Skip to main content
Log in

Zinc-Mediated Endoplasmic Reticulum Stress and Metallothionein Alleviate Arsenic-Induced Cardiotoxicity in Cyprinus Carpio

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic (As) is a natural component of the Earth’s crust, and its inorganic form is highly toxic. The problem of As pollution in water is extremely urgent, and its impact on aquatic organisms should be widely considered. Here, 120 common carp were selected as the test subjects and were exposed to environmentally relevant concentrations of As (2.83 mg L− 1) for 30 days. Histomorphological observations showed the adverse effects of As on the heart: irregular arrangement of myocardial fibers, rupture of muscle fiber bundles, inflammatory infiltration, and hemorrhages. Mechanistically, abnormal expression of factors related to As-induced inflammation (TLR4/MYD88/NF-κB pathway), endoplasmic reticulum stress (CHOP, GRP78, ATF6, PERK, IRE1) and oxidative stress (SOD, CAT, Nrf2, HO-1) was observed. Then, we tried to find a protective agent against As-induced myocardial injury. As one of the important metal elements for maintaining cell growth and immunity, zinc (Zn, 1 mg L− 1) significantly alleviated the pathological abnormalities induced by As, and the changes in physiological and biochemical indices in response to As exposure were significantly alleviated by Zn administration, which was accompanied by the restoration of metallothionein (ZIP8, Znt1, Znt5, Znt7) and heat shock protein (HSP60, HSP70, HSP90) expression. These results suggest for the possibilty of developing Zn as a candidate therapeutic agent for As induced aquatic toxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed MK, Shaheen N, Islam MS, Habibullah-al-Mamun M, Islam S, Mohiduzzaman M, Bhattacharjee L (2015) Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 128:284–292. https://doi.org/10.1016/j.chemosphere.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  2. Mandal BK, Suzuki KTJT (2002) Arsenic round the World: A Review 58(1):0–235

    CAS  Google Scholar 

  3. Juncos R, Arcagni M, Squadrone S, Rizzo A, Arribere M, Barriga JP, Battini MA, Campbell LM, Brizio P, Abete MC, Ribeiro Guevara S (2019) Interspecific differences in the bioaccumulation of arsenic of three Patagonian top predator fish: Organ distribution and arsenic speciation. Ecotoxicol Environ Saf 168(JAN):431–442. https://doi.org/10.1016/j.ecoenv.2018.10.077

    Article  CAS  PubMed  Google Scholar 

  4. Bissen M, J.A.H.E FH (2003) Arsenic — a Review. Part I: Occurrence, Toxicity, Speciation, Mobility, 31(1) 9–18

  5. Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA, Guallar E (2005) Arsenic exposure and Cardiovascular Disease: a systematic review of the epidemiologic evidence. Am J Epidemiol 162(11):1037–1049. https://doi.org/10.1093/aje/kwi330

    Article  PubMed  Google Scholar 

  6. Guardiola FA, Gonzalez-Parraga MP, Cuesta A, Meseguer J, Martinez S, Martinez-Sanchez MJ, Perez-Sirvent C, Esteban MA (2013) Immunotoxicological effects of inorganic arsenic on gilthead seabream (Sparus aurata L). Aquat Toxicol 134–135. https://doi.org/10.1016/j.aquatox.2013.03.015

  7. Newhook R, Hirtle H, Byrne K, Meek ME (2003) Releases from copper smelters and refineries and zinc plants in Canada: human health exposure and risk characterization. Sci Total Environ 301(1–3):23–41. https://doi.org/10.1016/s0048-9697(02)00229-2

    Article  CAS  PubMed  Google Scholar 

  8. Gilmour PS, Schladweiler MC, Nyska A, McGee JK, Thomas R, Jaskot RH, Schmid J, Kodavanti UP (2006) Systemic imbalance of essential metals and cardiac gene expression in rats following acute pulmonary zinc exposure. J Toxicol Environ Health A 69(22):2011–2032. https://doi.org/10.1080/15287390600746173

    Article  CAS  PubMed  Google Scholar 

  9. Maret WJJoN (2000) The function of zinc metallothionein: a link between cellular zinc and redox state, 130

  10. Bian X, Xu J, Zhao H, Zheng Q, Xiao X, Ma X, Li Y, Du X, Liu X (2019) Zinc-Induced SUMOylation of Dynamin-Related Protein 1 Protects the Heart against Ischemia-Reperfusion Injury, Oxid Med Cell Longev (2019) 1232146. https://doi.org/10.1155/2019/1232146

  11. Watanabe M, Funakoshi T, Unuma K, Aki T, Uemura K (2014) Activation of the ubiquitin-proteasome system against arsenic trioxide cardiotoxicity involves ubiquitin ligase parkin for mitochondrial homeostasis. Toxicology 322:43–50. https://doi.org/10.1016/j.tox.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  12. Wang R, Zhang J, Wang S, Wang M, Ye T, Du Y, Xie X, Ye J, Sun G, Sun XJM (2019) The Cardiotoxicity Induced by Arsenic Trioxide is alleviated by Salvianolic Acid A via maintaining calcium homeostasis and inhibiting endoplasmic reticulum stress, 24(3)

  13. Zhao H, Wang Y, Liu J, Guo M, Fei D, Yu H, Xing M (2019) The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation. Environ Pollut 253:741–748. https://doi.org/10.1016/j.envpol.2019.07.065

    Article  CAS  PubMed  Google Scholar 

  14. Hu X, Cai J, Zhu J, Lang W, Zhong J, Zhong H, Chen F (2020) Arsenic trioxide potentiates Gilteritinib-induced apoptosis in FLT3-ITD positive leukemic cells via IRE1a-JNK-mediated endoplasmic reticulum stress. Cancer Cell Int 20:250. https://doi.org/10.1186/s12935-020-01341-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhan C, Liu W, Zhang F, Zhang X (2020) Microcystin-LR triggers different endoplasmic reticulum stress pathways in the liver, ovary, and offspring of zebrafish (Danio rerio). J Hazard Mater 386:121939. https://doi.org/10.1016/j.jhazmat.2019.121939

    Article  CAS  PubMed  Google Scholar 

  16. Jiang M, Wang H, Liu Z, Lin L, Wang L, Xie M, Li D, Zhang J, Zhang R (2020) Endoplasmic reticulum stress-dependent activation of iNOS/NO-NF-kappaB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity. FASEB J 34(8):10835–10849. https://doi.org/10.1096/fj.202000734R

    Article  CAS  PubMed  Google Scholar 

  17. Zhang C (2017) Roles of Grp78 in female mammalian Reproduction. Adv Anat Embryol Cell Biol 222:129–155. https://doi.org/10.1007/978-3-319-51409-3_7

    Article  PubMed  Google Scholar 

  18. Duan X, Gao S, Li J, Wu L, Zhang Y, Li W, Zhao L, Chen J, Yang S, Sun G, Li B (2017) Acute arsenic exposure induces inflammatory responses and CD4(+) T cell subpopulations differentiation in spleen and thymus with the involvement of MAPK, NF-kB, and Nrf2. Mol Immunol 81:160–172. https://doi.org/10.1016/j.molimm.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed RG, El-Gareib AW (2019) Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARgamma and Upregulating Caspase-3/NF-kB/Cox2/BAX/iNOS/ROS, Dose Response 17(2) 1559325819858266. https://doi.org/10.1177/1559325819858266. Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARgamma and Upregulating Caspase-3/NF-kB

  20. Huang Q, Xi G, Alamdar A, Zhang J, Shen H (2017) Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats. Environ Pollut 229:210–218. https://doi.org/10.1016/j.envpol.2017.05.077

    Article  CAS  PubMed  Google Scholar 

  21. Truchet DM, Buzzi NS, Simonetti P, Science JEMJE, Research P (2020) Uptake and detoxification of trace metals in estuarine crabs: insights into the role of metallothioneins, (4)

  22. Orathai P (2019) Wisuwat, Songnuan, Nathinee, Panvisavas, Prayad, Pokethitiyook, Kittisak, Y.J. Planta, Functional characterization of metallothionein-like genes from Physcomitrella patens: expression profiling, yeast heterologous expression, and disruption of PpMT1.2a gene,

  23. Buenfil-Rojas AM, Alvarez-Legorreta T, Cedeno-Vazquez JR, Rendon-von Osten J, Gonzalez-Jauregui M (2020) Distribution of metals in tissues of captive and wild Morelet’s crocodiles and the potential of metallothioneins in blood fractions as a biomarker of metal exposure. Chemosphere 244:125551. https://doi.org/10.1016/j.chemosphere.2019.125551

    Article  CAS  PubMed  Google Scholar 

  24. Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci U S A 95(7):3478–3482. https://doi.org/10.1073/pnas.95.7.3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen GH, Luo Z, Wei CC, Li DD, Pan YX (2018) Six indicator genes for zinc (zn) homeostasis in freshwater teleost yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA tissue expression and transcriptional changes to Zn exposure. Biometals 31(4):527–537. https://doi.org/10.1007/s10534-018-0099-1

    Article  CAS  PubMed  Google Scholar 

  26. Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24(1):151–172. https://doi.org/10.1146/annurev.nutr.24.012003.132402

    Article  CAS  PubMed  Google Scholar 

  27. Jim G, De LRC, Andrews GK, Real FXJPO (2013) The Zinc Transporter Zip5 (Slc39a5) regulates intestinal zinc excretion and protects the pancreas against Zinc Toxicity. 8(11):e82149

  28. Kim JH, Kang JC (2016) The immune responses and expression of metallothionein (MT) gene and heat shock protein 70 (HSP 70) in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (as(3+)), Environ Toxicol Pharmacol 47(Oct). 136–141. https://doi.org/10.1016/j.etap.2016.09.018

  29. Castaldo G, Flipkens G, Pillet M, Town RM, Bervoets L, Blust R, De Boeck G (2020) Antagonistic bioaccumulation of waterborne cu(II) and cd(II) in common carp (Cyprinus carpio) and effects on ion-homeostasis and defensive mechanisms. Aquat Toxicol 226:105561. https://doi.org/10.1016/j.aquatox.2020.105561

    Article  CAS  PubMed  Google Scholar 

  30. van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149. https://doi.org/10.1016/s1382-6689(02)00126-6

    Article  PubMed  Google Scholar 

  31. Liu GM, An Q, Wang LJ, Jia X, Feng SH, Xia SM, Wu YN, Qi H (2018) Release and kinetics of arsenic and plumbum in the Songhua River surficial sediments. Environ Sci Pollut Res Int 25(1):541–551. https://doi.org/10.1007/s11356-017-0365-8

    Article  CAS  PubMed  Google Scholar 

  32. Wang D, Zong C, Cheng K (2020) Chicken thalamic injury induced by copper (II) or / and arsenite exposure involves oxidative stress and inflammation-induced apoptosis. Ecotoxicol Environ Saf 197:110554. https://doi.org/10.1016/j.ecoenv.2020.110554

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Zhao H, Liu J, Shao Y, Li J, Luo L, Xing M (2018) Copper and arsenic-induced oxidative stress and immune imbalance are associated with activation of heat shock proteins in chicken intestines. Int Immunopharmacol 60:64–75. https://doi.org/10.1016/j.intimp.2018.04.038

    Article  CAS  PubMed  Google Scholar 

  34. Roobee G, Renuka, Ganger, Biraja P, Mohanty, Shivcharan, Verma MJ, Toxicology (2016) Metallothionein does not sequester arsenic(III) ions in condition of acute arsenic toxicity,

  35. Ahangarpour A, Zeidooni L, Samimi A, Alboghobeish S, Khorsandi LS, Moradi M (2018) Chronic exposure to arsenic and high fat diet additively induced cardiotoxicity in male mice. Res Pharm Sci 13(1):47–56. https://doi.org/10.4103/1735-5362.220967

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang L, Yan R, Yang Q, Li H, Zhang J, Shimoda Y, Kato K, Yamanaka K, An Y (2020) Role of GH/IGF axis in arsenite-induced developmental toxicity in zebrafish embryos. Ecotoxicol Environ Saf 201:110820. https://doi.org/10.1016/j.ecoenv.2020.110820

    Article  CAS  PubMed  Google Scholar 

  37. Li D, Lu C, Wang J, Hu W, Cao Z, Sun D, Xia H, Ma X (2009) Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. Aquat Toxicol 91(3):229–237. https://doi.org/10.1016/j.aquatox.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  38. Sumi D, Tsurumoto M, Yoshino Y, Inoue M, Yokobori T, Kuwano H, Himeno S (2015) High accumulation of arsenic in the esophagus of mice after exposure to arsenite. Arch Toxicol 89(10):1751–1758. https://doi.org/10.1007/s00204-014-1326-3

    Article  CAS  PubMed  Google Scholar 

  39. Goudarzi M, Fatemi I, Siahpoosh A, Sezavar SH, Mansouri E, Mehrzadi S (2018) Protective effect of Ellagic Acid against Sodium Arsenite-Induced Cardio- and hematotoxicity in rats. Cardiovasc Toxicol 18(4):337–345. https://doi.org/10.1007/s12012-018-9446-2

    Article  CAS  PubMed  Google Scholar 

  40. Hosseinzadeh A, Houshmand G, Goudarzi M, Sezavar SH, Mehrzadi S, Mansouri E, Kalantar M (2019) Ameliorative effect of gallic acid on sodium arsenite-induced spleno-, cardio- and hemato-toxicity in rats. Life Sci 217:91–100. https://doi.org/10.1016/j.lfs.2018.11.050

    Article  CAS  PubMed  Google Scholar 

  41. Klein RD, Nogueira LS, Domingos-Moreira FXV, Gomes Costa P, Bianchini A, Wood CM (2019) Effects of sublethal cd, zn, and mixture exposures on antioxidant defense and oxidative stress parameters in early life stages of the purple sea urchin Strongylocentrotus purpuratus. Aquat Toxicol 217:105338. https://doi.org/10.1016/j.aquatox.2019.105338

    Article  CAS  PubMed  Google Scholar 

  42. Harada H, Sugimoto R, Watanabe A, Taketani S, Okada K, Warabi E, Siow R, Itoh K, Yamamoto M, Ishii T (2008) Differential roles for Nrf2 and AP-1 in upregulation of HO-1 expression by arsenite in murine embryonic fibroblasts. Free Radic Res 42(4):297–304. https://doi.org/10.1080/10715760801975735

    Article  CAS  PubMed  Google Scholar 

  43. Sumi D, Sasaki T, Miyataka H, Himeno S (2011) Rat H9c2 cardiac myocytes are sensitive to arsenite due to a modest activation of transcription factor Nrf2. Arch Toxicol 85(12):1509–1516. https://doi.org/10.1007/s00204-011-0700-7

    Article  CAS  PubMed  Google Scholar 

  44. Lian C-Y, Chu B-X, Xia W-H, Wang Z-Y, Fan R-F, Wang L (2022) Persistent activation of Nrf2 in a p62-dependent non-canonical manner aggravates lead-induced kidney injury by promoting apoptosis and inhibiting autophagy. J Adv Res. https://doi.org/10.1016/j.jare.2022.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shalaby YM, Menze ET, Azab SS (2019) A.S.J.A.o.T. Awad, Involvement of Nrf2/HO-1 antioxidant signaling and NF-κB inflammatory response in the potential protective effects of vincamine against methotrexate-induced nephrotoxicity in rats: cross talk between nephrotoxicity and neurotoxicity,

  46. Li L, Ren F, Qi C, Xu L, Fang Y, Liang M, Feng J, Chen B, Ning W, Cao J (2018) Intermittent hypoxia promotes Melanoma lung Metastasis via oxidative stress and inflammation responses in a mouse model of obstructive sleep apnea. Respir Res 19(1):28. https://doi.org/10.1186/s12931-018-0727-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Zhao H, Liu Y, Nie X, Xing M (2020) Zinc exerts its renal protection effect on arsenic-exposed common carp: a signaling network comprising Nrf2, NF-kappaB and MAPK pathways. Fish Shellfish Immunol 104:383–390. https://doi.org/10.1016/j.fsi.2020.06.031

    Article  CAS  PubMed  Google Scholar 

  48. Bode A, Dong Z (2000) Apoptosis induction by arsenic: mechanisms of action and possible clinical applications for treating therapy-resistant cancers. Drug Resist Updat 3(1):21–29. https://doi.org/10.1054/drup.2000.0114

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Zhao H, Liu Y, Nie X, Fish MXJ, Immunology S (2020) Zinc exerts its renal protection effect on arsenic-exposed common carp: a signaling network comprising Nrf2. NF-κB and MAPK pathways

  50. Kashani B, Zandi Z, Karimzadeh MR, Bashash D, Nasrollahzadeh A, Ghaffari SH (2019) Blockade of TLR4 using TAK-242 (resatorvid) enhances anti-cancer effects of chemotherapeutic agents: a novel synergistic approach for breast and ovarian cancers. Immunol Res 67(6):505–516. https://doi.org/10.1007/s12026-019-09113-8

    Article  CAS  PubMed  Google Scholar 

  51. Satoh M, Nishimura N, Kanayama Y, Naganuma A, Suzuki T, Tohyama C (1997) Enhanced renal toxicity by inorganic mercury in metallothionein-null mice. J Pharmacol Exp Ther 283(3):1529–1533

    CAS  PubMed  Google Scholar 

  52. Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity, Toxicol Appl Pharmacol 238(3) 215 – 20. https://doi.org/10.1016/j.taap.2009.03.026

  53. Suzuki Y, Yoshikawa HJIH, INDUCTION OF HEPATIC ZINC-BINDING PROTEINS OF RATS BY VARIOUS METALS (1976), 14(1) 25–31

  54. Zhang D, Zhang T, Liu J, Chen J, Li Y, Ning G, Huo N, Tian W, Ma H (2019) Zn supplement-antagonized Cadmium-Induced cytotoxicity in Macrophages in Vitro: involvement of Cadmium Bioaccumulation and metallothioneins regulation. J Agric Food Chem 67(16):4611–4622. https://doi.org/10.1021/acs.jafc.9b00232

    Article  CAS  PubMed  Google Scholar 

  55. Van Molle W, Van Roy M, Van Bogaert T, Dejager L, Van Lint P, Vanlaere I, Sekikawa K, Kollias G, Libert C (2007) Protection of zinc against Tumor necrosis factor induced lethal inflammation depends on heat shock protein 70 and allows safe antitumor therapy. Cancer Res 67(15):7301–7307. https://doi.org/10.1158/0008-5472.CAN-06-4010

    Article  CAS  PubMed  Google Scholar 

  56. Liu MJ, Bao S, Galvez-Peralta M, Pyle CJ, Rudawsky AC, Pavlovicz RE, Killilea DW, Li C, Nebert DW, Wewers MD, Knoell DL (2013) ZIP8 regulates host defense through zinc-mediated inhibition of NF-kappaB. Cell Rep 3(2):386–400. https://doi.org/10.1016/j.celrep.2013.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Galvez-Peralta M, Wang Z, Bao S, Knoell DL, Nebert DW (2014) Tissue-specific induction of mouse ZIP8 and ZIP14 divalent Cation/Bicarbonate symporters by, and Cytokine Response to, inflammatory signals. Int J Toxicol 33(3):246–258. https://doi.org/10.1177/1091581814529310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Holubova M, Axmanova M, Gumulec J, Raudenska M, Sztalmachova M, Babula P, Adam V, Kizek R, Masarik M (2014) KRAS NF-kappaB is involved in the development of zinc resistance and reduced curability in Prostate cancer. Metallomics 6(7):1240–1253. https://doi.org/10.1039/c4mt00065j

    Article  CAS  PubMed  Google Scholar 

  59. Ho LH, Ruffin RE, Murgia C, Li L, Krilis SA, Zalewski PD (2004) Labile zinc and zinc transporter ZnT4 in mast cell granules: role in regulation of caspase activation and NF-kappaB translocation. J Immunol 172(12):7750–7760. https://doi.org/10.4049/jimmunol.172.12.7750

    Article  CAS  PubMed  Google Scholar 

  60. Jarosz M, Olbert M, Wyszogrodzka G, Mlyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kappaB signaling. Inflammopharmacology 25(1):11–24. https://doi.org/10.1007/s10787-017-0309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gu S, Chen C, Jiang X, Zhang Z (2016) ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction underlie apoptosis induced by resveratrol and arsenic trioxide in A549 cells. Chem Biol Interact 245:100–109. https://doi.org/10.1016/j.cbi.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  62. Limonta P, Moretti RM, Marzagalli M, Fontana F, Raimondi M, Montagnani M, Marelli (2019) Role of endoplasmic reticulum stress in the Anticancer Activity of Natural compounds. Int J Mol Sci 20(4). https://doi.org/10.3390/ijms20040961

  63. Zhang JY, Zhang B, Wang M, Wang W, Liao P, Sun GB, Sun XB (2017) Calcium homeostasis and endoplasmic reticulum stress are involved in Salvianolic acid B-offered protection against cardiac toxicity of arsenic trioxide. Oncotarget 8(57):97384–97393. https://doi.org/10.18632/oncotarget.22127

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen J, Wei H, Xie B, Wang B, Cheng J, Cheng J (2012) Endoplasmic reticulum stress contributes to arsenic trioxide-induced apoptosis in drug-sensitive and -resistant Leukemia cells. Leuk Res 36(12):1526–1535. https://doi.org/10.1016/j.leukres.2012.08.018

    Article  CAS  PubMed  Google Scholar 

  65. Rana SVS (2020) Endoplasmic reticulum stress Induced by toxic Elements-a review of recent developments. Biol Trace Elem Res 196(1):10–19. https://doi.org/10.1007/s12011-019-01903-3

    Article  CAS  PubMed  Google Scholar 

  66. Olgar Y, Ozdemir S, Turan B (2018) Induction of endoplasmic reticulum stress and changes in expression levels of zn(2+)-transporters in hypertrophic rat heart. Mol Cell Biochem 440(1–2):209–219. https://doi.org/10.1007/s11010-017-3168-9

    Article  CAS  PubMed  Google Scholar 

  67. Wang G, Huang H, Zheng H, He Y, Zhang Y, Xu Z, Zhang L, Xi J (2016) Zn(2+) and mPTP mediate endoplasmic reticulum stress inhibition-Induced Cardioprotection Against Myocardial Ischemia/Reperfusion Injury. Biol Trace Elem Res 174(1):189–197. https://doi.org/10.1007/s12011-016-0707-2

    Article  CAS  PubMed  Google Scholar 

  68. Olgar Y, Durak A, Tuncay E, Bitirim CV, Ozcinar E, Inan MB, Tokcaer-Keskin Z, Akcali KC, Akar AR, Turan B (2018) Increased free zn(2+) correlates induction of sarco(endo)plasmic reticulum stress via altered expression levels of zn(2+) -transporters in Heart Failure. J Cell Mol Med 22(3):1944–1956. https://doi.org/10.1111/jcmm.13480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (32271557).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Haiyan Dong: Designed experiments, processed data, investigation and writing—original draft preparation. Hongwei Song: Designed experiments, software and methodology. Yachen Liu: software and data curation. Hngfei Zou: investigation, visualization, and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongfei Zou.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

: Table.S1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Song, H., Liu, Y. et al. Zinc-Mediated Endoplasmic Reticulum Stress and Metallothionein Alleviate Arsenic-Induced Cardiotoxicity in Cyprinus Carpio. Biol Trace Elem Res (2023). https://doi.org/10.1007/s12011-023-03975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-03975-8

Keywords

Navigation