
Vol.:(0123456789)

Biological Trace Element Research 
https://doi.org/10.1007/s12011-024-04230-4

RESEARCH

Evaluation of Possible Toxic Effects of Boric Acid in Palourde Clam 
(Ruditapes decussatus) Through Histological Changes and Oxidative 
Responses

Selin Ertürk Gürkan1   · Mert Gürkan1   · Volkan Sarıtunç2 · Ezgi Can İbiş2 · Berkay Güneş2

Received: 27 March 2024 / Accepted: 8 May 2024 
© The Author(s) 2024

Abstract
The extensive utilization of boric acid, particularly in industrial and agricultural sectors, also engenders concerns regard-
ing the toxicity of boron and its derivatives. Particularly, the behavior of boric acid at increasing concentrations in aquatic 
ecosystems remains poorly understood. In light of these concerns, this study aimed to investigate the toxicity of boric acid 
in bivalves, which occupy a critical position in the food chain. Specimens of Ruditapes decussatus, which had not been 
previously exposed to any pollutants and were cultivated under controlled conditions, were subjected to three different con-
centrations of boric acid (0.05 mg/L, 0.5 mg/L, and 5 mg/L) in vitro for 96 h. Following the exposure period, the specimens 
were assessed for histological changes (the mantle, gill, and digestive gland) and specific oxidative parameters (the gill and 
digestive gland), including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase, and lipid peroxidation 
(LPO). The research findings indicated that boric acid primarily induced oxidative damage at the applied concentrations and 
increased antioxidant levels (p < 0.05). Moreover, although no significant histopathological abnormalities were observed in 
the examined histological sections, subtle changes were noted. This study evaluated the potential adverse effects of boric 
acid on bivalves, which are crucial components of the aquatic food chain, utilizing histological and specific physiological 
parameters following its introduction into aquatic environments. It is anticipated that the findings of this study will contribute 
to the development of new insights and perspectives regarding the extensive use of boric acid.
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Introductıon

Boron is recognized as an indispensable micronutrient, serv-
ing as a trace element vital for the physiological develop-
ment and growth of organisms [1–3]. It occurs naturally in 
the environment, forming compounds with other elements, 
some of which hold considerable commercial significance 
[4]. For instance, boric acid, identified as a weak monobasic 
Lewis acid of boron [5], is of notable industrial importance. 
Its essentiality for plant growth has been long established [6, 
7], with uptake occurring through plant consumption and, 
via water sources, as inorganic boron, subsequently transfer-
ring to animal species and humans [8]. Upon its discovery, 
boron’s significance in plant nutrition was promptly recog-
nized, leading to its widespread application in agricultural 
practices [3]. The nutritional role of boron in human and 
animal metabolism gained elucidation in the 1980s [9–11]. 
In the European Union, boric acid finds authorization as 
a food additive and preservative in select food items (e.g., 
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caviar) [10], while its utilization in animal nutrition has also 
been notable in recent years [4]. Boron exerts multifaceted 
effects on cellular signaling pathways and participates in the 
formation and modulation of entities involved in numerous 
biochemical processes. It assumes pivotal roles in the life 
cycle of highly organized organisms and contributes to vari-
ous biological phenomena such as cellular structural integ-
rity and enzymatic activities [12]. Furthermore, boron has 
been implicated in cellular signaling mechanisms, impact-
ing the functionality of diverse organs, including the brain, 
while also actively modulating immune responses [7, 13, 
14]. Beyond its nutritional significance, boron finds exten-
sive utility across diverse domains.

In addition to its utilization in cosmetic, ceramic, and 
glass industries, boron is frequently favored within industrial 
sectors such as nuclear technology, materials engineering, 
and energy production [15]. Consequently, experimental 
inquiries were launched to explore its impact on clinical 
health subsequent to the elucidation of its biological signifi-
cance and role in animal and human metabolic processes [4, 
16]. As the usage of boron proliferated, inquiries emerged 
regarding its potential toxicological implications, juxtaposed 
against its protective effects on living organisms [17, 18]. 
The introduction of boron into air, water, or soil ecosystems 
can be construed as a corollary of its escalating utilization, 
both naturally and anthropogenically [19, 20]. This surge in 
boron usage has prompted scrutiny into the toxic ramifica-
tions of boric acid [21, 22]. While low concentrations of 
boron are generally associated with minimal toxicity in soil, 
water, and living organisms, investigations have delineated 
its adverse effects at elevated concentrations, leading to its 
classification within the chemical pesticide group since as 
early as 1948 [5]. Despite the extensive historical use of 
boric acid across diverse applications, from medicinal to 
pesticidal and industrial realms, information pertaining to 
its potential toxicological effects remains somewhat limited 
[3]. Although the available literature regarding the toxic 
effects of boron on animals is currently constrained, pre-
vailing studies predominantly focus on human populations 
[23, 24] and rodent models [25–28]. Over the past two dec-
ades, there has been a growing awareness regarding the acute 
toxicity of boron on aquatic organisms, stemming from its 
ingress into aquatic ecosystems via both natural processes 
and human activities [12]. It is postulated that boron and 
its derivatives, particularly those introduced into freshwater 
bodies through agricultural and irrigation wastewater, have 
the potential to translocate to inland waters and subsequently 
to marine environments, potentially exerting toxic effects at 
specific concentration thresholds [29, 30]. The assessment 
of boron’s potential toxic effects has predominantly focused 
on fish species [4, 7, 12, 31–38], with limited investigations 
involving macroinvertebrates [3]. A common consensus 
derived from these studies is that boron and its derivatives 

possess the capacity to perturb hormone and lipid metabo-
lism, as well as modulate the activity of numerous enzymes 
[34, 39, 40]. While the precise extent of these effects on 
biochemical processes remains incompletely elucidated [33, 
34, 41], it is established that boron and its derivatives do not 
undergo metabolic transformations, with borates introduced 
into aquatic environments primarily forming boric acid and 
borate anions [12, 42].

As with any pollutant infiltrating aquatic ecosystems, 
boric acid harbors the potential to instigate oxidative stress 
within aquatic organisms via mechanisms involving free 
radicals and reactive oxygen species (ROS). Aquatic organ-
isms, particularly bivalves, possess the capacity to mount 
responses to environmental pollutants through a spectrum of 
immune and antioxidant defense mechanisms [43–45]. Rudi-
tapes species, prominent constituents of coastal ecosystems, 
bear substantial economic and ecological significance. Their 
propensity, akin to other bivalves, for pollutant accumulation 
through filter-feeding renders them valuable focal points in 
biomonitoring endeavors [46, 47]. The primary objective of 
this study is to elucidate the deleterious effects of boric acid, 
a commonly employed substance, on bivalves within aquatic 
environments. To this end, histopathological alterations and 
antioxidant responses were evaluated in the digestive gland 
and gill tissues of Ruditapes decussatus specimens subjected 
to varying concentrations of boric acid over a 96-h period 
under controlled laboratory conditions.

Materıal and Methods

Experimental Design

Samples of R. decussatus were procured from Gelibolu Sea-
food Import Export Industry, Turkey, a local farm. Upon 
acquisition, the specimens were acclimated in laboratory 
conditions within aquariums containing 15 L of artificial 
seawater for a duration of 5 days, equating to approximately 
1 L per mussel. Throughout this acclimation period, the arti-
ficial seawater was renewed daily, with a complete replace-
ment on the initial two days, followed by a 50% renewal on 
the subsequent 3rd and 4th days. The experimental design 
encompassed three replicates, each comprising 10 indi-
viduals per concentration level. The acute effects assess-
ment was conducted over a span of 96 h. The concentra-
tions of exposure (0, 0.05, 0.5, and 5 mg/L) were determined 
based on established doses from prior literature [3, 34]. All 
experimental groups were provided with aerated environ-
ments ensuring requisite water quality parameters. Moni-
toring of water temperature and dissolved oxygen levels 
was performed utilizing a YSI MPS 556 probe, while pH 
values were routinely assessed employing a HANNA C 200 
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(HI 83200) photometer. Ethical guidelines were rigorously 
adhered to throughout the experimental procedures.

Sampling

At the culmination of the exposure duration, ten mussel 
specimens from each aquarium underwent dissection sub-
sequent to morphological measurements encompassing 
length, width, and height. Among these samples, five from 
each experimental group were allocated for histopathologi-
cal evaluation, while the remaining five were designated for 
the assessment of antioxidant parameters. Histopathological 
analyses entailed the examination of mantle, gill, and diges-
tive gland tissues of the mussel specimens. Concurrently, 
oxidative parameters were ascertained in both gill and diges-
tive gland tissues.

Oxidative Stress Parameters

Gill and digestive gland tissues were promptly fixed with 
liquid nitrogen upon collection and subsequently stored 
at − 80 °C until the commencement of analyses. Prior to 
analysis, tissue homogenization was performed utilizing a 
50 mM phosphate buffer. Oxidative parameters, notably the 
enzymatic activities of superoxide dismutase (SOD), cata-
lase (CAT), and glutathione-S-transferase (GST), along-
side the quantification of lipid peroxidation (MDA), were 
assessed. To standardize enzyme activities in terms of U.mg.
protein−1, the protein content within the tissues was quanti-
fied employing the Bradford method [48].

SOD activity was evaluated through the reduction of 
nitroblue tetrazolium (NBT), resulting in the formation of 
a blue-hued formazan product with maximal absorbance at 
550 nm [49, 50]. CAT activity was determined by monitor-
ing alterations in absorbance over a duration of approxi-
mately 90 s subsequent to initial tissue measurements [51]. 
GST activity analysis involved spectrophotometric measure-
ments at 340 nm, taken at distinct time intervals, followed 
by kinetic computations [52]. Lipid peroxidation, serving 
as an indicative marker of oxidative damage, was quantified 
based on the levels of MDA, the terminal product of this 
oxidative process [53].

Histopathological Assessment

The mantle, gill, and digestive gland tissues of the mus-
sels underwent fixation in Davidson’s fixative for a duration 
of 24 h, followed by immersion in a 70% ethanol solution. 
Subsequent to standard histological preparation protocols, 
tissue embedding in paraffin blocks facilitated the genera-
tion of sections measuring 5 µm in thickness. These sections 
were then subjected to staining with hematoxylin and eosin, 
as outlined by Gamble and Wilson [54]. Histopathological 
alterations were meticulously examined, and visual docu-
mentation was facilitated through employment of a CX31 
Olympus light microscope, equipped with a digital camera, 
utilizing DP2-BSW software.

Data Analysis

The statistical analyses were conducted utilizing SPSS 21.0 
software. The normal distribution of the data was assessed 
employing the Kolmogorov–Smirnov test, while the homo-
geneity of variances was evaluated using the Levene test. 
Enzyme analyses and MDA levels underwent comparison 
via parametric one-way ANOVA and/or non-parametric 
Kruskal–Wallis tests. Distinct letters or numbers were 
assigned to denote significant differences among concen-
trations. The relationship between quantified histologi-
cal parameters and oxidative measurements was explored 
through discriminant analysis, ensuring validation for non-
linearity and variances. A significance level (α) of 0.05 was 
adopted for all analyses.

Results

The morphometric attributes, encompassing length, width, 
height, and weight measurements of all mussel specimens, 
are delineated in Table 1. In the study’s inception, a deliber-
ate effort was made to select mussel samples exhibiting com-
parable lengths and weights, thereby mitigating potential 
variations stemming from morphological disparities during 
subsequent analyses.

Table 1   The descriptive 
statistics of morphological 
measurements (sd: standard 
deviation) (n = 30 per groups)

Concentrations Length (mm)
mean ± sd

Height (mm)
mean ± sd

Width (mm)
mean ± sd

Weight (mm)
mean ± sd

Control 26.87 ± 1.1 40.86 ± 1.6 17.76 ± 0.58 12.55 ± 1.34
0.05 mg/L 27.45 ± 1.1 42.03 ± 2 18.96 ± 0.8 14.2 ± 1.5
0.5 mg/L 27.25 ± 0.87 42.08 ± 1.5 18.76 ± 1.17 14.16 ± 1.75
5 mg/L 26.54 ± 1.2 40.88 ± 1.7 18.7 ± 0.9 13.14 ± 1.46
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Oxidative Stress Parameters

In the control group, the SOD activity in gill tissue sam-
ples, devoid of exposure to any concentration of boric acid, 
exhibited a range between 20.5 and 26.2 U mg.prot.−1, while 
in the digestive gland tissues, the activity ranged from 4.6 
to 15.5 U mg.prot.−1. Conversely, in groups exposed to the 
lowest concentration of 0.05 mg/L boric acid, the SOD 
values measured in gill tissues ranged from 31.5 to 49.3 U 
mg.prot.−1, whereas in digestive gland tissues, this spanned 
between 17.5 and 60 U mg.prot.−1. Notably, the most ele-
vated SOD enzyme activity values were discerned in diges-
tive gland tissues of specimens subjected to 0.5 mg/L boric 
acid (168.5 mg.prot.−1). Similarly, heightened values were 
also observed in gill tissues compared to other concentra-
tions. The observed disparity in SOD levels among concen-
trations exhibited statistical significance (F = 63.9, df = 3, 
p < 0.05). Moreover, statistically significant differences were 
noted in SOD activity among the targeted tissues (F = 4.9, 
df = 1, p < 0.05) (refer to Fig. 1a).

The CAT levels in the gill and digestive gland tissues of 
the control group samples were determined to range between 
70 and 157 µmol mg prot.−1. Notably, the highest CAT value 
was observed in the digestive gland tissue of a specimen 
exposed to 0.5 mg/L boric acid (770 µmol mg prot−1), with 
the mean CAT levels being notably elevated across differ-
ent tissues within this group (mean 488.9 µmol mg prot.−1). 
Statistical analysis revealed significant differences in CAT 
levels among concentrations (F = 75.1, df = 3, p < 0.05) (see 
Fig. 1b).

Conversely, the GST enzyme levels, representing a 
phase II detoxification enzyme, were initially quantified 

at 0.06 µmol mg prot.−1 in the gill tissue of the lowest 
control group. Subsequently, the gill tissue of individuals 
exposed to 0.5 mg/L boric acid exhibited the highest GST 
levels (mean 0.12 µmol mg prot.−1), followed by those in 
tissues of specimens exposed to the highest concentra-
tion (5 mg/L) (mean 0.09 µmol mg prot. −1), and then 
the lowest concentration (mean 0.07 µmol mg prot.−1), 
respectively. While fluctuations in GST levels did not 
attain statistical significance at the tissue level (F = 2.05, 
df = 1, p > 0.05), significant differences were discerned 
across concentrations (F = 147.1, df = 3, p < 0.05) (refer 
to Fig. 1c).

Assessed as an index of oxidative damage, lipid peroxi-
dation was manifested through the detection of malondi-
aldehyde (MDA) levels, the end product of this oxidative 
process. Comparative analysis against the control group 
revealed elevated MDA levels in both tissues of the exposure 
groups. Notably, the highest MDA levels were observed in 
the digestive gland tissue following exposure to 0.5 mg/L 
boric acid (mean 0.43 µmol mg prot.−1), succeeded by levels 
in the digestive gland tissue under 5 mg/L exposure (mean 
0.4 µmol mg prot.−1). Statistical examination unveiled sig-
nificant differences in MDA levels across concentrations 
(F = 10.2, df = 3, p < 0.05) and among tissues (F = 11.1, 
df = 1, p < 0.05) (refer to Fig. 1d).

Histopathological Assessment

Mantle

No histopathological aberrations were evident in the mantle 
sections of the control group (refer to Fig. 2a). Nonetheless, 

Fig. 1   a SOD, b CAT, c GST 
activities, and d MDA level 
in the gill and digestive gland 
tissues (D.G: digestive gland) 
of R. decussatus against in vitro 
boric acid exposures (0, 0.05, 
0.5, and 5 mg/L) for 96 h (*the 
mean difference is significant 
against the concentrations; 
**the mean difference is signifi-
cant against both the concentra-
tions and the tissues; p < 0.05)
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hemositic infiltrations were discerned in the mantle sec-
tions of the cohort exposed to 0.05 mg/L boric acid (refer 
to Fig. 2b). Subsequent observations indicated the perva-
siveness of this finding across other doses (0.5 and 5 mg/L) 
throughout the study (refer to Fig. 2c, d).

Gill

The gill sections of mussels in the control group exhibited a 
histologically normal appearance (refer to Fig. 3a). Notably, 

Fig. 2   Mantle sections of R. 
decussatus. a Control (0 mg/L), 
b 0.05 mg/L, c 0.5 mg/L, and 
d 5 mg/L boric acid. Hemositic 
infiltrations indicated by arrows, 
H&E

Fig. 3   Gill sections of R. decus-
satus. a Control (0 mg/L), b 
0.05 mg/L, c 0.5 mg/L, and d 
5 mg/L boric acid. H&E
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no histopathological anomalies were noted across any of the 
administered doses (refer to Fig. 3b–d).

Digestive Gland

The digestive gland sections of mussels within the control 
group displayed histologically normal tubular structures 
(refer to Fig. 4a). However, specimens exposed to 0.05 mg/L 
of boric acid exhibited localized hemositic infiltrations (refer 
to Fig. 4b). Notably, the pervasiveness of hemositic infiltra-
tions increased notably in the group subjected to 0.5 mg/L 
boric acid exposure (refer to Fig. 4c). Furthermore, speci-
mens exposed to 5 mg/L of boric acid showcased pro-
nounced hemositic infiltrations along with epithelial defor-
mations within the digestive gland tubules (refer to Fig. 4d).

Discussion

Boric acid, one of the twelve naturally occurring boron-con-
taining compounds [55], is widely employed for its therapeu-
tic attributes in addressing inflammatory conditions [56]. Its 
historical use as a pesticide in agricultural practices spans 
many years [21, 57], and reports also indicate its antifungal 
or fungistatic properties [58–60]. Given its application as 
an inorganic chemical insecticide, studies have revealed that 
boric acid can disrupt specific physiological and biochemical 
processes in non-target organisms [5, 61, 62].

In investigations spanning both vertebrate and inverte-
brate taxa, boric acid has been observed to manifest among 
the lowest degrees of bioaccumulation and associated poten-
tial toxicities [59]. Studies concerning boron toxicity pre-
dominantly emphasize developmental biology [24]. Various 
inquiries targeting diverse fly species [63], assorted insect 
taxa [64, 65], and even human subjects [66] have delineated 
adverse outcomes linked to boron and its derivatives across 
distinct developmental stages. Illustrating aquatic ecosys-
tems, observations have indicated variances in the growth 
of certain fish species correlating with boron concentrations 
[37, 38].

When considering the potential impact of substances 
introduced into aquatic ecosystems, it becomes evident that 
they may manifest toxic effects over time owing to bioac-
cumulation, thereby disrupting the ecosystem’s functional-
ity and adversely affecting organisms across various trophic 
levels [67]. It is noteworthy that the manifestation of toxic-
ity in aquatic organisms can exhibit variability contingent 
upon the specific species involved [12, 68]. Concurrently, 
research endeavors assessing the toxicity of boron and its 
derivatives in aquatic organisms, in conjunction with growth 
factors, have been documented. In the realm of acute expo-
sures, lethal concentrations (LC50) have been delineated for 
boron and its derivatives across diverse fish species. These 
concentrations were elucidated as 74 mg/L for dab (Limanda 
limanda) [69], 43 mg/L for coho salmon (Oncorhynchus 
kisutch) [70], 979 mg/L for mosquito fish (Gambusia affinis) 

Fig. 4   Digestive gland sections 
of R. decussatus. a Control 
(0 mg/L), b 0.05 mg/L, c 
0.5 mg/L, and d 5 mg/L boric 
acid. Hemositic infiltrations 
indicated by arrows, H&E
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[71], 108–252 mg/L for flounder (Paralichthys olivaceus), 
and 97–172 mg/L for sea bream (Parus major) [18].

In a prior investigation, it was observed that boron deriva-
tive concentrations below 10 mg/L did not manifest toxic 
effects on trout species [2]. Leveraging this observation, the 
current study aimed to evaluate the histological ramifica-
tions and quantifiable physiological responses induced by 
borax acid, a widely utilized substance spanning diverse 
domains, on specimens of R. decussatus, a bivalve species 
integral to human consumption. Employing a meticulously 
devised experimental framework, artificial seawater was 
meticulously concocted, facilitating a 96-h exposure of the 
samples to borax acid. Histological assessments unveiled 
an absence of cellular alterations in specimens exposed to 
concentrations below 5 mg/L, contrasting starkly with pro-
nounced signs of hemositic infiltration and epithelial defor-
mation observed at the highest concentration. The escalating 
prevalence of histological irregularities in tandem with con-
centration corroborates prior research illustrating the toxic-
ity profile of boron and its derivatives [22, 72–74].

Numerous studies have been conducted to evaluate the 
extent of oxidative damage and genotoxicity induced by 
boron and its derivatives. Particularly within investiga-
tions involving mammalian groups, it has been documented 
that boron and its derivatives elicit increases in antioxidant 
levels, while the ensuing damage lacks genotoxicity [41, 
75–81]. Nonetheless, despite the myriad of evaluations 
undertaken, definitive establishment of the effect of boron 
and its derivatives on antioxidants remains inconclusive [4]. 
In an effort to elucidate the antioxidant defense system con-
cerning potential physiological or pathological conditions 
that may ensue in mussel samples subsequent to exposure, 
levels of SOD, CAT, and GST enzymes were scrutinized, 
alongside the assessment of LPO quantity to gauge oxidative 
damage. It is envisaged that concomitant with the escalation 
of reactive oxygen species (ROS) upon exposure, the deli-
cate balance of antioxidants will be disrupted [82]. Further-
more, the stress response that mussels may exhibit to varying 
concentrations of boric acid is favored due to its propensity 
to perturb normal body homeostasis, culminating in an array 
of biochemical, physiological, and behavioral alterations.

At concentrations ranging up to a maximum of 5 mg/L, 
evidence suggests the potential initiation of oxidative dam-
age in two distinct tissue types within the samples. Follow-
ing acute exposure to boric acid, notably heightened antioxi-
dant levels were discerned at a concentration of 0.5 mg/L, 
denoting a moderate concentration level. Noteworthy is the 
observation that the pinnacle levels of enzymes catalyzing 
Phase I reactions, such as SOD and CAT, were predomi-
nantly present in the digestive gland tissue. Conversely, the 
GST enzyme, instrumental in Phase II reactions, exhibited 
its highest values within the gill tissue. This observed vari-
ance between tissue types may be correlated with the gill 

tissue’s precedent exposure to boric acid, which appears to 
be both earlier and more extensive.

The prompt response exhibited by the SOD enzyme 
within this context can be attributed to its capacity to 
uphold the primary line of defense without necessitating 
an increase in the prevailing metabolic energy reservoirs 
of mussels [83]. Analogously rapid SOD responses have 
been documented in exposure investigations encompassing 
diverse mussel species subsequent to pollutant exposure 
[84–86]. Moreover, varying concentrations of boron com-
pounds have been shown to induce heightened SOD levels 
[75]. Nevertheless, contrary to initial expectations, this study 
revealed that SOD levels did not exhibit a linear increment 
with escalating concentrations of boric acid; rather, a ten-
dency towards reduction was noted at higher concentrations, 
aligning with findings in extant literature [4, 77]. It could be 
posited that this declining trend might be associated with the 
depletion of detoxification mechanisms [87, 88].

The concentrations of CAT and GST displayed a pro-
gressive increase from the lowest to the moderate levels, 
mirroring the trend observed in SOD activity, yet exhibited 
a decline to lower levels at the highest concentration. The 
elevation in CAT activity can be attributed to its defensive 
role against oxygen radicals generated during exposure to 
boric acid [4]. Conversely, the heightened catalase (CAT) 
activity in response to increased hydrogen peroxide (H2O2) 
levels in both tissue types of boric acid-exposed specimens 
implies the presence of exposure-induced redox imbalance 
[89]. Considering the cooperative action of CAT and GST 
enzymes against oxidative stress in both the gill and diges-
tive gland tissues, the concentration-based results remain 
consistent. However, notably, disparate increases in enzyme 
activities across different organs were particularly evident 
at the 0.5 mg/L exposure level. This finding at the 0.5 mg/L 
boric acid exposure strengthens the notion that the initial 
response in gill tissue entails GST activity, whereas in the 
digestive gland tissue, it involves CAT induction under the 
same exposure conditions [90]. These increments in enzyme 
levels substantiate the occurrence of oxidative stress conse-
quent to boric acid exposure in mussels, stemming from an 
imbalance in pro-/antioxidant metabolism, thus supporting 
the concordance of oxidative effects associated with boric 
acid toxicity with prior research [4, 34, 41, 75–81].

When faced with a contaminant, the structural integrity 
of cell membranes can be compromised, leading to the deac-
tivation of membrane-associated enzymes and receptors, a 
phenomenon termed lipid peroxidation [91]. Levels of lipid 
peroxidation serve as specific indicators of the activity sta-
tus of antioxidant systems [92–94]. In the current investiga-
tion, the probability of encountering a moderate oxidative 
stress scenario resulting from the elevation in tissue MDA 
levels attributed to boric acid exposure has been reinforced. 
Measurements taken in the digestive gland tissues exhibited 
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significantly higher values across all three concentrations. 
The highest LPO values were documented at a concentration 
of 0.5 mg/L. Prior studies have also documented escalated 
lipid peroxidation phenomena in aquatic organisms follow-
ing exposure to pollutants [95–103].

This study aimed to assess the toxic potential of boric 
acid, which is extensively utilized across various sectors, in 
R. decussatus, an integral species in the food chain due to 
its filter-feeding behavior. The investigation focused on elu-
cidating the potential adverse effects of boric acid by exam-
ining histopathological changes and antioxidant responses 
upon its introduction into aquatic ecosystems. The findings 
revealed notable physiological and specific histological 
alterations in mussels as a result of boric acid exposure. 
Considering its industrial and agricultural utility, the study 
underscores the importance of judicious boric acid usage to 
mitigate potential harms and ecological ramifications.
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