Skip to main content
Log in

Role of Nitric Oxide, TNF–α and Caspase-3 in Lead Acetate-Exposed Rats Pretreated with Aqueous Rosmarinus officinalis Leaf Extract

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead (Pb) toxicity is a worldwide significant public health challenge causing several neurological disorders. Reports indicate that plants rich in antioxidants, such as Rosmarinus officinalis (RO), can counteract Pb accumulation and its toxicity in the brain. Due to a dearth of literature evidence demonstrating the protective activity of RO against Pb toxicity, this study investigated such activity in Wistar rats. Thirty-six Wistar rats were allocated into six groups (n=6), namely I (control), II (lead acetate [Pb]; 100 mg/kg b.w.), III (100 mg/kg of RO and 100 mg/kg of Pb), IV (200 mg/kg of RO and 100 mg/kg of Pb), V (100 mg/kg b.w. of RO) and VI (200 mg/kg b.w. of RO). After 28 days, neurobehavioural, antioxidant, lipid peroxidation, apoptotic and inflammatory activities as well as the histology of the cerebellum were evaluated. Body weight, locomotion and exploration as well as antioxidant enzymes were significantly (p < 0.05) decreased in Pb-exposed rats when compared to control. Conversely, lipid peroxidation, nitric oxide, tumour necrosis factor-alpha and caspase-3 activities were significantly (p < 0.05) upregulated in the Pb-exposed rats when compared to control. These parameters were, however, significantly (p<0.05) attenuated in the RO-pretreated rats when compared to Pb-exposed rats. Cerebellar histology of the Pb-exposed rats showed severe degeneration of the Purkinje cells whereas the RO-pretreated rats showed better cerebellar architecture. These findings demonstrate that the neuroprotective activity of RO is facilitated via its effective antioxidant, anti-inflammatory and anti-apoptotic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets for study are available from the corresponding author on reasonable request.

References

  1. World Health Organization W (2010) Childhood lead poisoning https://wwwwhoint/news-room/fact-sheets/detail/lead-poisoning-and-health.

  2. Ab Latif Wani A, Usmani J (2015) Lead toxicity: a review. Interdiscip Toxicol 8:55–64

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sridevi Sangeetha K, Umamaheswari S (2020) Human exposure to lead, mechanism of toxicity and treatment strategy-a review. J Clin Diagn Res 14(12)

  4. Sarkar O, Dey KK, Islam S, Chattopadhyay A (2022) Lead and aquatic ecosystems, biomarkers, and implications for humankind. In: Biomarkers in Toxicology. Springer, pp 1–28

    Google Scholar 

  5. Kumar P, Singh R, Nazmi A, Lakhanpal D, Kataria H, Kaur G (2014) Glioprotective effects of Ashwagandha leaf extract against lead induced toxicity. Biomed Res Int 2014

  6. Sharma P, Chambial S, Shukla KK (2015) Lead and neurotoxicity. Indian J Clin Biochem 30(1):1–2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24(1):15–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Xu D-P, Li Y, Meng X, Zhou T, Zhou Y, Zheng J et al (2017) Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci 18(1):96

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21(5):559

    Article  PubMed  PubMed Central  Google Scholar 

  11. Enogieru A, Momodu O (2021) The developing cerebellum as a target for toxic substances: protective role of antioxidants. The Cerebellum:1–17

  12. De Oliveira JR, Camargo SEA, De Oliveira LD (2019) Rosmarinus officinalis L.(rosemary) as therapeutic and prophylactic agent. J Biomed Sci 26(1):1–22

    Article  Google Scholar 

  13. Habtemariam S (2016) The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid Based Complement Alternat Med 2016

  14. UK Food Standards Agency U (2011) Current EU approved additives and their E Numbers https://wwwfoodgovuk/business-guidance/approved-additives-and-e-numbers.

  15. Rahbardar MG, Hosseinzadeh H (2020) Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J Basic Med Sci 23(9):1100

    Google Scholar 

  16. Rašković A, Milanović I, Pavlović N, Ćebović T, Vukmirović S, Mikov M (2014) Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement Altern Med 14(1):1–9

    Article  Google Scholar 

  17. Ngo SN, Williams DB, Head RJ (2011) Rosemary and cancer prevention: preclinical perspectives. Crit Rev Food Sci Nutr 51(10):946–954

    Article  PubMed  CAS  Google Scholar 

  18. Ezeigwe OC, Nzekwe FA, Nworji OF, Ezennaya CF, Iloanya EL, Asogwa KK (2020) Effect of aqueous extract of F. capensis leaves and its combination with C. aconitifolius leaves on essential biochemical parameters of phenylhydrazine-induced anemic rats. J Exp Pharmacol 12:191–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sofowora A (1993) Phytochemical screening of medicinal plants and traditional medicine in Africa. Spectrum Books Limited, Nigeria, pp 150–156

    Google Scholar 

  20. Trease G, Evans W (1983) Text book of Pharmacognosy London Bailliare Tindall 12(193):336.

    Google Scholar 

  21. Senguttuvan J, Paulsamy S, Karthika K (2014) Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac J Trop Biomed 4:S359–SS67

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lorke D (1983) A new approach to practical acute toxicity testing. Arch Toxicol 54(4):275–287

    Article  PubMed  CAS  Google Scholar 

  23. Enogieru A, Omoruyi S (2022) Exploration of aqueous Phyllanthus amarus leaf extract as a protective agent in mercury chloride-exposed Wistar rats: a neurobehavioural study. J Appl Sci Environ Manag 26(4):629–637

    Google Scholar 

  24. Enogieru A, Momodu O (2022) Neuroprotective effects of Zingiber officinale against lead-induced toxicity in Wistar rats. Nutrire 48(1):2

    Article  Google Scholar 

  25. Kim H-J, Kong M-K, Kim Y-C (2008) Beneficial effects of Phellodendri Cortex extract on hyperglycemia and diabetic nephropathy in streptozotocin-induced diabetic rats. BMB Rep 41(10):710–715

    Article  PubMed  CAS  Google Scholar 

  26. Guttridge J, Wilkins C (1982) Copper dependent hydroxyl radical damage to ascorbic acid. Formation of thiobarbituric acid reactive products. FEBS Lett 137:327–340

    Article  Google Scholar 

  27. Cohen G, Dembiec D, Marcus J (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 34(1):30–38

    Article  PubMed  CAS  Google Scholar 

  28. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    Article  PubMed  CAS  Google Scholar 

  29. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  PubMed  CAS  Google Scholar 

  30. Nyman M (1959) Serum hatoglobin; methodological and clinical studies. Scand J Clin Lab Invest 11:1–169

    PubMed  CAS  Google Scholar 

  31. Montogomery H, Dymock J (1961) The determination of nitrite in water: colorimetric method of nitric oxide assay. Analyst 86:414

    Google Scholar 

  32. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54(5):356–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Drury R, Wallington E (1980) Carleton’s histological technique, 5th edn. Churchill Livingstone, New York

    Google Scholar 

  34. Rafique M, Perveen K, Khan N, Nigar S (2008) Lead intoxication causing loss of body weight and loss of absolute weight of testes in albino rats. Hamdard Med 51:123–128

    Google Scholar 

  35. Amjad Z, Iqbal M, Shoro A (2013) Lead-induced reduction in body and kidney weight of Wistar albino rats ameliorated by Ginkgo biloba extract (EGb 761). Biochem Physiol 2(113):2

    Google Scholar 

  36. van Berlo D, Woutersen M, Muller A, Pronk M, Vriend J, Hakkert B (2022) 10% Body weight (gain) change as criterion for the maximum tolerated dose: a critical analysis. Regul Toxicol Pharmacol 134:105235

    Article  PubMed  Google Scholar 

  37. Klaassen CD (2006) Heavy metals and heavy-metal antagonists Goodman and Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York, pp 1753–1775

    Google Scholar 

  38. Cecil KM, Brubaker CJ, Adler CM, Dietrich KN, Altaye M, Egelhoff JC et al (2008) Decreased brain volume in adults with childhood lead exposure. PLoS Med 5(5):e112

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stewart W, Schwartz B, Davatzikos C, Shen D, Liu D, Wu X et al (2006) Past adult lead exposure is linked to neurodegeneration measured by brain MRI. Neurology 66(10):1476–1484

    Article  PubMed  CAS  Google Scholar 

  40. Kraeuter A-K, Guest PC, Sarnyai Z (2019) The open field test for measuring locomotor activity and anxiety-like behavior. In: Pre-clinical models: techniques and protocols, pp 99–103

    Chapter  Google Scholar 

  41. Davies KG, Ekpennyong C, Green O, Antai A, Osim E (2013) Locomotor and exploratory behaviour in mice treated with oral artesunate. British Journal of Science 8(1):47–57

    Google Scholar 

  42. Owoeye O, Onwuka SK (2016) Lead toxicity: effect of Launaea taraxacifolia on the histological and oxidative alterations in Rat Regio III Cornu ammonis and cerebellum. Anatomy Journal of Africa 5(1):783–794

    Google Scholar 

  43. Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC (2016) Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17(1):45–59

    Article  PubMed  CAS  Google Scholar 

  44. Berridge KC, Whishaw IQ (1992) Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp Brain Res 90:275–290

    Article  PubMed  CAS  Google Scholar 

  45. Watson P (1978) Behavior maintained by electrical stimulation of the rat cerebellum. Physiol Behav 21(5):749–755

    Article  PubMed  CAS  Google Scholar 

  46. Amel B, Omar K, Faiza F, Miloud S, Abdelkader A (2016) Behavior and glutamate transaminase changes in rat exposed to lead and treated by wormwood extract. Int J Pharm Pharm 8:208–213

    CAS  Google Scholar 

  47. Enogieru A, Egbon F (2022) Neurobehavioural and histological alterations in lead acetate-exposed rats pretreated with aqueous leaf extract of Vernonia amygdalina. Afr J Biomed Res 25(2):205–213

    Google Scholar 

  48. Roelofs K (2017) Freeze for action: neurobiological mechanisms in animal and human freezing. Philos Trans R Soc B: Biol Sci 372(1718):20160206

    Article  Google Scholar 

  49. Apps R, Strata P (2015) Neuronal circuits for fear and anxiety—the missing link. Nat Rev Neurosci 16(10):642

    Article  PubMed  CAS  Google Scholar 

  50. Koutsikou S, Crook JJ, Earl EV, Leith JL, Watson TC, Lumb BM et al (2014) Neural substrates underlying fear-evoked freezing: the periaqueductal grey–cerebellar link. J Physiol 592(10):2197–2213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Vaaga CE, Brown ST, Raman IM (2020) Cerebellar modulation of synaptic input to freezing-related neurons in the periaqueductal gray. elife 9:e54302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sacchetti B, Scelfo B, Tempia F, Strata P (2004) Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron 42(6):973–982

    Article  PubMed  CAS  Google Scholar 

  53. Udefa AL, Amama EA, Archibong EA, Nwangwa JN, Adama S, Inyang VU et al (2020) Antioxidant, anti-inflammatory and anti-apoptotic effects of hydro-ethanolic extract of Cyperus esculentus L.(tigernut) on lead acetate-induced testicular dysfunction in Wistar rats. Biomed Pharmacother 129:110491

    Article  PubMed  CAS  Google Scholar 

  54. El-Nekeety AA, El-Kady AA, Soliman MS, Hassan NS, Abdel-Wahhab MA (2009) Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol 47(9):2209–2215

    Article  PubMed  CAS  Google Scholar 

  55. Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5(1):51–66

    Article  PubMed  CAS  Google Scholar 

  56. Ighodaro O, Akinloye O (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293

    Article  Google Scholar 

  57. Fan Y, Zhao X, Yu J, Xie J, Li C, Liu D et al (2020) Lead-induced oxidative damage in rats/mice: a meta-analysis. J Trace Elem Med Biol 58:126443

    Article  PubMed  CAS  Google Scholar 

  58. Hamadouche NA, Lazeb H, Kaddouri A, Guellil H, Slimani M, Aoues A (2015) Ameliorated effects of green tea extract on lead induced kidney toxicity in rats Algerian. J Nat Prod 3:130–137

    Google Scholar 

  59. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Shaban NZ, Abd El-Kader SE, Mogahed FA, El-Kersh MA, Habashy NH (2021) Synergistic protective effect of Beta vulgaris with meso-2, 3-dimercaptosuccinic acid against lead-induced neurotoxicity in male rats. Sci Rep 11(1):252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ito F, Sono Y, Ito T (2019) Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants 8(3):72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M et al (2015) Heavy metal stress and crop productivity. In: Crop production and global environmental issues. Springer, Cham, pp 1–25

    Google Scholar 

  63. Oyem JC, Chris-Ozoko LE, Enaohwo MT, Otabor FO, Okudayo VA, Udi OA (2021) Antioxidative properties of Ocimum gratissimum alters lead acetate induced oxidative damage in lymphoid tissues and hematological parameters of adult Wistar rats. Toxicol Rep 8:215–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kumar Singh P, Kumar Singh M, Singh Yadav R, Kumar Dixit R, Mehrotra A, Nath R (2018) Attenuation of lead-induced neurotoxicity by omega-3 fatty acid in rats. Ann Neurosci 24(4):221–232

    Article  PubMed  Google Scholar 

  65. Gąssowska-Dobrowolska M, Chlubek M, Kolasa A, Tomasiak P, Korbecki J, Skowrońska K et al (2023) Microglia and astroglia—the potential role in neuroinflammation induced by pre-and neonatal exposure to lead (Pb). Int J Mol Sci 24(12):9903

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zelickson B, Ballinger S, Dell’Italia L, Zhang J, Darley-Usmar V (2013) Reactive oxygen and nitrogen species: interactions with mitochondria and pathophysiology.

  67. Lubos E, Handy DE, Loscalzo J (2008) Role of oxidative stress and nitric oxide in atherothrombosis. Front Biosci 13:5323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kuhad A, Chopra K (2007) Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences. Eur J Pharmacol 576(1-3):34–42

    Article  PubMed  CAS  Google Scholar 

  69. Baty RS, Hassan K, Alsharif KF, El-Hennamy R, Elmahallawy E, Hafez M et al (2020) Neuroprotective role of luteolin against lead acetate-induced cortical damage in rats. Hum Exp Toxicol 39(9):1200–1212

    Article  PubMed  CAS  Google Scholar 

  70. Othman MS, Obeidat ST, Aleid GM, Abdel-Daim MM, Habotta OA, Schwartz L et al (2022) Pergularia tomentosa coupled with selenium nanoparticles salvaged lead acetate-induced redox imbalance, inflammation, apoptosis, and disruption of neurotransmission in rats’ brain. Open Chemistry 20(1):1313–1326

    Article  CAS  Google Scholar 

  71. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. s 7(3):153–163

    CAS  Google Scholar 

  72. El-Tantawy WH (2016) Antioxidant effects of Spirulina supplement against lead acetate-induced hepatic injury in rats. J Tradit Complement Med 6(4):327–331

    Article  PubMed  Google Scholar 

  73. Galal MK, Elleithy EM, Abdrabou MI, Yasin NA, Shaheen YM (2019) Modulation of caspase-3 gene expression and protective effects of garlic and spirulina against CNS neurotoxicity induced by lead exposure in male rats. Neurotoxicology 72:15–28

    Article  PubMed  CAS  Google Scholar 

  74. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Augustine I, Gertrude O, Martin E, Obinna U, Uchenna E, Ogugua E (2021) Cerebellar and hypocampal changes induced by lead in Wistar rats: the role of Ocimium gratissimium leaves extract J Bio. Med Sci 10(3):56

    Google Scholar 

  76. Ajibade A, Ogundero S (2021) Neurohistological changes in the cerebellar cortex of adult Wistar rats following lead acetate induced cortical damage. GSC Biol Pharm Sci 15(3):182–188

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the TETfund Institutional Based Research Fund (2021/2022).

Author information

Authors and Affiliations

Authors

Contributions

Adaze Bijou Enogieru conceived, designed and analysed the study. Nathan Etinosa Iyoha performed the experiments. The first draft of the manuscript was written by Adaze Bijou Enogieru. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adaze Bijou Enogieru.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the College of Medical Sciences, University of Benin (CMS/REC/2021/172).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enogieru, A.B., Iyoha, E.N. Role of Nitric Oxide, TNF–α and Caspase-3 in Lead Acetate-Exposed Rats Pretreated with Aqueous Rosmarinus officinalis Leaf Extract. Biol Trace Elem Res (2023). https://doi.org/10.1007/s12011-023-03974-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-03974-9

Keywords

Navigation