2-VASc score 
showed a higher sensitivity (0.829) compared to other ML 

Fig. 1  Flowchart diagram for 
study sample. VTE Venous 
thromboembolism, AFib 
Atrial Fibrillation, OAC Oral 
Anticoagulant
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models (except for RF), its specificity was low (0.268). Top 
five important features of RF algorithm were socioeconomic 
factors (proportion of household with no high school 
education level and median household median income), 
time from cancer diagnosis to AFib onset, history of stroke, 
and concomitant use of ACE inhibitors or ARBs. History 
of stroke and time from cancer diagnosis to AFib onset 

were the most important features in all ML models (Figs. 2, 
S3–S6).

Major Bleeding Prediction

For bleeding prediction, performances of ML models 
were poor (all AUCs < 0.7 in original sample) (Table 2). 

Table 1  Model performance of 
machine learning models for 
ischemic stroke prediction

AUROC area under receiver operating characteristic curve, RF random forest, XGBoost extreme gradi-
ent boosting, SVM support vector machine, NN neural network, SMOTE synthetic minority oversampling 
technique
*DeLong’s test
–: not calculated

Sensitivity Specificity AUROC p-value* F2 score Brier score

Original data
 Elastic net 0.698 0.574 0.684 (0.641–0.727) Reference 0.183 0.055
 RF 0.868 0.801 0.916 (0.887–0.945)  < 0.001 0.375 0.035
 XGBoost 0.723 0.608 0.737 (0.698–0.777) 0.005 0.202 0.054
 SVM 0.434 0.589 0.545 (0.502–0.588)  < 0.001 0.121 0.055
 NN 0.692 0.511 0.625 (0.579–0.672) 0.023 0.161 0.056
  CHA2DS2-VASc 0.829 0.268 0.580 (0.534–0.623) – – –

SMOTE resampling
 Elastic net 0.577 0.620 0.648 (0.603–0.693) Reference 0.164 0.446
 RF 0.801 0.334 0.633 (0.587–0.675) 0.0352 0.213 0.442
 XGBoost 0.667 0.529 0.633 (0.588–0.678) 0.0408 0.160 0.440
 SVM 0.560 0.633 0.650 (0.604–0.695) 0.1027 0.172 0.446
 NN 0.372 0.752 0.580 (0.534–0.626)  < 0.001 0.152 0.309

Fig. 2  Feature importance plot of random forest algorithm for ischemic stroke prediction (original data)
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The AUCs of elastic net, RF, XGBoost, SVM, and neural 
network were 0.575 (95% CI 0.503–0.649), 0.623 (95% CI 
0.554–0.692), 0.578 (95% CI 0.510–0.646), 0.546 (95% CI 
0.472–0.619), 0.504 (95% CI 0.432–0.575), respectively. 
RF outperformed other models in AUC (0.623 (95% CI 

0.554–0.692). However, sensitivity was highest for SVM 
algorithm (0.652), and best specificity was achieved in 
elastic net algorithm (0.689). There was no difference in 
calibration of five algorithms. HAS-BLED score failed to 
identify patients with major bleeding (sensitivity = 0.052). 
Proportion of household with no high school education 
level, median household median income, time from cancer 

Table 2  Model performance of 
machine learning models for 
major bleeding prediction

AUROC area under receiver operating characteristic curve,  RF random forest, XGBoost extreme gradi-
ent boosting, SVM support vector machine, NN neural network, SMOTE synthetic minority oversampling 
technique
*DeLong’s test
–: not calculated

Sensitivity Specificity AUC p-value F2 Brier score

Original data
 Elastic net 0.424 0.689 0.575 (0.503–0.649) Reference 0.070 0.023
 RF 0.515 0.671 0.623 (0.554–0.692) 0.0003 0.081 0.024
 XGBoost 0.439 0.641 0.578 (0.510–0.646) 0.7210 0.064 0.024
 SVM 0.652 0.357 0.546 (0.472–0.619) 0.0726 0.056 0.024
 NN 0.470 0.497 0.504 (0.432–0.575) 0.0122 0.051 0.024
 HAS-BLED 0.052 0.960 0.574 (0.506–0.637) – – –

SMOTE resampling
 Elastic net 0.348 0.722 0.564 (0.492–0.635) Reference 0.064 0.378
 RF 0.863 0.182 0.551 (0.478–0.625) 0.2752 0.057 0.048
 XGBoost 0.515 0.517 0.553 (0.477–0.630) 0.2813 0.057 0.050
 SVM 0.348 0.714 0.562 (0.490–0.634) 0.4052 0.062 0.375
 NN 0.136 0.849 0.520 (0.449–0.590) 0.2752 0.041 0.200

Fig. 3  Feature importance plot of random forest algorithm for major bleeding prediction (original data)
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diagnosis to AFib onset, history of stroke, history of 
bleeding were top five important features of RF algorithm. 
History of bleeding was among top 5 important features in 
elastic net, RF, XGBoost, and neural network algorithms 
(Figs. 3, S7-S10).

Sensitivity Analysis

There was no major improvement in the performance met-
rics using SMOTE resampling for ischemic stroke and major 
bleeding prediction across five ML algorithms. SMOTE 
resampling worsened the calibration of the algorithms with 
larger Brier score compared with original sample (Table 1 
and 2). Feature importance of ML algorithms in SMOTE 
samples are described in Figures S11-S15 (ischemic stroke) 
and Figures S16-20 (major bleeding).

Discussion

Our study is among the first studies that developed and vali-
dated ML algorithms to predict adverse outcomes exclu-
sively for patients with AFib and cancer. In this cohort 
study, we demonstrated that incorporating ML algorithms 
into SEER-Medicare data can be a promising tool to predict 
short-term (1 year) risk of stroke among patients with AFib 
and cancer. Among older adults with cancer who were newly 
diagnosed with AFib, clinicians can collect patients’ demo-
graphics, socioeconomic status, medical history, and medi-
cation history from routine medical records and/or patient 
survey, then leverage this tool to predict patients’ risk of 
stroke. Our ML algorithms help clinicians identify high-risk 
patients and facilitate treatment decision (i.e., medication or 
non-pharmacological intervention) among older adults with 
AFib and cancer across the US.

RF outperformed other ML models in all metrics (AUC, 
sensitivity, specificity, and F2 score) for ischemic stroke. 
Although widely accepted as a risk assessment tool for 
stroke among patients with AFib,  CHA2DS2-VASc score 
failed to achieve high performance in patients with AFib 
and cancer, especially in new onset AFib [9, 14, 49]. In this 
study,  CHA2DS2-VASc score performed better than ML 
models, except for RF in identifying patients with ischemic 
stroke, however,  CHA2DS2-VASc score could not differenti-
ate those with lower risk (low specificity). In fact, 91.9% of 
patients in this study have  CHA2DS2-VASc ≥ 2 and would 
have been recommended for OACs according to current 
guidelines [11, 12]. The major limitation of  CHA2DS2-VASc 
is the absence of cancer indicator, which has been suggested 
as an independent risk factor of stroke [50, 51]. A recently 
published study suggested the incorporation of cancer to 
 CHA2DS2-VASc score to improve predictability of the origi-
nal score [52]. Indeed,  CHA2DS2-VASc score is the linear 

combination of conditions in prediction of stroke [10]. In the 
presence of cancer, the relationship between patient charac-
teristics and ischemic stroke may become more complicated 
(i.e., non-linear), it is not surprising that  CHA2DS2-VASc 
score failed to achieve high performance. In our study, linear 
models such as elastic net and SVM had lower performance 
metrics compared with non-linear models such as RF and 
XGBoost. Similar to  CHA2DS2-VASc, we found prior stroke 
was among most important features in all ML algorithms. 
However, our approach incorporated a comprehensive set 
of patients’ characteristics. For example, patients’ socio-
economic status (household median income and education 
level) and cancer characteristics (cancer type, active cancer 
status) were ranked among top features in RF and XGBoost. 
The importance of these features highlighted contributions 
of health disparities and cancer characteristics in stroke 
prediction. The inclusion of these variables may be useful 
in identifying high-risk patients [53]. However, it is also 
noticed that tree-based models may inflate the impact of 
continuous features in their prediction [45]. Clinicians may 
consider initiating OACs for those who are at high risk of 
stroke identified by our RF algorithm.

Trad i t iona l  too ls  such  as  HAS-BLED or 
 HEMORR2HAGES showed poor predictability in patients 
with cancer [16, 17, 54]. Our ML algorithms also failed 
to obtain high performance metrics in prediction of major 
bleeding. Such poor performance suggested complex inter-
actions between patients’ characteristics and outcomes in the 
presence of cancer. First, although we obtained additional 
cancer characteristics compared with traditional risk scores, 
the performance was not improved [55]. This may suggest 
that our models failed to capture important features in pre-
diction of major bleeding. In fact, genetic factors and dis-
ease severity were not available in SEER-Medicare data and 
dynamic features (i.e., cancer progression, new diagnosis of 
diseases) were not included in the models due to complexi-
ties. Similar to previous risk scores, we found that bleeding 
history was an important factor in prediction of subsequent 
major bleeding [17, 55]. Second, we excluded patients who 
have already initiated OACs before AFib diagnosis and those 
who initiated AFib during follow-up because OACs may 
increase risk of bleeding. As a result, only 1.2% patients 
in our cohort experienced bleeding events during follow-up 
and this created a severe imbalance classification problem 
for our ML algorithms and may lead to poor predictabil-
ity [56]. Future studies may expand the outcomes to other 
types of bleeding (i.e., intracranial bleeding, gastrointestinal 
bleeding, or other non-critical site bleeding) to improve the 
performance and the clinical utility of the algorithms.

In our study, SMOTE resampling approach did not 
improve the performance of the model. In the training set, 
SMOTE created new synthetic ‘stroke’ individuals from 
interpolations of the original, real ‘stroke’ cases [48]. Studies 
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have shown that SMOTE-like methods could improve the 
performance of weak classifiers such as SVM, decision tree 
[57]. In our study, SMOTE improved AUCs in SVM only. 
Another limitation of SMOTE is that it resulted in poorly 
calibrated models where the probability of the minority class 
(stroke) was strongly inflated demonstrated by Brier score.

Our study is subject to some limitations. We were unable 
to capture some important variables in the ML models (i.e., 
BMI, genetic factors, frailty, and health behaviors—not 
available in SEER-Medicare). Socioeconomic factors such 
as household income and education level are available on the 
aggregate area level (Census tract) but not individual level. 
In addition, our algorithms did not incorporate the impact of 
some post-baseline predictors (i.e., treatment dosage, adher-
ence, recent  CHA2DS2-VASc and HAS-BLED scores, recent 
use of NSAIDs, and other time-varying variables such as 
interactions between oral anticoagulants between OACs and 
antineoplastic agents) [58]. Our study is applicable to the 
study period 2011–2019. From 2020, the presence Covid-
19 has worsened outcomes of patients with AFib or cancer 
patients and has negatively impacted health services, delayed 
and reduced cancer screening and diagnosis in the United 
States [59–63]. Therefore, the model should be updated and 
validated incorporating Covid-related factors during and 
after the pandemic. In addition, our ML algorithms could 
not further stratify the risk of stroke and major bleeding 
(i.e., low, moderate, high, or very high). Future study may 
leverage advanced ML algorithms such as survival ML in 
predicting the probability of adverse events after 1 year or 
extended follow-up time. Last, the generalizability of our 
ML models to other populations may be limited (i.e., com-
mercial insurance, anticoagulated patients, or patients with 
other cancer types).

Conclusion

Our study demonstrated a promising application of ML in 
stroke prediction among older adults with cancer who are 
newly diagnosed with AFib in the US. This tool may be 
leveraged in assisting clinicians in identification of patients 
at high risk of stroke and improving treatment decisions.

Supplementary Information The online version contains 
supplementary material available at https:// doi. org/ 10. 1007/ 
s12012- 024- 09843-8.
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