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Abstract
High-fructose corn syrup (HFCS) has been a subject of intense debate due to its association with cardiovascular risks. 
This study investigates the potential protective effects of selenium (Se) supplementation against cardiac damage induced 
by HFCS. Thirty-two male Wistar albino rats were divided into four equal groups: control, CS (20%-HFCS), CS with 
Se (20%-HFCS, 0.3 mg/kg-Se), and Se (0.3 mg/kg-Se) only. After a 6-week period, heart and aorta tissues were col-
lected for histopathological, immunohistochemical, biochemical, and genetic analyses. HFCS consumption led to severe 
cardiac pathologies, increased oxidative stress, and altered gene expressions associated with inflammation, apoptosis, 
and antioxidant defenses. In the CS group, pronounced oxidative stress within the cardiac tissue was concomitant 
with elevated Bcl-2-associated X protein (Bax) expression and diminished expressions of B-cell-lymphoma-2 (Bcl-
2), nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma coactivator 
1-alpha (PGC1-α), and silenced information regulator 1 (SIRT1). Se supplementation mitigated these effects, showing 
protective properties. Immunohistochemical analysis supported these findings, demonstrating decreased expressions of 
caspase-3, tumor necrosis factor-alpha (TNF-α), IL-1β, and vascular endothelial growth factor (VEGF) in the CS + Se 
group compared to the CS group. The study suggests that Se supplementation exerts anti-inflammatory, antioxidant, 
and antiapoptotic effects, potentially attenuating HFCS-induced cardiovascular toxicity. These findings highlight the 
importance of dietary considerations and selenium supplementation in mitigating cardiovascular risks associated with 
HFCS consumption.

Keywords  Selenium · HFCS · Mitochondrial biogenesis · SIRT1 · PGC1-α

Introduction

High-fructose corn syrup (HFCS) has become a subject of 
much debate in recent years. Many consumers and health 
experts express concerns about the potential dangers of 
HFCS. HFCS is a sweetener produced by an enzymatic 
hydrolysis process of corn starch. In this process, corn 
starch is typically derived from genetically modified corn. 
The resultant syrup, which includes both glucose and fruc-
tose, is widely used as a sweetener in a variety of processed 
foods and beverages. Due to genetic modification and its 
high fructose content, HFCS has been shown to increase the 
risk of significant diseases such as atherosclerosis, insulin 
resistance, obesity, and metabolic syndrome. These patho-
logical conditions particularly have a negative impact on the 
cardiovascular system [1–3].
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There is an ongoing debate about the potential effects of 
HFCS on increasing inflammation levels. Particularly with 
long-term exposure, it has been reported that myocytes, 
endothelial cells lining the blood vessels, and inflamma-
tory cytokines such as interleukin-1 beta (IL-1β) and tumor 
necrosis factor-alpha (TNF-α) are elevated [4, 5]. One of the 
main reasons for this is believed to be the increased cellular 
oxidative stress [6].

Oxidative stress occurs when there is an excessive pro-
duction of reactive molecules called free radicals or when 
the antioxidant defense mechanisms are insufficient in the 
body. The high fructose content in corn syrup is considered 
a factor that can increase oxidative stress in cells [7]. Free 
radicals generated during fructose metabolism can cause cel-
lular damage and trigger the inflammatory process. There-
fore, intracellular molecules that are affected by antioxidant 
substances, which can be used to reduce oxidative cell dam-
age, are of great importance [8].

Silent information regulator 1 (SIRT1) plays a central 
role in protective intracellular mechanisms that respond 
to damage [9]. In addition to its antioxidant properties, 
SIRT1 also stands out for its antiapoptotic characteris-
tics [10]. It activates nuclear factor erythroid 2-related 
factor 2 (Nrf2), which increases the production of pro-
tective enzymes such as glutathione peroxidase (GPx) 
and superoxide dismutase (SOD) through the antioxidant 
response element [11, 12]. Furthermore, through the 
deacetylation of peroxisome proliferator-activated recep-
tor gamma coactivator 1-alpha (PGC1-α), it enhances 
mitochondrial biogenesis and exhibits antiapoptotic 
effects by reducing the Bax/Bcl-2 ratio [13]. Recent 
studies have demonstrated the protective properties of 
several agents that target key molecules like SIRT1 to 
exhibit these effects [14, 15].

Selenium (Se) is a crucial element in the composition of 
antioxidant enzymes like GPx and thioredoxin reductase, 
enhancing antioxidant activity and contributing to the safe-
guarding of cells and tissues from oxidative stress-induced 
harm. Studies have furnished evidence of Se anti-inflam-
matory and antioxidant properties in the context of cardio-
vascular health. Furthermore, Se has been demonstrated to 
elevate SIRT1 levels alongside antioxidant enzyme levels 
[16, 17].

This study aims to explore and elucidate the potential 
protective effects of Se supplementation against cardiac 
damage associated with the widespread use of HFCS. The 
global ubiquity of HFCS usage raises concerns about its 
detrimental impact on cardiac health. By investigating the 
potential protective properties of Se supplementation, we 
seek to furnish compelling evidence and a deeper under-
standing of the molecular mechanisms underlying protection 
against HFCS-induced cardiac damage.

Materials and Methods

Ethical Approval and Animal Care

Each of the 4 groups in our study consisted of 10 male Wistar 
albino rats (250–350 g), and the experiment lasted 6 weeks. 
Animal experiments received ethical approval from the 
local committee at Suleyman Demirel University (approval 
no:15.09.2022/ 06–74) and were conducted in compliance 
with the relevant European Communities Council Directive 
(86/609/EEC), adhering to recommended guidelines for ani-
mal care and experimentation.

Experimental Design

Control group (n = 10): No active substance or drug was added 
to the drinking water for 6 weeks.

High-fructose corn syrup (CS) group (n = 10): A 55% fruc-
tose solution was mixed into the drinking water at a concentra-
tion of 20% for a period of 6 weeks [18, 19].

High-fructose corn syrup and selenium (CS + Se) group 
(n = 10): A 0.3 mg/kg dosage of Se was combined with a 55% 
fructose solution, which was then mixed into the drinking 
water at a concentration of 20% for 6 weeks [20].

Selenium (Se) group (n = 10): A 0.3 mg/kg dosage of sele-
nium was mixed into the drinking water and administered for 
6 weeks.

After the 6-week period, the rats were euthanized using ket-
amine (90 mg/kg) or xylazine (8–10 mg/kg) anesthesia. Half of 
the heart and aorta tissues collected following euthanasia were 
preserved in formaldehyde for subsequent histopathological 
analysis, while the remaining tissues were stored at − 80 °C 
for further biochemical and genetic examination.

Histopathological Examination

During necropsy, heart and aorta samples were extracted and 
preserved in a 10% neutral formalin solution. Following a 
48-h fixation period, the tissue samples underwent standard 
processing using a fully automated tissue processing sys-
tem (Leica Microsystem, Germany) and were subsequently 
embedded in paraffin. After refrigeration, 5-µm sections 
were obtained using an automated rotary microtome (Leica 
microtome, Germany). Following overnight air-drying at room 
temperature, the sections underwent a series of alcohol and 
xylene treatments, were stained with hematoxylin–eosin, and 
were examined via a microscope.

Immunohistochemical Examination

Paraffin blocks yielded four sets of sections, which were 
affixed to poly-L-lysine-coated slides and subjected to 
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immunohistochemical staining for caspase-3 (cas-3) 
(anti-caspase-3 antibody (E-8): sc-7272), IL-1β (IL-
1β (11E5):sc-52012), TNF-α (anti-TNFα antibody 
(52B83):sc-52746), and vascular endothelial growth factor 
(VEGF) (VEGF (JH1212):sc-57496). Immunostaining was 
performed using the streptavidin–biotin method following 
manufacturer instructions. Primary antibodies (Santa Cruz, 
USA) were used at a 1/100 dilution, and sections were 
incubated for 60 min. Biotinylated secondary antibody and 
streptavidin–alkaline phosphatase conjugate were employed 
for immunohistochemistry. The EXPOSE HRP/DAB Detec-
tion IHC kit (ab80436) from Abcam (UK) served as the sec-
ondary antibody, with diaminobenzidine (DAB) as the chro-
mogen. Negative controls utilized antigen dilution solution 
in place of the primary antibody.

Immunohistochemical analysis involved separate exami-
nations for each antibody. A semi-quantitative analysis, 
graded from (0) to (3), assessed the severity of cellular 
immunohistochemical reactions as follows: (0) = negative, 
(1) = focal weak staining, (2) = diffuse weak staining, and 
(3) = diffuse strong staining [21]. Evaluation encompassed 
10 different areas under × 40 objective magnification in each 
section. Morphometric analyses and microphotography uti-
lized the Database Manual CellSens Life Science Imaging 
Software (Olympus, Japan).

Biochemical Analyzes

Rat heart tissues (approximately 150 mg each) were homog-
enized using the Ultra Turrax homogenizer (IKA® Werke, 
Germany) in a 1:9 (w/v) phosphate-buffered saline solution 
(pH: 7.4). Following homogenization, samples were centri-
fuged at 10,000 rpm for 10 min to determine oxidative stress. 
Total oxidant status (TOS), total antioxidant status (TAS), 

and oxidative stress index (OSI) levels in homogenized tis-
sue samples were evaluated with an automated analyzer 
using Erel’s colorimetric method (Beckman Coulter, USA) 
[22, 23]. Then, the OSI value was determined by calculat-
ing OSI = [(TOS, µmol/l)/(TAS, mmol Trolox eq/l) × 100] 
[24]. The measurement of GPx activity was conducted fol-
lowing the Paglia and Valentine method, utilizing a com-
mercially available kit from Randox Laboratories, UK. The 
SOD activity in heart tissue supernatants was assessed using 
the xanthine oxidase method with the utilization of the Ran-
sod commercial kit, provided by Randox Laboratories, UK. 
Protein concentrations were measured using the Beckman 
Coulter AU5800 autoanalyzer (Beckman Coulter, USA). The 
outcomes were quantified in units per milligram of protein.

RT qPCR Analyzes

RNA isolation from the homogenized tissues was carried 
out using the GeneAll RiboEx (TM) RNA Isolation Kit 
(GeneAll Biotechnology, Korea) following the manufac-
turer’s instructions. To assess the quantity and purity of 
the collected RNAs, the BioSpec-nano nanodrop device 
(Japan) was employed. For cDNA synthesis, 1 µg of RNA 
was utilized, and this process was performed with the A.B.T. 
™ cDNA Synthesis Kit (Atlas Biotechnology, Turkey) in 
accordance with the provided protocol, using a thermal 
cycler. The primer sequences were designed based using 
the NCBI website. Table 1 details the primer sequences 
used in the investigation. On a Biorad CFX96 real-time 
PCR apparatus located in California, USA, gene expression 
levels were measured using the A.B.T.™ SYBR Master 
Mix (Atlas Biotechnology, Turkey). In this investigation, 
the GAPDH gene was utilized as the reference gene for nor-
malization. The reaction mixture was made in accordance 

Table 1   Primary sequences, 
product size, and accession 
numbers of genes

F forward, R reverse, GAPDH glyceraldehyde-3-phosphate dehydrogenase, Bcl2 B-cell lymphoma 2, Bax 
Bcl-2 associated X, Nrf2 nuclear factor erythroid 2-related factor 2, PGC1α peroxisome proliferator-acti-
vated receptor gamma coactivator 1, SIRT1 sirtuin 1.

Genes Primary sequence Product size Accession number

GAPDH (house-
keeping)

F: AGT​GCC​AGC​CTC​GTC​TCA​TA 248 bp NM_017008.4
R: GAT​GGT​GAT​GGG​TTT​CCC​GT

Bcl-2 F: GGT​GAA​CTG​GGG​GAG​GAT​TG 102 bp NM_016993.2
R: AGA​GCG​ATG​TTG​TCC​ACC​AG

Bax F: AGG​GTG​GCT​GGG​AAGGC​ 93 bp XM_039087751.1
R: TGA​GCG​AGG​CGG​TGAGG​

Nrf2 F: GCC​TTC​CTC​TGC​TGC​CAT​TAGTC​ 126 bp NM_001399173.1
R: TCA​TTG​AAC​TCC​ACC​GTG​CCTTC​

PGC1-α F: CGC​ACA​ACT​CAG​CAA​GTC​CTC​ 263 bp XM_039092494.1
R: CCT​TGC​TGG​CCT​CCA​AAG​TCTC​

SIRT1 F: GGT​AGT​TCC​TCG​GTG​TCC​T 152 bp NM_001414959.1
R: ACC​CAA​TAA​CAA​TGA​GGA​GGTC​
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with the manufacturer’s instructions to yield a final volume 
of 20 µl. Following that, the mixture was put into a real-time 
qPCR equipment, and thermal cycling conditions were set 
according to the kit manual. Each sample underwent three 
replications. The RT-qPCR conditions included an initial 
denaturation step at 95 °C for 300 s, followed by denatura-
tion at 95 °C for 15 s and annealing/extension at 56 °C for 
30 s for a total of 40 cycles. After normalizing the data, 
the relative mRNA levels were computed using the 2-ΔΔCt 
formula [25].

Statistical Analysis

Histopathological and genetic scores and tissue oxidative 
stress marker levels were compared between the groups with 
the one-way ANOVA and post hoc LSD or Duncan tests 
via using SPSS-15 package program. The level of statistical 
significance was considered as p < 0.05.

Results

Histopathological Examination

Histopathological examination revealed the normal tissue 
histoarchitecture in Control and Se groups. At the CS group, 
severe hyperemia and edema were noticed in hearts. Fur-
thermore, there was a noticeable decrease in endothelial cell 
count within this group. Se treatment alleviated pathological 
observations in both heart and aorta samples (Fig. 1).

Immunohistochemical Examination

At the immunohistochemical evaluation, increased expres-
sions of cas-3, TNF-α, IL-1β, and VEGF were observed in 
the CS group. Se treatment caused a decrease in the expres-
sions of all of the markers. Expressions were predominantly 
observed in myocardial cells within hearts and endothelial 
cells of aortas (Figs. 2, 3, 4, and 5). Statistical analysis 
results of immunohistochemical scores are shown in Table 2.

These study findings indicated that CS caused pathologi-
cal findings in the heart and aorta and Se has an ameliorative 
effect on CS-induced damage.

Biochemical Analysis Results

The effect of CS on oxidative stress was evaluated with 
TOS, TAS, and OSI parameters in heart-homogenized tis-
sue samples. TOS and OSI values were significantly ele-
vated in the CS group than in the control group (p = 0.010 
and p < 0.001; respectively). In contrast, TAS values were 
significantly lower in the CS group according to control 
(p = 0.003). When we compared the group given CS with 
the CS + Se and Se groups, we found that the TOS values 
decreased (p = 0.022 and p = 0.004, respectively), and the 
TAS values increased significantly in the CS + Se and Se 
groups (p = 0.036 and p = 0.002, respectively). Additionally, 
OSI was found to be higher in the CS group than in the 
CS + SE and SE groups (p < 0.001 for both groups) (Fig. 6).

In order to demonstrate the antioxidant effect of Se, the 
levels of GPx and SOD enzymes in the heart tissue were 
examined. In the CS group, both GPx and SOD enzyme 
activities were significantly diminished compared to the 

Fig. 1   Representative histopathological figures between the groups. 
A Normal tissue histology in the Control group. B Marked hyper-
emia (arrows) in myocardial vessels and endothelial desquamations 

(arrows) in aortas. C Decreased hyperemia in CS + Se group. D Nor-
mal tissue architecture in Se group, HE, scale bars = 50 µm
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control group (p = 0.002 and p < 0.001, respectively). In 
the CS + Se group, significant elevation was observed in 
GPx and SOD enzyme levels compared to the CS group 
(p = 0.005 and p = 0.047, respectively), while only the group 
treated with selenium exhibited significantly higher GPx and 
SOD enzyme levels than all other groups (Fig. 6).

In the molecular examination of intracellular pathways 
related to apoptosis, oxidative stress, and inflammation, 
mRNA expressions of SIRT1, Nrf-2, Bax, Bcl-2, and 
PGC1-α were analyzed. In the evaluation of the CS group, 

a notable reduction in both SIRT1 and Nrf2 expressions 
was observed compared to the control group (p = 0.044 and 
p = 0.004, respectively). It was observed that Se supple-
mentation in the treatment group increased the diminished 
expressions of SIRT1 and Nrf2 caused by the damage 
(p = 0.013 and p = 0.035, respectively). When comparing 
the CS group and the group receiving only Se, both SIRT1 
and Nrf2 expressions were found to be higher in the Se 
group (p = 0.002 and p = 0.006, respectively). Although 
SIRT1 levels were increased in the Se group compared to 

Fig. 2   Cas-3 immunohistochemical findings of the heart (upper row) 
and aortas (below row) among the groups. A No expression in Con-
trol group. B Increased expression in myocardial and endothelial cells 

(arrows) in CS group. C Decreased expression in myocardial cells 
(arrow) in CS + Se group. D No expression in Se group. Streptavidin 
biotin peroxidase method, scale bars = 50 µm

Fig. 3   TNF-α immunoexpression findings of the heart (upper row) 
and aortas (below row) among the groups. A No expression in Con-
trol group. B Marked increase in expression in myocardial cells 

(arrows) in CS group. C Decreased expression in myocardial and 
endothelial cells (arrow) in CS + Se group. D No expression in Se 
group. Streptavidin biotin peroxidase method, scale bars = 50 µm
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the control group, it did not reach statistical significance. 
In the CS group, an increase in Bax expression and a 
decrease in Bcl-2 and PGC1-α expressions were observed 
compared to the control group (p = 0.023, p = 0.011, 
p = 0.003; respectively). These changes observed in the 
CS group were reversed with the Se treatment (p = 0.045, 
p = 0.042, and p = 0.004, respectively). When comparing 
the CS and Se groups, it was observed that the Se group 
had significantly lower Bax expression and higher Bcl-2 
and PGC1-α expressions (p = 0.001, p = 0.016, p < 0.001, 
respectively) (Fig. 7).

Discussion

This study indicated that HFCS consumption increased 
cas-3, TNF-α, IL-1β, VEGF, and Bax expressions and 
decreased Bcl-2, Nrf2, PGC1-α, and SIRT1 expressions. 
HFCS consumption also caused oxidative stress in the 
heart tissues of the rats. Se supplementation reversed these 
adverse effects of high fructose consumption.

Cardiovascular diseases (CVD) encompass a range of 
conditions affecting the heart tissue and blood vessels, 

Fig. 4   IL-1β immunoreactions of the heart (upper row) and aortas 
(below row) among the groups. A No expression in Control group. 
B Marked increase in expression in myocardial cells (arrows) in 

CS group. C Decreased expression in myocardial and endothelial 
cells (arrow) in CS + Se group. D Negative expression in Se group. 
Streptavidin biotin peroxidase method, scale bars = 50 µm

Fig. 5   VEGF expressions of the heart (upper row) and aortas (below 
row) among the groups. A Expression not seen in Control group. 
B Increased expression in both myocardial and endothelial cells 

(arrows) in the CS group. C Decreased expression (arrow) in CS + Se 
group. D No expression in Se group. Streptavidin biotin peroxidase 
method, scale bars = 50 µm
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representing the leading global cause of mortality. Mount-
ing evidence suggests that increased fructose consump-
tion elevates the risk of CVD, contributing to the devel-
opment of hypertension, dyslipidemia, inflammation, and 
coronary heart disease [26]. Excessive consumption of 
fructose-sweetened beverages causes an increase in the 
risk of CVD. Even though raised CVD risk may be par-
tially linked to fructose-related obesity or insulin-resistant 
conditions, direct fructose toxicity to the cardiovascular 
system is also possible [27]. Enhanced fructose intake 
stimulates the process of lipogenesis and leads to lipid 
accumulation within adipose tissue, consequently trig-
gering an upsurge in the secretion of adipokines which 
cause systemic inflammation [28]. In addition, the eleva-
tion in fructose catabolism may stimulate the production 
of reactive oxygen species (ROS) through increased lipid 

peroxidation [29]. Also, HFCS intake leads to increased 
hepatic synthesis of uric acid. The escalated uric acid 
levels contribute to the onset of endothelial dysfunction 
by triggering oxidative stress and impairing endothelial 
nitric oxide production [30]. Moreover, it is observed that 
endothelial dysfunction induced by uric acid was linked 
to mitochondrial dysfunction [31]. Furthermore, the 
mitochondrial mass decreases in myocytes in the heart 
of fructose-fed rats [32]. Therefore, agents that support 
mitochondrial integrity may reduce harmful effects.

The primary hypothesis of this study posited that sele-
nium supplementation enhances the expressions of SIRT1 
and PGC1-α in the cardiac tissue. SIRT1 and PGC1-α are 
pivotal regulators involved in the facilitation of mitochon-
drial biogenesis, oxidative phosphorylation, expression of 
antioxidant enzymes, cellular migration, proliferation, and 

Table 2   Statistical analysis 
results of immunohistochemical 
between the groups

Data expressed mean ± standard deviation (SD). Post hoc Duncan test following one-way ANOVA. Differ-
ent letters in the same row represent significant difference at p < 0.001 level

Control CS CS + Se Se p value

Cas-3 heart 0.12 ± 0.12a 1.62 ± 0.51b 0.50 ± 0.18a 0.12 ± 0.12a  < 0.001
Cas-3 aorta 0.12 ± 0.12a 1.50 ± 0.53b 0.37 ± 0.18a 0.25 ± 0.16a  < 0.001
TNF-α heart 0.25 ± 0.16a 1.50 ± 0.18b 0.50 ± 0.18c 0.25 ± 0.16a  < 0.001
TNF-α aorta 0.12 ± 0.12a 1.25 ± 0.70b 0.25 ± 0.16a 0.25 ± 0.16a  < 0.001
IL-1β heart 0.25 ± 0.16a 1.50 ± 0.53b 0.37 ± 0.18a 0.25 ± 0.16a  < 0.001
IL-1β aorta 0.12 ± 0.12a 1.37 ± 0.74b 0.62 ± 0.26a 0.37 ± 0.26a  < 0.001
VEGF heart 0.37 ± 0.18a 1.50 ± 0.53b 0.87 ± 0.83a 0.25 ± 0.16a  < 0.001
VEGF aorta 0.12 ± 0.12a 2.12 ± 0.35b 0.62 ± 0.51a 0.25 ± 0.16a  < 0.001

Fig. 6   Oxidative stress param-
eters of heart tissue. Values 
are represented as means ± SD. 
Comparison between groups 
and results of oxidative stress 
markers were assessed by a 
one-way ANOVA test followed 
by post hoc LSD multiple 
comparison test. CS, corn 
syrup; Se, selenium; TOS, total 
oxidant status; TAS, total anti-
oxidant status; OSI, oxidative 
stress index; GPx, glutathione 
peroxidase; SOD, superoxide 
dismutase. “***” represents 
p < 0.001, “**” represents 
p < 0.01, and “*” represents 
p < 0.05
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the inhibition of apoptosis. SIRT1, belonging to the sirtuin 
protein family, holds a pivotal position in metabolic path-
ways. It exerts its influence by deacetylating numerous tar-
get proteins, including histones in muscle, adipose tissue, 
heart, and endothelium. SIRT1 has demonstrated efficacy 
in ameliorating several degenerative conditions associated 
with neurodegeneration, cancer, and metabolic disorders, 
including glucose intolerance and insulin resistance [33]. 
Additionally, SIRT1 and PGC1-α control genes and proteins 
implicated in metabolism and sustain the proper function-
ing of mitochondria and peroxisomes, which are the essen-
tial sources of oxidative agents, especially in the heart (26). 
SIRT1 activates mitochondrial biogenesis and peroxisomal 
balance via the deacetylation of PGC1-α (25). SIRT1 and 
PGC1-α also stimulate the activity of antioxidant enzymes 
and decrease oxidative stress, and they can directly interact 
with nuclear factor-kappa B to decrease proinflammatory 
signaling in the heart and vasculature (27–29). The reduc-
tion in SIRT-1 expression concurrent with elevated oxida-
tive stress represents an early hallmark of inflammation, 
foreshadowing subsequent cardiac dysfunction induced 
by a high-fructose diet [34]. In the present study, the CS 
group showed decreased Bcl2, Nrf2, PGC1-α, and SIRT1 
expressions and increased Bax expression compared to the 
other groups. Accordingly, Se supplementation reversed 
this negative effect of HFCS. Savran et al. discovered that 
melatonin, which elevates SIRT1 levels, mitigated cardiac 
damage induced by oxidative stress and inflammation trig-
gered by HFCS [35]. It has been shown in the literature 

that Se similarly increases SIRT1 levels in heart tissue [36]. 
Increased SIRT1 levels by Se acted in various ways. First, it 
influenced antioxidant enzyme synthesis and declined oxida-
tive stress via GPx and SOD. GPx, a crucial selenoprotein 
essential for antioxidant activity, presents distinct subtypes 
in various tissues, including GPx 1, 3, and 4, specifically 
expressed in the heart [37]. Our previous study indicated that 
enhancing GPx activity could play a vital role in maintaining 
cardiovascular health in case of damage [21]. Beyond scav-
enging oxidant molecules, the increased expression of GPx4, 
in particular, has the potential to augment SOD enzyme 
activity [38]. There is also a positive correlation between 
SIRT1 and SOD levels, which is important for maintain-
ing antioxidant balance [39]. Furthermore, Nrf2 stands as 
a pivotal factor in sustaining redox equilibrium, detecting 
oxidants, and orchestrating antioxidant defense mechanisms 
[40]. Additionally, Nrf2 overexpression exerts negative mod-
ulation on the NF-κB signaling pathway through intracellu-
lar mechanisms, resulting in the mitigation of inflammatory 
responses [41]. Similarly, we found that elevated SIRT-1 
expression caused Nrf2 downregulation that resulted in the 
reduction of cytokine synthesis as TNF-α, IL-1β, and VEGF 
and alleviated inflammation.

Our findings also indicate that the consumption of HFCS 
activates the mitochondrial apoptosis pathway, as evidenced 
by elevated expressions of caspase-3 and Bax, coupled with 
diminished expressions of Bcl-2. In line with that, Cheng 
et al. have similarly shown the activation of mitochondrial 
apoptotic pathways in the cardiac tissue of rats fed with 

Fig. 7   Relative mRNA expres-
sions of Bax, Bcl-2, Nrf2, 
PGC1-α, and SIRT1 in cardiac 
tissue. Statistical analysis of 
mRNA relative fold change Ct 
values of genes was performed 
with one-way ANOVA and post 
hoc LSD test. CS, corn syrup; 
Se, selenium; Bax, Bcl-2-asso-
ciated X protein; Bcl-2, B-cell 
lymphoma 2; Nrf2, nuclear 
factor erythroid 2–related 
factor 2; PGC1-α, peroxisome 
proliferator-activated receptor-
gamma coactivator-1 alpha; 
SIRT1, sirtuin 1. “*” repre-
sents p < 0.05, “**” represents 
p < 0.01, and “***” represents 
p < 0.001
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fructose [42]. Furthermore, Se demonstrated potential effi-
cacy in mitigating mitochondria-dependent cardiac apoptosis 
in rats exposed to HFCS by reversing Bax, Bcl-2, and cas-3 
expressions in our study. Mohamed et al. suggested that Se 
limits diabetic cardiac complications in rats by attenuating 
the mitochondrial cell death pathway through the reduction 
of apoptotic signals [43].

Histopathological and immunohistochemical findings 
corroborate our genetic and biochemical analysis results. It 
was observed that fructose feeding had a detrimental impact 
on the structural integrity of the heart. In the CS group, 
hyperemia, edema, and decreased endothelial cell count 
were observed in the vessels of the myocardium, and treat-
ment with Se had a significant ameliorative effect on these 
pathologies.

Conclusion

In conclusion, Se has anti-inflammatory, antioxidant, and 
antiapoptotic effects on HFCS-induced cardiovascular tox-
icity by increasing the expression of SIRT1. This eleva-
tion triggered PGC1-α activation and, as a result, led to a 
decrease in the production of cytokine synthesis from the 
nucleus, repressing inflammation and apoptosis and improv-
ing antioxidant enzyme levels to reduce oxidative stress. In 
light of these findings, potential interventions should be 
considered, including limiting dietary intake of foods con-
taining HFCS in people at risk of CVD or supplementing 
these foods with Se as a preventive agent. To advance our 
understanding, future research should delve into the detailed 
molecular effects of Se, explore different dosages, durations 
of use, and routes of administration, and extend the evalu-
ation to other organs and tissues. Also, conducting clinical 
studies with diverse sample groups across various risk cat-
egories is essential for a comprehensive evaluation of Se’s 
protective effects against CVD.
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