Skip to main content

Advertisement

Log in

Coenzyme Q10 Cardioprotective Effects Against Doxorubicin-Induced Cardiotoxicity in Wistar Rat

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

In the present study, we investigated the cardioprotective effects of coenzyme Q10 (Q10) against doxorubicin (DOXO) induced cardiomyopathy. Twenty adult rats were distributed in four experimental groups: group 1 received NaCl 0.9% at 1 ml/day for 14 days; group 2 received Q10 at 1 mg/kg/day for 14 days; group 3 received initial 7 days of treatment with NaCl 0.9% followed by a single dose of doxorubicin (12.5 mg/kg IP) and another 7 days of NaCl; and group 4 received initial 7 days of Q10 1 mg/kg/day, followed by a single dose of doxorubicin (12.5 mg/kg IP) and another 7 days of Q10. At the end of 14 days, systolic, diastolic and mean blood pressure, electrocardiogram (ECG), complete blood count, and serum biochemical profile were evaluated. We also analyzed heart histological and ultrastructure analysis, and estimated heart’s oxidative stress and lipid peroxidation. DOXO administration altered ECG, with increase heart rate, P-wave duration, PR interval duration, and T-wave amplitude. All the parameters were significantly reduced following Q10 treatment. DOXO also caused increase in CK, CK-MB, LDH, and urea levels, which were not mitigated by Q10 treatment. However, Q10 reduced oxidative stress by interfering with superoxide dismutase, significantly decreasing lipid peroxidation in heart tissue. DOXO administration also leads to several histological and ultrastructure alterations including cardiomyocyte degeneration and intense intracelullar autophagosomes, all minimized by Q10 treatment. Q10 treatment prevented the ECG changes, minimized oxidative stress, lipid peroxidation, and DOXO-induced heart tissue alterations. Our findings suggest that pre- and post-treatment with Q10 exerts potential cardioprotective effect against the DOX-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peiris, D., Spector, A. F., Lomax-Browne, H., Azimi, T., Ramesh, B., Loizidou, M., et al. (2017). Cellular glycosylation affects herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Scientific Reports,7, 43006.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Akolkar, G., Bagchi, A. K., Ayyappan, P., Jassal, D. S., & Singal, P. K. (2017). Doxorubicin-induced nitrosative stress is mitigated by vitamin C via the modulation of nitric oxide synthases. American Journal Society Physiological Cell,312, 418–427.

    Google Scholar 

  3. Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine,18, 1639–1645.

    PubMed  Google Scholar 

  4. Holmberg, M. J., Uber, A., Stankovic, N., Chen, C. O., Grossestreuer, A. V., Donnino, M. W., et al. (2018). Ubiquinol (reduced coenzyme Q10) and cellular oxygen consumption in patients undergoing coronary artery bypass grafting. Journal of Intensive Care Medicine,1, 885066618789114.

    Google Scholar 

  5. Fouad, A. A., & Jresat, I. (2012). Hepatoprotective effect of coenzyme Q10 in rats with acetaminophen toxicity. Environmental Toxicology and Pharmacology,33, 158–167.

    CAS  PubMed  Google Scholar 

  6. Zhai, J., Bo, Y., Lu, Y., Liu, C., & Zhang, L. (2017). Effects of coenzyme Q10 on markers of inflammation: A systematic review and metal-analysis. PLoS ONE,12, e0170172.

    PubMed  PubMed Central  Google Scholar 

  7. Jafari, M., Mousavi, S. M., Asgharzadeh, A., & Yazdani, N. (2018). Coenzyme Q10 in the treatment of heart failure: A systematic review of systematic reviews. Indian Heart Journal,7–0, 111–117.

    Google Scholar 

  8. Luna, L. G. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  9. Joviano-Santos, J. V., Santos-Miranda, A., Botelho, A. F. M., De Jesus, I. C. G., Andrade, J. N., De Oliveira Barreto, T., et al. (2018). Increased oxidative stress and CaMKII activity contribute to electro-mechanical defects in cardiomyocytes from a murine model of Huntington’s disease. FEBS Journal,286, 110–123.

    PubMed  Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  11. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.

    CAS  PubMed  Google Scholar 

  12. Janero, D. R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine, 9(6), 515–540.

    CAS  PubMed  Google Scholar 

  13. Dieterich, S., Bieligk, U., Beulich, K., Hasenfuss, G., & Prestle, J. (2000). Gene expression of antioxidative enzymes in the human heart: Increased expression of catalase in the end-stage failing heart. Circulation, 101(1), 33–39.

    CAS  PubMed  Google Scholar 

  14. Gioda, C. R., de Oliveira Barreto, T., Prímola-Gomes, T. N., de Lima, D. C., Campos, P. P., Capettini Ldos, S., et al. (2010). Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. American Journal of Physiology-Heart and Circulatory Physiology, 298(6), 2039–2045.

    Google Scholar 

  15. Nelson, D. P., & Kiesow, L. A. (1972). Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry, 49(2), 474–478.

    CAS  PubMed  Google Scholar 

  16. Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.

    CAS  PubMed  Google Scholar 

  17. Lefrak, E. A., Pitha, J., Rosenheim, S., & Gottlieb, J. A. (1973). A clinicopathologic analysis of Adriamycin cardiotoxicity. Cancer,32, 302–314.

    CAS  PubMed  Google Scholar 

  18. Shafei, A., El-Bakly, W., Sobhy, A., Wadgy, O., Reda, A., Aboelenin, O., et al. (2017). A review on the efficacy and toxicity of differente doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomedicine & Pharmacotherapy,95, 1209–1218.

    CAS  Google Scholar 

  19. Granados-Principal, S., Quiles, J. L., Ramirez-Tortosa, C. L., Sanchez-Rovira, P., & Ramirez-Tortosa, M. C. (2010). New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidante nutrients. Food and Chemical Toxicology,48, 1425–1438.

    CAS  PubMed  Google Scholar 

  20. O’Connell, J. L., Romano, M. M. M., Campos Pulici, E. C., Carvalho, E. E., de Souza, F. R., Tanaka, D. M., et al. (2017). Short-term and long-term models of doxorubicin-induced cardiomyopathy in rats: A comparison of functional and histopathological changes. Experimental Toxicologic Pathology,69, 213–219.

    PubMed  Google Scholar 

  21. Kelleni, M. T., Amin, E. F., & Abdelrahaman, A. M. (2015). Effect of metformin and sitagliptin on doxorubicin induced cardiotoxicity in rats: Impact of oxidative stress, inflammation and apoptosis. Journal of Toxicology,2015, 8.

    Google Scholar 

  22. Pereira Neto, G. B., Andrade, J. N. B., Sousa, M. G., & Camacho, A. A. (2006). Holter electrocardiography in dogs showing doxorubicin-induced dilated cardiomyopathy. Arquivo Brasileiro de Medicina Veterinária e Zootecnia,58, 1037–1042.

    CAS  Google Scholar 

  23. Silva, C. E. V., & Camacho, A. A. (2005). Alterações eletrocardiográficas em cães sob tratamento prolongado com doxorrubicina. Arquivo Brasileiro de Medicina Veterinária e Zootecnia,57, 300–306.

    Google Scholar 

  24. Krishnamurthy, B., Rani, N., Bharti, S., Golechha, M., Bhatia, J., Naq, T. C., et al. (2015). Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats. Chemico-Biological Interactions,237(96–103), 2015.

    Google Scholar 

  25. Sleijfer, S., Rizzo, E., Litière, S., Mathijssen, R. H. J., Judson, I. R., Gelderblom, H., et al. (2018). Predictors for doxorubicin-induced hematological toxicity and its association with outcome in advances soft tissue sarcoma patients; a retrospective analysis of the EORTC-soft tissue and bone sarcoma group database. Acta Oncologica,57, 1117–1126.

    CAS  PubMed  Google Scholar 

  26. Saad, S. Y., Najjat, T. A., & Al-Rikabi, A. C. (2001). The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacological Research,43, 211–218.

    CAS  PubMed  Google Scholar 

  27. Lopez-Giacoman, S., & Madero, M. (2015). Biomarkers in chronic kidney disease, from kidney function to kidney damage. World Journal of Nephrology,6, 57–73.

    Google Scholar 

  28. Hruska, K. A., Mathew, S., Lund, R., Qiu, P., & Pratt, R. (2008). Hyperphosphatemia of chronic kidney disease. Kidney International,74, 148–157.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Campbell, T. W. (2007). Bioquímica Clínica de Mamíferos: Animais de Laboratório e Espécies Variadas. In M. A. Thrall (Ed.), Hematologia e Bioquímica Clínica Veterinária (1st ed.). São Paulo: Roca.

    Google Scholar 

  30. Fonfara, S., Loureiro, J., Swift, S., James, R., Cripps, P., & Dukes-McEwan, J. (2010). Cardiac troponin I as a marker for severity and prognosis of cardiac disease in dogs. Veterinary Journal,184, 334–339.

    CAS  Google Scholar 

  31. O’Bryen, P. J., Smith, D. E., Knectel, T. J., Marchak, M. A., Pruimboom-Brees, I., Brees, D. J., et al. (2006). Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Laboratory Animal Science,40, 153–171.

    Google Scholar 

  32. Kehoe, R., Singer, D. H., Trapani, A., Billingham, M., Levandowski, R., & Elson, J. (1978). Adriamycin-induced cardiac dysrhythmias in an experimental dog model. Cancer Treatment Reports,62, 963–978.

    CAS  PubMed  Google Scholar 

  33. Van Vleet, J. F., & Ferrans, V. J. (1986). Myocardial diseases of animals. The American Journal of Pathology,124, 95–178.

    Google Scholar 

  34. Maudlin, G. E., Fox, P. R., Patnaik, A. K., Bond, B. R., Mooney, S. C., & Matus, R. E. (1992). Doxorubicin-induced cardiotoxicosis: clinical features in 32 dogs. Journal of Veterinary Internal Medicine,6, 82–88.

    Google Scholar 

  35. Gava, F. N., Zacché, E., Ortiz, E. M. G., Champion, T., Bandarra, M. B., Barbosa, J. C., et al. (2013). Doxorubicin induced dilated cardiomyopathy in a rabbit model: An update. Research in Veterinary Science,94, 115–121.

    CAS  PubMed  Google Scholar 

  36. Green, P. S., & Leeuwenburgh, C. (2002). Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimia et Biophysica Acta,1588, 94–101.

    CAS  Google Scholar 

  37. Abdullah, C. S., Alam, S., Aishwarya, R., Miriyala, S., Bhuiyan, M. A. N., Panchatcharam, M., et al. (2019). Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Scientific Reports,9, 2002.

    PubMed  PubMed Central  Google Scholar 

  38. Koleini, N., & Kardami, E. (2017). Autophagy and mitophagy in the contexto of doxorubicin-induced cardiotoxicity. Oncotarget,8, 46663–46680.

    PubMed  PubMed Central  Google Scholar 

  39. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. K. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology,52, 1213–1225.

    CAS  PubMed  Google Scholar 

  40. Asension-López, M. C., Soler, F., Pascual-Figal, D., Fernández-Belda, F., & Lax, A. (2017). Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes. PLoS ONE,28, e0172803.

    Google Scholar 

  41. Littarru, G. P., & Tiano, L. (2010). Clinical aspects of coenzyme Q10: An update. Nutrition,26, 250–254.

    CAS  PubMed  Google Scholar 

  42. Conklin, K. A. (2005). Coenzyme q10 for prevention of anthracycline-induced cardiotoxicity. Integrative Cancer Therapies,4, 110–130.

    CAS  PubMed  Google Scholar 

  43. Conklin, K. A. (2000). Dietary antioxidants during cancer chemotherapy: Impact on chemotherapeutic effectiveness and development of side effects. Nutrition and Cancer,37, 1–18.

    CAS  PubMed  Google Scholar 

  44. Conklin, K. A. (2004). Cancer chemotherapy and antioxidants. The Journal of Nutrition,134, 3201S–3204S.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Center of Microscopy at the Universidade Federal de Minas Gerais (http://www.microscopia.ufmg.br) for providing the equipment and technical support for experiments involving electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Flávia M. Botelho.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical Approval

All experimental animals were used in accordance with experimentation ethics, respecting animal welfare and minimizing any discomfort. The present study was approved by the Ethics Committee of Animal Use (CEUA) of the Federal University of Minas Gerais, Protocol No 74/2017.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botelho, A.F.M., Lempek, M.R., Branco, S.E.M.T. et al. Coenzyme Q10 Cardioprotective Effects Against Doxorubicin-Induced Cardiotoxicity in Wistar Rat. Cardiovasc Toxicol 20, 222–234 (2020). https://doi.org/10.1007/s12012-019-09547-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09547-4

Keywords

Navigation