Skip to main content
Log in

Upregulation of Intracellular Zinc Ion Level after Differentiation of the Neural Stem/Progenitor Cells In Vitro with the Changes in Gene Expression of Zinc Transporters

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

This article has been updated

Abstract

We measured the intracellular zinc ion concentration of murine fetal neural stem/progenitor cells (NSPCs) and that in the differentiated cells. The NSPCs cultured with 1.5 μM Zn2+ proliferated slightly faster than that in the zinc-deficient medium and the intracellular zinc concentration of the NSPCs and that of their differentiated cells (DCs) cultured with 1.5 μM Zn2+ was 1.34-fold and 2.00-fold higher than those in the zinc-deficient medium, respectively. The zinc transporter genes upregulated over the 3.5-fold change were Zip1, Zip4, Zip12, Zip13, ZnT1, ZnT8, and ZnT10 whereas the only downregulated one was Zip8 during the differentiation of NSPCs to DCs. The cell morphologies of both NSPCs and DCs in the low oxygen culture condition consisting of 2%O2 and 5%CO2, the high carbon dioxide condition consisting of 21%O2 and 10%CO2, and the normal condition consisting of 21%O2 and 5%CO2 were essentially the same each other. The expression of Zip4, Zip8, Zip12, and Zip14 was not drastically changed depending on the O2 and CO2 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 20 January 2024

    The original version of this article was updated to correct the ESM file.

References 

  1. Ross MM, Hernandez-Espinoza DR, Aizenman E (2023) Neurodevelopmental consequences of dietary zinc deficiency: a status report. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03630-2

    Article  PubMed  Google Scholar 

  2. Marger L, Schubert CR, Bertrand D (2014) Zinc: An underappreciated modulatory factor of brain function. Biochem Pharmacol 91:426–435. https://doi.org/10.1016/j.bcp.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  3. Krall RF, Tzounopoulos T, Aizenman E (2021) The function and regulation of zinc in the brain. Neuroscience 457:235–258. https://doi.org/10.1016/j.neuroscience.2021.01.010

    Article  CAS  PubMed  Google Scholar 

  4. Willekens J, Runnels LW (2022) Impact of zinc transport mechanisms on embryonic and brain development. Nutrients 14(12):2526. https://doi.org/10.3390/nu14122526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar V, Kumar A, Singh K, Avasthi K, Kim J (2021) Neurobiology of zinc and its role in neurogenesis. Eur J Nutr 60:55–64. https://doi.org/10.1007/s00394-020-02454-3

    Article  PubMed  Google Scholar 

  6. Kanemura Y, Mori H, Kobayashi S, Islam O, Kodama E, Yamamoto A, Nakanishi Y, Arita N, Yamasaki M, Okano H, Hara M, Miyake J (2002) Evaluation of in vitro proliferative activity of human fetal neural stem/progenitor cells using indirect measurements of viable cells based on cellular metabolic activity. J Neurosci Res 69:869–879. https://doi.org/10.1002/jnr.10377

    Article  CAS  PubMed  Google Scholar 

  7. Nishikawa M, Mori H, Hara M (2015) Reduced zinc cytotoxicity following differentiation of neural stem/progenitor cells into neurons and glial cells is associated with upregulation of metallothioneins. Environ Toxicol Pharmacol 39:1170–1176. https://doi.org/10.1016/j.etap.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  8. Frederickson CJ, Giblin LJ, Krężel A, McAdoo DJ, Muelle RN, Zeng Y, Balaji RV, Msalha R, Thompson RB, Fierke CA, Sarvey JM, de Valdenebro M, Prough DS, Zornow MH (2006) Concentrations of extracellular free zinc (pZn) in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198:285–293. https://doi.org/10.1016/j.expneurol.2005.08.030

    Article  CAS  PubMed  Google Scholar 

  9. Portbury SD, Adlard PA (2017) Zinc signal in brain diseases. Int J Mol Sci 18:2506. https://doi.org/10.3390/ijms18122506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baltaci AK, Yuce K, Mogulkoc R (2018) Zinc metabolism and metallothioneins. Biol Trace Elem Res 183:22–31. https://doi.org/10.1007/s12011-017-1119-7

    Article  CAS  PubMed  Google Scholar 

  11. Kimura T, Kambe T (2016) The functions of metallothionein and ZIP and ZnT transporters: An overview and perspective. Int J Mol Sci 17(3):336. https://doi.org/10.3390/ijms17030336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95:749–784. https://doi.org/10.1152/physrev.00035.2014

    Article  CAS  PubMed  Google Scholar 

  13. Kambe T, Taylor KM, Fu D (2021) Zinc transporters and their functional integration in mammalian cells. J Biol Chem 296:100320. https://doi.org/10.1016/j.jbc.2021.100320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang T, Liu J, Fellner M, Zhang C, Sui D, Hu J (2017) Crystal structures of of a ZIP zinc transporter reveal a binuclear metal in the transport pathway. Sci Adv 3:e1700344. https://doi.org/10.1126/sciadv.1700344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang K, Sitsel O, Meloni G, Autzen HE, Andersson M, Klymchuk T, Nielsen AM, Rees DC, Nissen P, Gourdon P (2014) Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514(7523):518–522. https://doi.org/10.1038/nature13618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Golan Y, Alhadeff R, Glaser F, Ganoth A, Warshel A, Assaraf YG (2018) Demonstrating aspects of multiscale modeling by studying the permeation pathway of the human ZnT2 zinc transporter. PLoS Comput Biol 14(11):e1006503. https://doi.org/10.1371/journal.pcbi.1006503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xue J, Xie T, Zeng W, Jiang Y, Bai X (2020) Cryo-EM structures of human ZnT8 in both outward- and inward-facing conformations. eLife 9:e58823 (https://elifesciences.org/articles/58823)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bui HB, Watanabe S, Nomura N, Liu K, Uemura T, Inoue M, Tsutsumi A, Fujita H, Kinoshita K, Kato Y, Iwata S, Kikkawa M, Inaba K (2023) Cryo-EM structures of human zinc transporter ZnT reveal the mechanism of Zn2+ uptake into the Golgi apparatus. Nat Commun 14:4770. https://doi.org/10.1038/s41467-023-40521-5

  19. Nishikawa M, Mori H, Hara M (2017) Analysis of ZIP (Zrt-, Irt-related protein) transporter gene expression in murine neural stem/progenitor cells. Environ Toxicol Pharmacol 53:81–88. https://doi.org/10.1016/j.etap.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  20. Mori H, Hara M (2013) Cultured stem cells as tools for toxicological assays. J Biosci Bioeng 116(6):647–652. https://doi.org/10.1016/j.jbiosc.2013.05.028

    Article  CAS  PubMed  Google Scholar 

  21. Mori H, Yoshida Y, Hara M (2011) Neural stem/progenitor cells damaged by reactive oxygen species evolved in photosensitizing reaction. Neurosci Lett 493:24–28. https://doi.org/10.1016/j.neulet.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  22. Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T (2000) Highly zinc-selective fluorescent sensor molecules suitable for biological applications. J Am Chem Soc 122:12399–12400. https://doi.org/10.1021/ja002467f

    Article  CAS  Google Scholar 

  23. Hara T, Takeda T, Takagishi T, Fukue K, Kambe T, Fukada T (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 67:283–311. https://doi.org/10.1007/s12576-017-0521-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kato T, Kanemura Y, Shiraishi K, Miyake J, Kodama S, Hara M (2007) Early response of neural stem/progenitor cells after X-ray irradiation in vitro. NeuroReport 18(9):895–900. https://doi.org/10.1097/WNR.0b013e3281053c34

    Article  PubMed  Google Scholar 

  25. Lin T, Islam O, Heese K (2006) ABC transporters, neural stem cells and neurogenesis-a different perspective. Cell Res 16:857–871. https://doi.org/10.1038/sj.cr.7310107

    Article  CAS  PubMed  Google Scholar 

  26. Islam MO, Kanemura Y, Tajria J, Mori H, Kobayashi S, Shofuda T, Miyake J, Hara M, Yamasaki M, Okano H (2005) Characterization of ABC transporter ABCB1 expressed in human neural stem/progenitor cells. FEBS Lett 579:3473–3480. https://doi.org/10.1016/j.febslet.2005.05.019

    Article  CAS  PubMed  Google Scholar 

  27. Islam MO, Kanemura Y, Tajria J, Mori H, Kobayashi S, Hara M, Yamasaki M, Okano H, Miyake J (2005) Functional expression of ABCG2 transporter in human neural stem/progenitor cells. Neurosci Res 52:75–82. https://doi.org/10.1016/j.neures.2005.01.013

    Article  CAS  PubMed  Google Scholar 

  28. Mori H, Sasaki G, Nishikawa M, Hara M (2015) Effects of subcytotoxic cadmium on the morphology of GFAP-network in astrocytes derived from murine neural stem/progenitor cells. Environ Toxicol Pharmacol 40:639–644. https://doi.org/10.1016/j.etap.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Matsushita MT (2021) Heavy metals and adult neurogenesis. Current Opinion in Toxicology 26:14–21. https://doi.org/10.1016/j.cotox.2021.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ, Valko M (2022) Essential metals in health and disease. Chem Biol Interact 367:110173. https://doi.org/10.1016/j.cbi.2022.110173

    Article  CAS  PubMed  Google Scholar 

  31. Mezzaroba L, Alfieri DF, Simão ANC, Reiche EMV (2019) The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 74:230–241. https://doi.org/10.1016/j.neuro.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  32. Levenson CW, Morris D (2011) Zinc and neurogenesis: making new neurons from development to adulthood. Adv Nutr 2(2):96–100. https://doi.org/10.3945/an.110.000174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adamo AM, Liu X, Mathieu P, Nuttall JR, Supasai S, Oteiza P (2019) Early developmental marginal zinc deficiency affects neurogenesis decreasing neuronal number and altering neuronal specification in the adult brain. Front Cell Neurosci 13:62. https://doi.org/10.3389/fncel.2019.00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang FD, Bian W, Kong LW, Zhao FJ, Guo JS, Jing NH (2001) Maternal zinc deficiency impairs brain nestin expression in prenatal and postnatal mice. Cell Res 11(2):135–141. https://doi.org/10.1038/sj.cr.7290078

    Article  CAS  PubMed  Google Scholar 

  35. Aimo L, Mackenzie GG, Keenan AH, Oteiza PI (2010) Gestational zinc deficiency affects the regulation of transcription factors AP-1 NF-κB and NFAT in fetal brain. J Nutr Biochem 21:1069–1075. https://doi.org/10.1016/j.jnutbio.2009.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maares M, Haase H (2020) A guide to human zinc absorption: General overview and recent advances of in vitro intestinal models. Nutrients 12(3):762. https://doi.org/10.3390/nu12030762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thokala S, Bodiga VL, Kudle MR, Bodiga S (2019) Comparative response of cardiomyocyte ZIPs and ZnTs to extracellular zinc and TPEN. Biol Trace Elem Res 192:297–307. https://doi.org/10.1007/s12011-019-01671-0

    Article  CAS  PubMed  Google Scholar 

  38. Davis DN, Strong MD, Chambers E, Hart MD, Bettaieb A, Clarke SL, Smith BJ, Stoecker BJ, Lucas EA, Lin D, Chowanadisai W (2021) A role for zinc transporter gene SLC39A12 in the nervous system and beyond. Gene 799:145824. https://doi.org/10.1016/j.gene.2021.145824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chowanadisai W, Graham DM, Keen CL, Rucker RB, Messerli MA (2013) Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc Natl Acad Sci 110(24):9903–9908. https://doi.org/10.1073/pnas.1222142110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strong MD, Hart MD, Tang TZ, Ojo BA, Wu L, Nacke M, Agidew WT, Hwang HJ, Hoyt PR, Bettaieb A, Clark SL, Smith BJ, Stoecker BJ, Lucas EA, Lin D, Chowanadisai W (2020) Role of zinc transporter ZIP12 in susceptibility-weighted brain magnetic resonance imaging (MRI) phenotypes and mitochondrial function. JASEB Journal 34(9):12702–1272. https://doi.org/10.1096/fj.202000772R

    Article  CAS  Google Scholar 

  41. Benedictis CAD, Haffke C, Hagmeyer S, Sauer AK, Grabrucker AM (2021) Expression analysis of zinc transporters in nervous tissue cells reveals neuronal and synaptic localization of ZIP 4. Int J Mol Sci 22(9):4511. https://doi.org/10.3390/ijms22094511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roitbak T, Surviladze Z, Cunningham LA (2011) Continuous expression of HIF-1α in neural stem/progenitor cells. Cell Mol Neurobiol 31:119–133. https://doi.org/10.1007/s10571-010-9561-5

    Article  CAS  PubMed  Google Scholar 

  43. Večeřa J, Procházková J, Šumberová V, Pánská V, Paculová H, Lánová MK, Mašek J, Bohačiaková D, Andersson ER, Pacherník J (2020) Hypoxia/HIF1α prevents premature neuronal differentiation of neural stem cells through the activation of Hes1. Stem Cell Research 45:101770. https://doi.org/10.1016/j.scr.2020.101770

    Article  CAS  PubMed  Google Scholar 

  44. Braunschweig L, Meyer AK, Wagenführ L, Storch A (2015) Oxygen regulates proliferation of neural stem cells through Wnt/β-catenin signaling. Mol Cell Neurosci 67:84–92. https://doi.org/10.1016/j.mcn.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  45. Murphy BJ, Sato BG, Dalton TP, Laderoute KR (2005) The metal-responsive transcription factor-1 contributes to HIF-1 activation during hypoxic stress. Biochem Biophys Res Commun 337:860–867. https://doi.org/10.1016/j.bbrc.2005.09.124

    Article  CAS  PubMed  Google Scholar 

  46. Murphy BJ, Kimura T, Sato BJ, Shi Y, Andrews GK (2008) Metallothionein induction by hypoxia involves cooperative interactions between metal-responsive transcription factor-1and hypoxia-inducible transcription factor-1α. Mol Cancer Res 6(3):483–490. https://doi.org/10.1158/1541-7786.MCR-07-0341

    Article  CAS  PubMed  Google Scholar 

  47. Hatano N, Matsubara M, Suzuki H, Muraki Y, Muraki K (2021) HIF-1α dependent upregulation of ZIP8, ZIP14, and TRPA1 modify intracellular Zn2+ accumulation in inflammatory synoviocytes. Int J Mol Sci 22(12):6349. https://doi.org/10.3390/ijms22126349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maret W (2019) The redox biology of redox-inert zinc ions. Free Radical Biol Med 134:311–326. https://doi.org/10.1016/j.freeradbiomed.2019.01.006

    Article  CAS  Google Scholar 

  49. Hübner C, Haase H (2021) Interactions of zinc- and redox-signaling pathways. Redox Biol 41:101916. https://doi.org/10.1016/j.redox.2021.101916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ishida T, Takechi S (2016) Nrf2-ARE-dependent alterations in zinc transporter mRNA expression in HepG2 cells. PlosONE 11(11):e0166100. https://doi.org/10.1371/journal.pone.0166100

    Article  CAS  Google Scholar 

  51. Chen S, Wu K, Lv W, Chen F, Song C, Luo Z (2020) Functional analysis of two zinc transporters ( ZIP3 and ZIP8 ) promoters and their distinct response to MTF-1 and RREB1 in regulation of Zn metabolism. Int J Mol Sci 21:6135. https://doi.org/10.3390/ijms21176135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lichten LA, Ryu M, Guo L, Embury J, Cousins RJ (2011) MTF-1-mediated repression of the zinc transporter Zip10 is alleviated by zinc restriction. PlosONE 6(6):e21526. https://doi.org/10.1371/journal.pone.0021526

    Article  CAS  Google Scholar 

  53. Langmade SJ, Ravindra R, Daniels PJ, Andrews GK (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275(44):34803–34809. https://doi.org/10.1074/jbc.M007339200

    Article  CAS  PubMed  Google Scholar 

  54. Guo L, Lichten LA, Ryu M, Liuzzi JP, Wang F, Cousins RJ (2010) STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZNT2 (Slc30a2) in pancreatic acinar cells. Proc Natl Acad Sci 107(7):2818–2823. https://doi.org/10.1073/pnas.0914941107

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mei Z, Yan P, Wang Y, Liu S, He F (2018) Knockdown of zinc transporter ZIP8 expression inhibits neuroblastoma progression and metastasis in vitro. Mol Med Rep 18(1):477–485. https://doi.org/10.3892/mmr.2018.8944

    Article  CAS  PubMed  Google Scholar 

  56. Pan C, Lin F, Kao L, Huang C, Liu P (2020) Zinc oxide nanoparticles modulate the gene expression of ZnT1 and ZIP8 to manipulate zinc homeostasis and stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. PLoS ONE 15(9):e0232729. https://doi.org/10.1371/journal.pone.0232729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Branicky R, Noё A, Hekimi S (2018) Superoxide dismutased: Dual roles in controlling ROS damage and regulating ROS signaling. J Biol Chem 217(6):1915–1028. https://doi.org/10.1083/jbc.201708007

    Article  CAS  Google Scholar 

  58. Izuo N, Nojiri H, Uchiyama S, Noda Y, Kawakami S, Kojima S, Sasaki T, Shirasawa T, Shimizu T. (2015) Brain-specific superoxide dismutase 2 deficiency causes perinatal death with spongiform encephalopathy in mice. Oxidative Med Cell Longev Article ID 238914. https://doi.org/10.1155/2015/238914

  59. Koike A, Sou J, Ohishi A, Nishida K, Nagasawa K (2017) Inhibitory effect of divalent metal cations on zinc uptake via mouse Zrt-/Irt-like protein 8 (ZIP8). Life Sci 173:80–85. https://doi.org/10.1016/j.lfs.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  60. Winslow JWW, Limesand KH, Zhao N (2020) The functions of ZIP8, ZIP14, and ZnT10 in the regulation of systemic manganese homeostasis. Int J Mol Sci 21(9):3304. https://doi.org/10.3390/ijms21093304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fujishiro H, Kambe T (2022) Manganese transport in mammals by zinc transporter family proteins, ZNT and ZIP. J Pharm Sci 148:125–133. https://doi.org/10.1016/j.jphs.2021.10.011

    Article  CAS  Google Scholar 

  62. Girijashanker K, He K, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter:similarities to the ZIP8 transpoter. Mol Pharomacol 73(5):1413–1423. https://doi.org/10.1124/mol.107.043588

    Article  CAS  Google Scholar 

  63. He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70(1):171–180. https://doi.org/10.1124/mol.106.024521

    Article  CAS  PubMed  Google Scholar 

  64. Levy M, Elkoshi N, Barber-Zucker S, Hoch E, Zarivach R, Hershfinkel M, Sekler I (2019) Zinc transporter 10 (ZnT10)-dependent extrusion of cellular Mn2+ is driven by an active Ca2+-coupled exchange. J Biol Chem 294(15):5879–5889. https://doi.org/10.1074/jbc.RA118.006816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lindner S, Lucchini R, Broberg K (2022) Genetics and epigenetics of manganese toxicity. Curr Environ Health Rep 9:697–713. https://doi.org/10.1007/s40572-022-00384-2

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu C, Jursa T, Ashner M, Smith DR, Mukhopadhyay S (2021) Up-regulation of the manganese transporter SLC30A10 by hypoxia-inducible factors denies a homeostatic response to manganese toxicity. Proc Natl Acad Sci USA 118(35):e2107673118. https://doi.org/10.1073/pnas.2107673118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fu S, O’Neal S, Hong L, Jiang W, Zheng W (2015) Elevated adult neurogenesis in brain subventricular zone following in vivo manganese exposure: roles of copper and DMT1. Toxicol Sci 143(2):482–498. https://doi.org/10.1093/toxsci/kfu249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cao Y (2022) The uses of 3D brain organoids for neurotoxicity evaluations: A review. Neurotoxicology 91:84–93. https://doi.org/10.1016/j.neuro.2022.05.004

    Article  CAS  PubMed  Google Scholar 

  69. Kawai M, Nagoshi N, Okano H, Nakamura M (2023) A review of regenerative therapy for spinal cord injury using human iPS cells. North American Spine Society Journal (NASSJ) 13:100184. https://doi.org/10.1016/j.xnsj.2022.100184

    Article  PubMed  Google Scholar 

  70. Takahashi J (2020) iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regenerative Therapy 13:18–22. https://doi.org/10.1016/j.reth.2020.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ottoboni L, Wunster B, Martino G (2020) Therapeutic plasticity of neural stem cells. Front Neurol 11:148. https://doi.org/10.3389/fneur.2020.00148

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Youtaro Ono for his contribution to the experiment on the low O2 culture and high CO2 culture, and also to Mayu Nishikawa for her contribution to the discussion about ZIPs and ZnTs expression. This work was partially supported by JSPS KAKENHI Grant Numbers JP26420799, and JP20K05236.

Author information

Authors and Affiliations

Authors

Contributions

The author’s contribution to this manuscript was described as follows. Dr. H. Mori planned the experiment. Ms. A. Goji took the experimental data. Dr. M. Hara wrote the manuscript.

Corresponding author

Correspondence to Masayuki Hara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30.5 KB)

Supplementary file2 (PPTX 384 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, H., Goji, A. & Hara, M. Upregulation of Intracellular Zinc Ion Level after Differentiation of the Neural Stem/Progenitor Cells In Vitro with the Changes in Gene Expression of Zinc Transporters. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-023-04033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-04033-z

Keywords

Navigation