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Abstract
3-chloro-1,2-propanediol (3-MCPD) is a member of the group of pollutants known as chloropropanols and is considered a 
genotoxic carcinogen. Due to the occurrence of 3-MCPD, which cannot be avoided in multiplexed food processes, it is neces-
sary to explore novel agents to reduce or prevent the toxicity of 3-MCPD. Many recent studies on boron compounds reveal 
their superior biological roles such as antioxidant, anticancer, and antigenotoxic properties. In the current investigation, we 
have evaluated in vitro cytotoxic, oxidative, and genotoxic damage potential of 3-MCPD on human whole blood cultures 
and the alleviating effect of boric acid (BA) and borax (BX) for 72 h. In our in vitro experiments, we have treated blood 
cells with BA and BX (2.5, 5, and 10 mg/L) and 3-MCPD (at IC50 of 11.12 mg/l) for 72 h to determine the cytotoxic damage 
potential by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH) 
release assays. Oxidative damage was assessed using total antioxidant capacity (TAC) and malondialdehyde (MDA) levels. 
Genotoxicity evaluations were performed using chromosome aberrations (CAs) and 8-hydroxy deoxyguanosine (8-OHdG) 
assays. The result of our experiments showed that the 3-MCPD compound induced cytotoxicity, oxidative stress, and geno-
toxicity in a clear concentration-dependent manner. BA and BX reduced cytotoxicity, oxidative stress, and genotoxicity 
induced by 3-MCPD. In conclusion, BA and BX are safe and non-genotoxic under the in vitro conditions and can alleviate 
cytotoxic, oxidative, and genetic damage induced by 3-MCPD in the human blood cells. Our findings suggest that dietary 
boron supplements may offer a novel strategy for mitigating hematotoxicity induced by xenobiotics, including 3-MCPD.
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Introduction

3-monochloropropane-1,2-diol (3-MCPD) is a common 
food borne contaminant and was first identified in acid-
hydrolyzed plant proteins. 3-MCPD (Fig. 1) is a well-known 
human carcinogen detected in a wide variety of foods and 
ingredients in group 2B, according to the International 
Agency for Research on Cancer (IARC) [1, 2]. 3-MCPD 
added to flavor enhancers, cheese, roasting of some grains, 
especially barley, malt production, during home cook-
ing of prepared foods, cereal products such as bread, soy 
sauce, meat products, and many food products, including 
baby foods. Both free and bound forms have been observed 
in several food products [1, 3, 4]. A tolerable daily intake 
(TDI) value was determined for 3-MCPD by the European 
Food Safety Authority (EFSA), corresponding to 2 μg/kg 
body weight per day. This rate determined by TDI can be 
exceeded in some cases; for example, infants may consume 
food containing significant amounts of 3-MCPD [5]. Hence, 
it is in the focus of food safety authorities due to the pos-
sible risks of these substances and minimization strategies 
are urgently needed to reduce the amount of MCPD [6].

3-MCPD spreads to various organs by crossing the 
blood-testis and blood-brain barriers. While this causes 
nephrotoxicity, pulmonary toxicity, hepatotoxicity, and 
male reproductive toxicity, it may also have negative 
effects on testicular organogenesis, kidney, immune sys-
tem, and central nervous system functions [3, 7–9]. Metab-
olites of 3-MCPD also cause cardiotoxicity by inhibiting 
glycolysis and alter circadian clock mechanisms [10, 11]. 
Recent proteomic and transcriptomic studies indicated that 
glutathione metabolism affected by 3-MCPD and oxidative 
stress occurred after 3-MCPD exposure in several organs 
in rats [12]. Besides, 3-MCPD-induced genotoxic damage 
after treatment for 24 h on rat kidney NRK-52E proximal 
tubular epithelial and human HEK-293 embryonic kidney 
cells was determined by alkaline comet assay [13]. On 
the contrary, 3-MCPD did not exerted genotoxic damage 
potential as monitored using in vivo bone marrow micro-
nucleus and unscheduled DNA synthesis as genotoxicity 
end-points on rats [14]. Hence, the underlying in vitro and 
in vivo genotoxicity mechanisms by 3-MCPD exposure are 
still unclear and need further investigations.

Boron (B) is not considered an essential trace element for 
bacteria, fungi, plants, as well as algae but not for humans 
yet. But recent studies support its essentiality on animals and 
humans [15]. B compounds have a wide range of applica-
tions, including fertilizers, insecticides, cosmetics, pharma-
ceuticals, food supplements, cleaning products, and personal 
care items [16–18]. For an extended period, B-containing 
compounds were neglected in clinical research due to the 
prevailing belief in their toxicity, primarily linked to their 
use in ant poisoning. Presently, this perception has been 
debunked, and boron-containing compounds are generally 
recognized as non-toxic [19]. B-containing compounds 
especially boric acid (BA, Fig. 1) and borax (BX, Fig. 1) 
exhibited beneficial actions on human health. Up to now, 
the reported key biological benefits by BA and BX included 
anti-microbial[20], anti-oxidative [21], anti-inflammatory 
[22] anti-mutagenic [16, 23], anti-cancer [24, 25], neuro-
protective [26], hepato-protective [27, 28], reno-protective 
[29], metal chelating [30], and wound healing [31] activi-
ties. Based on these well-established biological effects by 
B-containing compounds, boron-based hybrids are consid-
ered novel structural scaffolds for the development of inno-
vative drugs for the management of acute, chronic, and rare 
diseases as well as cancers.

In vivo proteomic and transcriptomic data indicated that 
exposure to 3-MCPD triggered oxidative stress and affected 
glutathione (GSH) metabolism in rats [12]. Recent litera-
ture executed that BA and BX displayed geno-protective 
action against several chemical agents such as aflatoxin B1, 
trichloroacetic acid, and cyclophosphamide via strength-
ening the antioxidant capacity of liver and blood tissues 
[32–35]. Indeed, in vitro application of BA and BX (< 80 
mg/L) led to elevation of total glutathione (T-GSH) and total 
antioxidant capacity of cultured human whole blood cells 
[21]. Similar to this previous in vitro finding, supplementa-
tion with B (as BA) yielded higher levels of GSH in blood 
tissue of rats [36]. Hence, BA and BX may enhance the 
antioxidant defense mechanism and ameliorate the cytotoxic, 
oxidative, and genotoxic damage by 3-MCPD. The available 
literature data have shown that no study has been carried out 
on the protective effects of BA and BX against 3-MCPD-
induced toxicity in cultured human blood cells. Therefore, 
primary human blood cells were used as the cell model in 

Fig. 1   The molecular structures 
of the tested compounds

 Boric acid          Borax



Boric Acid and Borax Protect Human Lymphocytes from Oxidative Stress and Genotoxicity Induced…

our experiment to investigate the cytotoxicity, genotoxicity, 
and oxidative damage of 3-MCPD and the protective effect 
of two common B-containing compounds, boric acid and 
borax.

Materials and Methods

Experimental Design

Whole blood samples were collected from five healthy, non-
smoking male volunteers within the age group of 26–32 
years in heparinized vacutainers (Greiner Bio-One, Austria). 
Within 2 hours of sample collection, whole blood cultures 
were established. Human peripheral blood cultures were 
established using a slightly modified procedure as previously 
described [37]. In brief, the 0.6 mL of heparinized blood 
was cultured in 6.5 mL of culture medium (chromosome 
medium B, Biochrom, Leonorenstr. 2-6.D-12247, Berlin) 
with phytohemagglutinin (5 μg/mL, Biochrom). 3-MCPD 
(0–640 mg/L, CAS No.: 96-24-2, Merck) was dissolved in 
dimethyl sulfoxide (DMSO, 0.5%) and different concentra-
tions were applied to the culture tubes to determine its IC50 
value. DMSO was < 1% and did not alter the viability of 
cells. The cell cultures were then treated with various con-
centrations (2.5, 5, and 10 mg/L) of boric acid (CAS No.: 
10043-35-3) and borax (CAS No.: 1303-96-4) were used 
against 3-MCPD. Boric acid and borax were provided from 
Eti Mine Works (Ankara, Turkey) and their concentrations 
were selected to previous reports [26, 30]. Triton-X-100 
(%1), ascorbic acid (10–5 M), hydrogen peroxide (2.5 × 
10–5 M), and mitomycin C (10–7 M) were also used as posi-
tive controls for MTT/LDH, TAC, MDA, and CA/8-OHdG 
assays, respectively [38]. All in vitro experiments were con-
ducted due to rules of the World Medical Association

Cytotoxicity Testing

To determine cell viability, after treatment with boron 
compounds and 3-MCPD for 72 h, commercially avail-
able 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium 
bromide (MTT) kit (MTT Cell Proliferation Kit, Cayman, 
Ann Arbor, MI, USA) was applied to cell cultures following 
the manufacturer’s instructions. In summary, MTT solution 
was added to cell cultures, incubated at 37 °C for 3 h, then 
dimethyl sulfoxide (DMSO) (Sigma-Aldrich) was used to 
dissolve formazan crystals. A plate reader was assisted to 
analyze the cultures and read at 570 nm [39]. IC50 value 
of 3-MCPD was calculated using probit analysis based on 
results of MTT assay.

The LDH test kit available from Cayman Chemical Com-
pany (MI, USA) was applied following the manufacturer’s 
instructions. Different concentrations of boron compounds 

and 3-MCPD were applied to the wells for 72 h after laun-
dering the cells in 96-well plates. The 96-well plate was then 
centrifuged at 400 g for 5 min to eliminate the compounds 
in the wells. After centrifugation was finished, 100 μL of 
supernatant and 100 μL of the reaction mixture were added 
to another well plate and then incubated for 30 min at room 
temperature. Absorbance was read at 490 nm with the aid of 
a microplate reader [40].

Oxidative Analysis

For determining the total antioxidant capacity, commercially 
available TAC (Rel Assay Diagnostics, Gaziantep, Turkey) 
kits were used. Measurements from cellular samples were 
carried out due to the manufacturer’s recommended pro-
cedure [41]. Besides, the level of MDA was determined in 
plasma samples by the thiobarbutiric acid (TBA) method 
which modified from previously reported methods [42, 43]. 
Peroxidation was determined via measuring the production 
of a pink chromogen compound which reflects the MDA in 
combination with TBA at 532 nm [44].

Genotoxicity Testing

Human blood cultures were exposed to 3-MCPD, boron 
compounds, and their combinations and cultured for 72 h. At 
the 70th hour of harvest, 0.1 mL of colchicine (0.2 mg/mL, 
Sigma) was added to the culture flask. Centrifugation was 
performed, cells were collected and cultures were treated 
with hypotonic KCl (0.075 M KCl, 37.4 °C) solution. Cells 
were centrifuged again and treated with 3:1 methanol:acetic 
acid solution and this process was repeated three times. The 
resulting cells were suspended and dripped onto clean slides. 
To prepare the slides, three to five drops of fixed cell suspen-
sion were placed on an ice-cold, wet slide and allowed to 
air dry. Slides were stained with Giemsa stain in phosphate 
buffer pH 6.8. For treatments, 30 metaphase analyzes were 
performed to detect chromosomal abnormalities [45]. The 
recommendation of Environmental Health Criteria 46 for 
environmental monitoring of human populations was fol-
lowed to classify differences on chromosomes, such as chro-
mosome breakage and chromosomal spacing [46].

The amount of 8-OHdG adducts was determined to meas-
ure DNA oxidation. DNA was digested after incubation with 
DNAase I, endonuclease, and alkaline phosphatase enzymes. 
The amount of 8-OHdG was measured using high-perfor-
mance liquid chromatography (HPLC) with electrochemical 
detection [47, 48].

Statistical Analyses

Statistical analysis was carried out using SPSS statistics 
25.0 software (Statistical Package for the Social Sciences 
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Inc, Chicago, USA). All tests were performed in five dif-
ferent repetitions. The obtained data was analyzed using 
ANOVA test followed by Duncan’s test. Probit regression 
analyses was also performed to determine the IC50 concen-
tration of 3-MCPD using SPSS. And, the level of p < 0.05 
was accepted as significantly different.

Results

In this study, MTT as a colorimetric method and LDH as 
an enzymatic method were used to assess the cell viability 
after treatment with BA, BX, and 3-MCPD in human whole 
blood cultures. One-percent solution of Triton-X was used 
as a positive control, and reduced cell viability percentages 
to 17.44% and 29.15% in the MTT and LDH assays, respec-
tively. The calculated 3-MCPD IC50 value (using MTT 
results) for human blood cells was 11.12 mg/L (Fig. 2).

MTT and LDH results for BA and BX revealed no statis-
tically significant difference from the negative control. Our 
results indicate that BA and BX, including at the highest 
concentrations (10 mg/L), did not exert cytotoxic effects on 

cultured human blood cells. Contrary to these values, MTT 
and LDH results of cells treated with 3-MCPD showed that 
this substance resulted in significant cell viability reductions 
compared to negative control (Fig. 3). When we look at the 
results of BA treatment applied to 3-MCPD-treated blood 
cultures, it was observed that BA increased cell viability 
more than doubled as compared to the untreated culture (p 
< 0.05). As the concentration increases, the percentage of 
cell viability increases and the concentration with the high-
est cell viability is expressed as 10 mg/L. The application of 
BX with 3-MCPD also increased cell viability as compared 
to the untreated culture (p < 0.05). When MTT and LDH 
results for BA and BX are compared, BA is found to be more 
effective at 2.5 mg/L applied concentration. Moreover, BX 
gives higher cell viability at 5 mg/L applied concentration 
(Fig. 3).

Two biochemical analyses, MDA and TAC, were used 
to determine and evaluate the oxidative effect of BA and 
BX on culture in human whole blood cultures exposed to 
3-MCPD. Ascorbic acid was used as a positive control for 
TAC assay and H2O2 was used as a positive control for MDA 
assay. It was observed that 3-MCPD caused a significant 
decrease (approximately 59%) in TAC level in comparison to 
untreated cell culture, which indicated a remarkable oxida-
tive stress generation. Likewise, a significant increase (p < 
0.05) of MDA level (approximately 126%) was determined 
in 3-MCPD-treated culture. On the contrary, alone treatment 
with BA and BX led to increases of TAC levels without 
elevating MDA levels. Moreover, when the efficiencies of 
two boron compounds were evaluated, it was observed that 
there were significant decreases in MDA levels after treat-
ment with BA and BX as compared to the positive control. 
Similarly, 10 mg/L of BA and BX treatment supported TAC 
levels in rates of 109% and 100%, respectively. The antioxi-
dative action by BA and BX against 3-MCPD-induced sup-
pression of TAC levels was clearly in concentration-based 
manner (Figs. 4 and 5).
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Fig. 2   The cell viability rates after exposure to 3-MCPD in human 
whole blood cultures for 72 h using MTT and LDH assays

Fig. 3   Cell viability rates in 
cultured human peripheral 
blood cells after treatment with 
different concentrations of two 
boron compounds (BA and BX) 
plus 3-MCPD. Different letters 
on the columns present statisti-
cal difference among each other 
at a level of p < 0.05
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The genotoxicity potentials of two boron compounds 
and 3-MCPD borinium compounds were evaluated in 
cultured human lymphocytes by CA and 8-OHdG assays 
and the obtained results were presented in Figs. 6, 7, and 
8. It was found that in vitro exposure to BA and BX did 
not cause significant (p > 0.05) increases in CA regardless 
of concentrations, indicating that tested boron compounds 

(BA and BX) have a non-genotoxic nature. On the contrary, 
both MMC (positive control) and 3-MCPD increased the 
CA frequency in approximately 3.4- and 2.6-fold. However, 
it was determined that treatment with boron compounds 
against 3-MCPD toxicity positively improved the increases 
of CA level caused by 3-MCPD. In fact, it was found that 
the CA frequency decreased in parallel with the increase 

Fig. 4   The effect of 3-MCPD 
and boron treatments on MDA 
levels in cultured human blood 
cells. Different letters on the 
columns present statistical dif-
ference among each other at a 
level of p < 0.05
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in the concentration of BA and BX (Figs. 6 and 7). Like-
wise, treatment with MMC alone and 3-MCPD alone led to 
increases of 8-OHdG levels in approximately 4.6- and 3.8-
fold. On the contrary all cultures treated with BA and BX 
did not alter the 8-OHdG levels in comparison to untreated 
cultures. Moreover, remarkable reductions in 8-OHdG lev-
els were observed in groups treated with alone BA and BX 
treatments as compared BA/BX plus 3-MCPD treated group, 
especially with the highest concentrations (10 mg/L) of BA 
or BX. When boric acid and borax were compared among 
themselves, it was observed that BA exhibited a higher ame-
liorative effect than BX. 8-OHdG levels also supported the 
results of CA as seen in Fig. 8.

Discussion

Vegetable oils are processed in various ways in the several 
industrial domains to remove components that will adversely 
affect important parameters such as flavor, appearance, and 
shelf stability [49]. After the deodorization step in the refin-
ing process the formation of fatty acid esters of 3-MCPD, 
2-chloro-1,3-propanediol (2-MCPD), and glycidol are 
occurred [50]. Hence, 3-MCPD is considered a main source 
of contamination during the food and ingredient processing 
and possess health risks on animals and humans [51]. In the 
content of this investigation, the obtained results by cytotox-
icity testing indicated that 3-MCPD-induced cell death was 
associated with mitochondrial injury and disturbance of cel-
lular metabolic events (MTT assay) as well as necrosis due 

to cell membrane damage (LDH release assay). In accord-
ance to our finding, a recent study revealed that 3-MCPD 
led to activation of cell death signaling via impairment of 
mitochondrial oxidative phosphorylation system in cultured 
human embryonic kidney (HEK) 293 cells and male C57 
mice [51, 52]. Again, the induction of necroptosis was sug-
gested as associated with cytotoxicity by 3-MCPD on the 
rat renal proximal tubular NRK-52E cells [53]. In similar to 
human blood cultures used in this study, different concentra-
tions of (0–5 mM) 3-MCPD also reduced the cell viability 
rates and induced intracellular LDH leakage as compared to 
untreated HEK293 cells [54].

Previous reports indicated that oxidative stress might 
commit a major role in toxicity by 3-MCPD. Nominately, 
3-MCPD caused to damage of renal antioxidant capacity in 
experimental rats. The in vivo oxidative damage by 3-MCPD 
was occurred via elevating glutathione and MDA levels as 
well as decreasing TAC levels in rat kidney tissues [55]. 
In another in vivo study, it was reported that low doses (1 
and 10 mg/kg b.w.) of 3-MCPD generated oxidative stress 
in brain, kidney, and testes tissues of mice for 28 days by 
inclining irreversible oxidation of the redox sensor pro-
tein named as DJ-1 [12]. Due to its antioxidative feature, 
DJ-1 is known to play key roles in multiplexed signaling 
pathways including the activation of extracellular signal-
regulated kinase (ERK1/2) pathway and inhibition of apop-
tosis signal-regulating kinase 1 (ASK1) [56]. In addition to 
these in vivo studies, several in vitro studies propounded 
that 3-MCPD generated intracellular reactive oxygen species 
(ROS) in cultured HEK293 and HK-2 cells [57, 58]. And, 

Fig. 6   The rates of CAs in cul-
tured human peripheral blood 
cultures after treatment with BA 
and BX plus 3-MCPD for 72 h
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elevated intracellular Fe2+ levels and lipid peroxidation were 
reported after exposure of 3-MCPD to human umbilical vein 
endothelial cells (HUVEC) [59]. And, in vivo exposure to 
3-MCPD led to inhibition of NF-E2-related factor 2 (Nrf2) 
expression, disrupted Ca2+ homeostasis, and triggered the 
oxidative stress [60, 61]. In line with the previous literature 
data on oxidative damage potential by 3-MCPD, our find-
ings firstly revealed that this contaminant induced oxidative 

damage on human blood cells via suppressing TAC levels 
and generating lipid peroxidation (elevated MDA levels).

Our findings asserted that 3-MCPD alone led to increases 
of CA rates and 8-OHdG levels in cultured human blood 
cells. In accordance with our finding, 3-MCPD was identi-
fied as genotoxic or mutagenic in various in vitro genotoxic-
ity testing studies involving Ames Salmonella/microsome 
mutagenicity, sister chromatid exchange (SCE), and mouse 

Fig. 7   The sample metaphases 
from the human blood cultures 
after treatment with BA and BX 
plus 3-MCPD for 72 h. Arrows 
show chromosomal aberrations 
(breaks and gaps, × 1000)

Control (-) 3-MCPD (11,12 mg/l)
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lymphoma assays [3, 62]. The genotoxic damage potential 
of 3-MCPD was also confirmed using alkaline comet assay 
on NRK-52E and HEK-293 cells and observed increased 
DNA damage after exposure of 2 mg/mL of 3-MCPD when 
compared to control values [17]. To the contrary, increas-
ing pieces of evidence executed that 3-MCPD exerted 
non-genotoxic under in vivo conditions [63, 64]. However, 
there is so limited information available to explain the con-
troversial findings of in vitro and in vivo genotoxicity by 
3-MCPD. This in vitro positive and in vivo negative situation 
due to 3-MCPD exposure could be explained via substrate 
channeling effect which implicate detoxification of in vitro 
genotoxic compounds in the presence of in vivo detoxify-
ing actions [65]. Our findings exerted that 3-MCPD-induced 
oxidative stress (TAC suppression, MDA elevation) might 
be a main contributing factor for the increased CA rates 
and 8-OHdG levels determined in the present investigation. 
Numerous studies have established a robust association 
between the occurrence of lipid peroxidation and genetic 
damage, as evidenced by increased frequencies of chromo-
somal aberrations (CAs) and elevated levels of 8-OHdG. 
[66–71].

Previous toxicity studies clearly revealed the harmful 
effects of 3-MCPD and exposure to 3-MCPD seems to be 
inevitable. Because vegetable oils are the main source of fat 
in many foods currently in use, the presence of this contami-
nant has been recognized as a potential health risk [50]. In 
parallel with the fact that 3-MCPD exposure is inevitable, 
there is an urgent need to reduce, eliminate, or prevent the 
harmful effects of this substance. In this regard, our investi-
gation firstly reveals that treatment with boron compounds 
like BA and BX ameliorate cytotoxicity induced by 3-MCPD 

and prevents genotoxic damage via decreasing lipid peroxi-
dation and supporting antioxidant capacity in human blood 
cells. Our results provided considerable data regarding the 
protective roles by BA and BX, and the conceivable underly-
ing mechanism of their protective action. In this respect, a 
previous study indicated that boron-containing compounds 
such as BA and BX prominently supported the antioxidant 
capacity of human blood cell until the applied concentra-
tions of 20 mg/L [21]. Correlatively, boron-containing com-
pounds exhibited anti-genotoxic action due to their tissue 
antioxidant defenses strengthening potential via (I) leading 
increases of antioxidant enzymes activities like glutathione 
peroxidase, superoxide dismutase, and catalase [30]; (II) 
elevating glutathione production [22]; (III) activating Nrf2 
and the antioxidant response elements which regulate the 
redox homeostasis during oxidative stress [72, 73]; and (IV) 
reducing the amounts of intracellular ROS and levels of Ca+2 
ions [74]. These suggested different antioxidative action 
manners were cleared that antioxidant roles of boron com-
pounds could be suggested as main plausible mechanism for 
protective effects of BA and BX against in vitro cytotoxic, 
oxidative, and genotoxic damages induced by 3-MCPD on 
human blood cells.

In conclusion, our results showed that treatment with BA 
and BX not only decreased the levels of oxidative stress 
endpoints like MDA and suppression of TAC but also sig-
nificantly minimized the levels of genotoxicity endpoints 
like CA and 8-OHdG. Upon examination of the two com-
pounds, it was noted that BA exhibited greater ameliora-
tive effect than BX against in vitro cytotoxic, oxidative, 
and genotoxic damages induced by 3-MCPD on human 
blood cells. These findings are outstanding because boron 

Fig. 8   The amounts of 8-OHdG 
in cultured human peripheral 
blood cultures after treatment 
with BA and BX plus 3-MCPD 
for 72 h
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compounds, especially BA and BX, may be used as safe 
and natural dietary supplements for alleviating cytotoxic 
and genotoxic effects by multiplexed mutagenic and carci-
nogenic substances.
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