Skip to main content

Advertisement

Log in

Boric acid Increases Susceptibility to Chemotherapy by Targeting the Ferritinophagy Signaling Pathway in TMZ Resistant Glioblastoma Cells

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is a common and highly lethal form of brain cancer. Temozolomide (TMZ) is the primary chemotherapy used for GBM, but it has limited effectiveness, with about half of the patients developing resistance. Iron regulatory proteins (IRPs) modulate genes involved in iron metabolism, while the nuclear receptor coactivator 4 (NCOA4) controls iron metabolism through a process called ferritinophagy. In this study, we investigated whether boric acid increases chemosensitivity mediated by ferritinophagy via the NCOA4 and IRP2 signaling pathways in TMZ-resistant GBM cells. First, we generated TMZ-resistant GBM cells (A172-R and T98G-R cells). Next, we investigated the effects of boric acid on cell viability, proliferation, cell cycle, and cell morphology in these cells. Additionally, following boric acid treatment, we analyzed the expression and protein levels of various biochemical markers in these cells. Boric acid treatment in A172-R and T98G-R cells suppressed cell viability and proliferation, arrested these cells in the G1/G0 cell cycle, and induced morphological differences. Boric acid increased NCOA4, IRP2, iron, and malondialdehyde (MDA) levels in A172-R and T98G-R cells, while glutathione (GSH) and glutathione peroxidase 4 (GPx4) levels decreased. Moreover, boric acid treatment increased intracellular iron levels and lipid peroxidation by inducing NCOA4 and IRP2 expression levels in TMZ-resistant cells. According to our results, boric acid may regulate chemosensitivity in A172-R and T98G-R cells mediated by NCOA4 and IRP2. In conclusion, the manipulative effects of boric acid on the ferritinophagy pathway hold the potential to sensitize TMZ-resistant GBM cells to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS (2019) CBTRUS Statistical Report: primary brain and other Central Nervous System tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21(5):1–100. https://doi.org/10.1093/neuonc/noz150

    Article  Google Scholar 

  2. Moody CL, Wheelhouse RT (2014) The medicinal chemistry of imidazotetrazine prodrugs. Pharmaceuticals (Basel) 7(7):797–838. https://doi.org/10.3390/ph7070797

    Article  CAS  PubMed  Google Scholar 

  3. Lee SY (2016) Temozolomide resistance in Glioblastoma Multiforme. Genes Dis 3(3):198–210. https://doi.org/10.1016/j.gendis.2016.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alonso MM, Gomez-Manzano C, Bekele BN, Yung WK, Fueyo J (2007) Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 67(24):11499–11504. https://doi.org/10.1158/0008-5472.CAN-07-5312

    Article  CAS  PubMed  Google Scholar 

  5. Carter TC, Medina-Flores R, Lawler BE (2018) Glioblastoma Treatment with Temozolomide and Bevacizumab and Overall Survival in a Rural Tertiary Healthcare Practice. Biomed Res Int. 2018:6204676. https://doi.org/10.1155/2018/6204676

  6. Tang M, Chen Z, Wu D, Chen L (2018) Ferritinophagy/ferroptosis: Iron-related newcomers in human Diseases. J Cell Physiol 233(12):9179–9190. https://doi.org/10.1002/jcp.26954

    Article  CAS  PubMed  Google Scholar 

  7. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016) Ferroptosis is an autophagic cell death process. Cell Res 26(9):1021–1032. https://doi.org/10.1038/cr.2016.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509(7498):105–109. https://doi.org/10.1038/nature13148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellelli R, Federico G, Matte’ A, Colecchia D, Iolascon A, Chiariello M, Santoro M, De Franceschi L, Carlomagno F (2016) NCOA4 Deficiency impairs systemic Iron homeostasis. Cell Rep 14(3):411–421. https://doi.org/10.1016/j.celrep.2015.12.065

    Article  CAS  PubMed  Google Scholar 

  11. Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, François C, Chatelain D, Debuysscher V, Barbare JC, Chauffert B, Galmiche A (2015) The retinoblastoma (rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 356(2 Pt B):971–977. https://doi.org/10.1016/j.canlet.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Kong Y, Ma Y, Ni S, Wikerholmen T, Xi K, Zhao F, Zhao Z, Wang J, Huang B, Chen A, Yao Z, Han M, Feng Z, Hu Y, Thorsen F, Wang J, Li X (2021) Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines. Oncogene 40(8):1425–1439. https://doi.org/10.1038/s41388-020-01622-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shimizu S, Nakai K, Li Y, Mizumoto M, Kumada H, Ishikawa E, Yamamoto T, Matsumura A, Sakurai H (2023) Boron Neutron capture Therapy for recurrent Glioblastoma Multiforme: imaging evaluation of a Case with Long-Term Local Control and Survival. Cureus 15(1):e33898. https://doi.org/10.7759/cureus.33898

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang LW, Liu YH, Chou FI, Jiang SH (2018) Clinical trials for treating recurrent Head and Neck cancer with boron neutron capture therapy using the Tsing-Hua Open Pool Reactor. Cancer Commun (Lond) 38(1):37. https://doi.org/10.1186/s40880-018-0295-y

    Article  PubMed  Google Scholar 

  15. Turkez H, Arslan ME, Tatar A, Mardinoglu A (2021) Promising potential of boron compounds against Glioblastoma: in Vitro antioxidant, anti-inflammatory and anticancer studies. Neurochem Int 149:105137. https://doi.org/10.1016/j.neuint.2021.105137

    Article  CAS  PubMed  Google Scholar 

  16. Hacioglu C, Kar F, Davran F, Tuncer C (2023) Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells. Environ Toxicol 38(7):1690–1701. https://doi.org/10.1002/tox.23797

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Y, Chen Z, Kim SN, Gan C, Ryl T, Lesjak MS, Rodemerk J, Zhong R, Wrede K, Dammann P, Sure U (2022) Characterization of Temozolomide Resistance using a Novel Acquired Resistance Model in Glioblastoma Cell lines. Cancers (Basel) 14(9):2211. https://doi.org/10.3390/cancers14092211

    Article  CAS  PubMed  Google Scholar 

  18. Tomar MS, Kumar A, Srivastava C, Shrivastava A (2021) Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer 1876(2):188616. https://doi.org/10.1016/j.bbcan.2021.188616

    Article  CAS  PubMed  Google Scholar 

  19. Tiek DM, Rone JD, Graham GT, Pannkuk EL, Haddad BR, Riggins RB (2018) Alterations in cell motility, proliferation, and metabolism in Novel models of Acquired Temozolomide resistant glioblastoma. Sci Rep 8(1):7222. https://doi.org/10.1038/s41598-018-25588-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rabé M, Dumont S, Álvarez-Arenas A, Janati H, Belmonte-Beitia J, Calvo GF, Thibault-Carpentier C, Séry Q, Chauvin C, Joalland N, Briand F, Blandin S, Scotet E, Pecqueur C, Clairambault J, Oliver L, Perez-Garcia V, Nadaradjane A, Cartron PF, Gratas C, Vallette FM (2020) Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis 11(1):19. https://doi.org/10.1038/s41419-019-2200-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, Kang R, Tang D (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8):1425–1428. https://doi.org/10.1080/15548627.2016.1187366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu D, Chen L (2015) Ferroptosis: a novel cell death form will be a promising therapy target for Diseases. Acta Biochim Biophys Sin (Shanghai) 47(10):857–859. https://doi.org/10.1093/abbs/gmv086

    Article  CAS  PubMed  Google Scholar 

  23. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohshima T, Yamamoto H, Sakamaki Y, Saito C, Mizushima N (2022) NCOA4 drives ferritin phase separation to facilitate macroferritinophagy and microferritinophagy. J Cell Biol 221(10):e202203102. https://doi.org/10.1083/jcb.202203102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mou Y, Wu J, Zhang Y, Abdihamid O, Duan C, Li B (2021) Low expression of ferritinophagy-related NCOA4 gene in relation to unfavorable outcome and defective immune cells infiltration in clear cell renal carcinoma. BMC Cancer 21(1):18. https://doi.org/10.1186/s12885-020-07726-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death Nexus linking metabolism, Redox Biology, and Disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quiles Del Rey M, Mancias JD (2019) NCOA4-Mediated ferritinophagy: a potential link to Neurodegeneration. Front Neurosci 13:238. https://doi.org/10.3389/fnins.2019.00238

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wei X, Liu M, Zheng Z, Yu S, Huang L, Ma J, Gao Y, Peng Y, Chen L, Tan R, She Z, Yang L (2023) Defective NCOA4-dependent ferroptosis in senescent fibroblasts retards diabetic wound healing. Cell Death Discov 9(1):138. https://doi.org/10.1038/s41420-023-01437-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilkinson N, Pantopoulos K (2014) The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol 5:176. https://doi.org/10.3389/fphar.2014.00176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meyron-Holtz EG, Ghosh MC, Rouault TA (2004) Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306(5704):2087–2090. https://doi.org/10.1126/science.1103786

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Deng Z, Hatcher H, Miller LD, Di X, Tesfay L, Sui G, D’Agostino RB Jr, Torti FM, Torti SV (2014) IRP2 regulates breast tumor growth. Cancer Res. 2014;74(2):497–507. https://doi.org/10.1158/0008-5472.CAN-13-1224

  32. Yao F, Cui X, Zhang Y, Bei Z, Wang H, Zhao D, Wang H, Yang Y (2021) Iron regulatory protein 1 promotes ferroptosis by sustaining cellular iron homeostasis in Melanoma. Oncol Lett 22(3):657. https://doi.org/10.3892/ol.2021.12918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ceyhan Hacioglu contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ceyhan Hacioglu and Cengiz Tuncer. The first draft of the manuscript was written by Ceyhan Hacioglu. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ceyhan Hacioglu.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

Our research is not a study involving animal or human data and biological materials.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, C., Tuncer, C. Boric acid Increases Susceptibility to Chemotherapy by Targeting the Ferritinophagy Signaling Pathway in TMZ Resistant Glioblastoma Cells. Biol Trace Elem Res (2023). https://doi.org/10.1007/s12011-023-03930-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-03930-7

Keywords

Navigation