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Abstract
Heavy metal pollution of natural and cultivated habitats may be caused by agricultural, industrial, and human activities. Fish 
living in these habitats easily accumulate metals in their organs; for food safety and human health, the heavy metals in fish 
flesh are of major concern due to the harmful nature of these pollutants even in low quantities. In this study, metals (Iron, Fe; 
Lead, Pb; Cadmium, Cd; Nickel, Ni; Copper, Cu and Zinc, Zn) in the muscle, liver, intestine, and gill of gilthead seabream 
(Sparus aurata, Denis is local name) were monitored to determine the contamination levels and to investigate the protective 
impact of cooking methods on the reduction or mitigation of metal levels. Although the Denis samples exhibited relatively 
low Pb and Cd levels, most fish samples had elevated levels of Fe and Zn. The examined metals accumulated at the highest 
level in the liver and gills compared to the other organs. Results showed that cooking methods had a considerable effect on 
concentrations of metals. However, the levels of metal in S. aurata from various sources were reduced significantly (P < 
0.05) by frying, microwave, and grilling cooking, which was ordered in the following sequence as microwave cooking < 
grilling < frying. The consumption of Denis fish from different sources (wild and cultured) has no negative effects on health, 
according to a study of health hazards based on indices of carcinogenic and non-carcinogenic. The metal results indicated 
that different fish sources (wild and cultured) could be acceptable for human consumption. Data hypothesized a positive 
impact of awareness among the native community.
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Introduction

Metal pollution of aquatic habitats is a major environmen-
tal concern worldwide, especially in Egypt. Heavy metals 
are present in the aquatic environment in a variety of ways, 
including through untreated or insufficiently treated agri-
cultural, domestic, and industrial effluent [1]. Metals are 
ingested by aquatic organisms in low concentration through 
water uptake and in higher concentration through biomag-
nification of prey; however, consumers can ingest metals 
through the food chain, which can have acute and long-term 
health effects [2]. Among aquatic species, the Denis, Sparus 
aurata receives HMs from the sediments and water in which 

it lives. According to Hadj Taieb et al. [3], it is opportunis-
tic and carnivorous, which allows it to accumulate metals 
through the biomagnification process (via the food chain). 
The S. aurata, is an economically important demersal spe-
cies inhabiting Egypt’s Mediterranean region and is one of 
the most important species in Egyptian marine aquaculture 
[4]. The major Egyptian fisheries resource for seabream is the 
Bardawil Lake, which is a shallow body of water with high 
salinity and is regarded as one of the most important sources 
of Egyptian fisheries [5]. Metal accumulation in Denis tissues 
has been observed in various scientific studies [6–8].

Heavy metals, including Fe, Cu, Co, Ni, Mn, and Zn, are 
necessary for biological life; but become poisonous at higher 
concentrations [9]. However, Mercury, Cadmium, Arsenic, and 
Lead are toxic and, even at low concentrations, can be hazardous 
[10]. According to the classifications of heavy metals, consuming 
them in low or high quantities could pose a serious risk. Inges-
tion of toxic metals at low levels over an extended period can 
be extremely hazardous to human health. Additionally, ingesting 
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significant essential metal levels may be hazardous to human 
health. [11]. Depending on the nutritional habits, seafood might be 
prepared in various ways using different cooking strategies such as 
boiling, frying, baking, and grilling [12]. Different cooking strate-
gies can affect the heavy metal content of fish [13]. Consequently, 
it is important to determine their concentrations in raw and cooked 
Denis fish in order to evaluate the possible risks of consumption 
for humans. Therefore, the risks to human health from metal pol-
lution can be reduced when fish consumers are aware of the most 
effective cooking strategies to reduce metal pollution.

This study aims to evaluate some trace elements such 
as Fe, Pb, Cd, Ni, Cu, and Zn levels in the muscle, liver, 
intestine, and gills of both cultured and wild Denis fish (S. 
aurata) to calculate the contamination level and investigate 
the protective effect of cooking strategies (frying, micro-
wave cooking, and grilling) on the mitigation or reduction 
of metal levels. It also aims to identify the health risks to 
fish consumers and to ensure public health safety by raising 
awareness of possible health hazards related to fish intake.

Material and Methods

Collection of Denis Fish Samples

Eighty samples of Denis fish were collected by fishermen 
from two separate locations in Egypt: the first collection 

was from the Bardawil Lake (wild source), located at lati-
tude of 31° 11′ 25.74″ N and longitude of 33° 09′ 44.03″ 
E, while the second one was from private fish farm waters 
(cultured source) situated in Ezbet Elborg, Domietta 
province, at latitude of 31° 24′ 59.33″ N and longitude 
of 31° 48′ 47.95″ E, both sources supplied saline-water 
from Mediterranean sea. Sampling was bought by local 
fishermen between July, to October 2022 (Fig. 1). The 
Denis samples were stored in an icebox after collection 
and transported to the marine biology laboratory for fur-
ther analysis.

Cooking Methods of Denis Fish Muscles

The samples of Denis fish were washed, cleaned, and 
filleted in the laboratory after being measured for 
weight and length. Denis fish weights and lengths were 
470±23 g and 25.52 ± 0.88 cm, respectively for the cul-
tured source and 393.02 ± 44.40 g and 23.79 ± 1.19 
cm, respectively for the wild source. Filleted Denis fish 
were divided into four groups (10 samples from each 
group). The first group was uncooked fish used as refer-
ences (raw), the second group was cooked through frying 
(Fish was fried in fresh sunflower oil for 8 min), the third 
group was cooked through microwave, and the fourth 
group was cooked through grilling (Fish was grilled in 
oven for 20 min).

Fig. 1  Location of the sampling of Denis fish sources in the study areas.
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Heavy Metal Level Measurements

The Digestion of Denis Fish Samples

The Denis fish organs (raw; muscle, liver, intestine, and gill) 
and cooked fish (grilling, microwave cooking, and frying) sam-
ples were investigated for measurements of heavy metal level 
(HML). The samples (raw and cooked) were dried at 105°C for 
24 h in the lab oven. About 0.5 g of dried samples were placed 
in 50 mL digestion vessels with ultrapure  HNO3 (65%, 5 mL), 
and  H2O2 (30%, 1 mL) was added. The mixture was warmed 
until completely digested on the hot plate. The digested samples 
were allowed to cool at room temperature, moved to volumetric 
flasks, and then mixed with HNO3 (1%), resulting in a final 
volume of 25 mL. The diluted solutions were then tested [14].

Analysis of HML in Denis Fish Organs

Levels of HM were detected in diluted solutions of Denis 
organs. An inductively coupled plasma optical emission spec-
trophotometer (Perkin Elmer, ICP-OES, 4300 DV, Shelton, 
USA) was employed to quantify the HML in the serial dilutions 
(specimens, n=5). The specimens treated with four calibration 
standards were made up of a stock solution (1 μg  l−1) of each 
HM mixed in 5% (v/v) nitric acid at levels of 0, 50, 100, 200, 
400 μg/L to calculate the calibration plot to determine the level 
of each HM in the digested mixtures. The quality control (QC) 
sample was checked every ten samples to ensure that both the 
instrument drift and calibration curve were within tolerable lim-
its. To determine the strategy detection limit, duplicate blank 
specimens from each analytical group were performed in a ran-
domized order. The calculated correlation coefficient (R2) for 
all calibration curves of the metals analyzed was from 0.992 to 
0.999. The validation parameters of the analytical method are 
given in Table 1S. The recovery percentage varied from 95.36 
to 98.65%. On a dry weight basis (dw-b), the contents of metals 
in the fish samples were assessed in μg/g dw-b [2].

Environmental Hazard Assessment

The levels of metal pollution in aquatic species are estimated 
using a variety of indices [15]. In this study, the contamina-
tion status of HM in the organs of wild and cultured Denis 
fish was assessed using several frequently used index values, 
including the contamination factor (CF-HML) and the pollu-
tion index (MPI-HML) to evaluate the contamination degree 
of HML in Denis fish captured from different sources.

Contamination Factor (CF‑HML)

Using metal levels in Denis fish samples, the contamination fac-
tor (CF-HML) for metals was derived as the following equation:

where  CHML stands for the HML Denis fish samples 
(μg/g dw-b), and  CBL stands for background level of metals 
(Pb, Fe, Cd, Cu, Ni, and Zn). The values of CF-HML ≤ 1 
denote a minimal limit of contamination, 1< CF-HML ≤ 2 
is denoted as a low contamination degree, 2 < CF-HML ≤ 
3 is moderate contamination, and CF-HML > 3 represented 
by a high degree of contamination [15].

Pollution Index (MPI‑HML)

The pollution index (MPI-HML) is an integrated approach 
to assess heavy metal pollution. This equation was used to 
estimate the MPI-HML [15]:

where  HML1 is the first metal level,  HML2 is the second 
metal level,  HML3 is the third metal level, n is the number 
of examined metals and  HMLx is the  xth metal level (μg/g 
dw-b) in the Denis fish organs. The contamination level is 
safe degree when the MPI-HML value is less than 1, the 
MPI-HML is between 1.0 and 2.0, conditions are catego-
rized as slightly contaminated, 2.0 to 3.0, moderately to 
severely contaminated, 3.0 to 5.0, severely contaminated, 
and > 10 heavily contaminated.

Health Hazard Assessment

We employed a technique established by the USEPA [16] 
to evaluate the risk to human health of HML consumed by 
ingestion of the muscles of the investigated fish. The esti-
mated daily intake (EDI- HML), non-carcinogenic and carci-
nogenic indexes of HML were all performed by detecting the 
levels of HM in the raw muscles, fried, microwaved cooking, 
and grilled samples.

Estimated Daily Intake (EDI)

The EDI-HML (the daily average ingestion of a specific 
metal during the lifespan) was used to calculate the exposure 
dose caused by direct human consumption of some metals 
observed in edible organs. The EDI-HML was calculated 
using the following formula and represented as mg/kg/day 
[17].

where the EP refers to the lifespan of exposure time, 
which is estimated to be 70 years old; the IR needs to 
account again for the daily ingestion of fish intake was cal-
culated as kilograms per day, or 41 g per day for adults and 
27 g per day for children. C-HML stands for the metal levels 

CF − HML = CHML∕CBL

MPI − HML =
(

HML
1
× HML

2
× HML

3
× ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ × HMLx

)1∕n

EDI − HML = (EP × IR × C − HML × ER∕BW × AT) × 10
−3
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in raw muscles, fried, microwaved cooking, and grilled sam-
ples (μg/g wet wt.), Fish wet weight was converted to dry 
weight using a conversion coefficient of 4.8 [18]; ER means 
standing for exposure rate (365 days  year-1); BW refers to 
the body weight, which was previously defined as 70 per kg 
in adults and 30 per kg children; The average lifetime is AT 
(70 years × 365 days per year).

Non‑carcinogenic Index

Target hazard quotient or THQ‑HML

The THQ, a non-cancer evaluation of harmful health effects 
associated with ingesting certain HML pollutants in edible 
fish flesh, was established to assess human risk. The ratio 
of EDI-HML (average daily dosage) to the oral reference 
dose (mg/kg/day, ORD-HML) was used to calculate THQ-
HML as:

According to recommendations made by the USEPA in 
2018 for Pb, Cu, Cd, Ni, Fe, and Zn, the ORD-HML should 
be 0.00357, 0.04, 0.001, 0.02, and 0.3 mg/kg/day, respec-
tively [16].

Hazard index (HI‑HML)

The HI-HML is another mathematical formula that, accord-
ing to Cui et al. [19], reflects the impact of non-carcinogenic 
risks by the sum of the THQ-HML values for the metals 
under study:

Carcinogenic index (CI‑HML)

The carcinogenic index (CI-HML) of heavy metal exposure 
lifetime was established as the incremental risk of an indi-
vidual acquiring cancer depending on the carcinogenic slope 
factor (CSF-HML for Ni, Cd, and Pb were 0.00084, 6.3, and 
0.0042 mg/kg/day, respectively). This equation was applied 
to calculate the CI-HML [20]:

Statistical Analysis

The SPSS, a statistical program (Version 22; software, 
USA), was used to perform statistical analyses. To determine 
a normal distribution and homogeneity of variance, Levene’s 
test was applied. To determine the statistically significant 

THQ − HML = EDI − HML ∕ORD − HMs

HI − HML =
∑

THQ − HML (metals)

CI − HML = EDI − HML × CSF ⋅ −HML

differences between the impacts of different cooking strat-
egies on the level of metals, the results were statistically 
evaluated using analysis of variance (one-way ANOVA), and 
Post hoc Tukey analyses were performed when differences 
occurred. Additionally, to investigate the statistical differ-
ences between wild and cultured sources of each metal in 
Denis fish, the independent-sample T-test was employed. 
However, the correlations between the metal levels in sam-
ples of wild and cultivated Denis fish were assessed using 
Pearson's correlation coefficient. The statistics are presented 
in tables as means±standard deviation. Statistical signifi-
cance, however, was represented at p < 0.05.

Results and discussion

HML in Organs of Denis Fish

Some HMLs can be found in the environment naturally. For 
example, essential HMLs such as Zn, Cu, and Fe have bio-
logical roles for aquatic species, but above certain threshold 
levels, they are potentially toxic to aquatic biota. However, 
other non-essential HMLs, such as Pb, As, Hg, and Cd, have 
no known biological role and are often toxic even at low 
levels [21, 22]. The levels of Pb, Fe, Cu, Ni, Cd, and Zn in 
the different sources-specific Denis organs, i.e., intestine, 
gill, muscle, and liver, revealed that there was a significant 
possibility of HML in the organs of Denis fish (Table 1). 
Likewise, the present study mentioned that the HML in 
the organs of wild and cultured Denis fish (gill, intestine, 
muscle, and liver) showed more Iron (Fe) than any studied 
HML, while Cadmium (Cd) was at the lowest end, and the 
HML ranged in this order: Fe > Cu > Zn > Ni > Pb > 
Cd for the studied organs (intestine, muscle, and liver). In 
contrast, the HML of gills is arranged in this sequencing: 
Fe > Zn > Cu > Ni > Pb > Cd. The most abundant of the 
HML studied was Iron, while Cd showed alternating levels 
of accumulation in Denis fish organs. This observation is in 
accordance with Al-Halani et al. [23] who revealed that the 
maximum level of HM in wild fish organs, Dicentrarchus 
labrax, occurred for Fe and the minimum level was detected 
for Cadmium. Moreover, The HML in the wild and cultured 
Denis organs exhibited the minimum values recorded for 
muscle. The findings of the present study also confirmed the 
results reported by Begum et al. [24], Liu et al. [25] Abbas 
et al. [26] and disagreed with Zhao et al. [27], Liu et al. [28] 
and Liu et al. [29] [30], whom reported that the muscles of 
marine fish recorded the highest levels of heavy metals.

In comparison to FAO standards, the Iron levels in 
the wild organs of Denis fish ranged from 36.21±3.54 to 
86.83±10.32 g/g, dw-b, which were lower than the accept-
able limits. In the cultured organs, however, it fluctuated 
between 77.88±8.52 and 118.50±7.54 μg/g, dw-b. Cultured 
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origins of muscles and intestine were lower than the per-
missible limit, whereas gills and liver were higher than the 
acceptable limits. According to FAO [31], the Zinc levels 
in the wild and cultured organs of Denis fish were below 
the permissible levels, except for the gills (45.85±1.65 and 
49.85±2.01 μg/g, dw-b, respectively). The lowest levels 
of Pb in the organs of wild and cultured Denis fish were 
0.84±0.07 and 0.74±0.24 μg/g, dw-b, respectively, and the 
highest levels were 1.69±0.88 and 1.59±0.42 μg/g, dw-b, 
respectively. All four organs of the Denis fish tested for Pb 
levels were below the acceptable limits estimated by the 
FAO [31]. Copper levels in the wild and cultured organs of 
Denis fish ranged between 21.79±1.24 to 39.04±3.21 μg/g, 
dw-b in the former origin and 23.77±2.02 to 43.04±2.65 
μg/g, dw-b in the second one. Cu levels in the muscles and 
intestine were lower than the permissible limit, whereas the 
gills and liver were higher than the acceptable limits esti-
mated by the FAO [31]. The minimal levels of Nickel in the 
organs of wild and cultured Denis fish were 1.44±0.85 and 
2.09±0.64 μg/g, dw-b, respectively and the maximal levels 
were 8.39±0.84 and 12.04±0.48 μg/g, dw-b, respectively. 
All four organs of Denis fish from wild and cultured ori-
gins tested for Ni levels were below the acceptable limits 
estimated by the FAO [31]. Cadmium levels in the wild and 
cultured organs of Denis fish ranged between 0.35±0.03 to 
0.69±0.07 μg/g, dw-b in the former origin and 0.25±0.02 

to 0.59±0.04 μg/g, dw-b in the second one. Cd levels in the 
muscles and intestine were lower than the permissible limit, 
whereas gills and liver were higher than the acceptable limits 
estimated by the FAO [31].

In most cases, the essential metals exhibited higher lev-
els in cultured Denis organs than in wild Denis organs; this 
may be attributed to the fact that these metals are required 
for different biological activities and thus supplied into fish 
diets [22, 26, 32], suggesting that cultured fish have higher 
levels [33–35].

This observation agrees with Yipel et  al. [36], who 
reported that the wild fish, Sparus aurata, accumulate less 
Fe and Zn than the cultured ones. However, the level of toxic 
metals in wild Dines fish organs was significantly lower than 
in cultured fish organs (P < 0.05), which may be attributed 
to wild fish surviving over several years compared to cul-
tured fish, which are captured within six months. Wild Denis 
organs can accumulate pollutants with prolonged biological 
lifespans, notably both Cadmium and Lead, over a longer 
lifetime compared to cultured Denis organs. According to 
Chatta et al. [37], the Lead and Cadmium absorbed in the 
cultured Labeo rohita and Cirrhinus mrigala were lower 
than in the wild ones.

The cadmium levels exhibited the lowest values in the 
organs of Denis fish (Sparus aurata) from both studied 
sources. Cadmium is extremely harmful due to its extremely 

Table 1  HML (means±SD, μg/g, dw-b) in Denis fish organs (Sparus aurata) from different sources.

*Between wild and cultured Denis fish, metals display or do not display significant differences (T-test, p-value). While a one-way ANOVA 
p<0.05, reveals that findings from the same rows and fish source (among Denis organs) having different alphabetic small letters are statistically 
different. However, bold values are above the allowed limit

Metals Fish source Denis fish organs Permis-
sible limit 
[31]Gills Muscles Intestine Liver

Fe Wild 79.58±2.32 b 36.21±3.54 d 53.29±10.25 c 86.83±10.32a 100 μg/g
Cultured 111.25±10.25 b 77.88±8.52 d 81.29±6.24 c 118.50±7.54 a

T-test – p-value 4.12 – 0.002 3.29 – 0.003 2.56 – 0.016 2.82 – 0.009
Zn Wild 45.85±1.65 a 18.20±1.02 d 19.85±1.45 c 22.20±1.41 b 40 μg/g

Cultured 49.85±2.01 a 20.18±0.87 d 22.21±1.02 c 26.20±2.54 b

T-test – p-value 3.78 – 0.001 4.83 -< 0.001 2.57 – 0.016 2.87 – 0.008
Pb Wild 1.60±0.15 b 0.84±0.07 d 1.38±0.37 c 1.69±0.88 a 2 μg/g

Cultured 1.55±0.08 b 0.74±0.24 d 1.28±0.68 c 1.59±0.42 a

T-test – p-value 1.57 – 0.13 1.03 – 0.23 0.801 – 0.43 1.32 – 0.19
Cu Wild 39.04±3.21 a 21.79±1.24 d 23.44±0.89 c 30.39±2.14 b 30 μg/g

Cultured 43.04±2.65 a 23.77±2.02 d 25.80±1.24 c 34.39±1.89 b

T-test – p-value 2.56 – 0.016 2.41 – 0.025 2.31 – 0.028 2.50 – 0.020
Ni Wild 4.07±0.47 b 1.44±0.85 d 1.77±0.36 c 8.39±0.84 a 30 μg/g

Cultured 6.72±1.24 b 2.09±0.64 d 3.07±0.41 c 12.04±0.48 a

T-test – p-value 2.31 – 0.03 2.55 – 0.02 2.88 – 0.01 2.41 – 0.03
Cd Wild 0.60±0.05 b 0.35±0.03 d 0.41±0.01 c 0.69±0.07 a 0.5 μg/g

Cultured 0.52±0.07 b 0.25±0.02 d 0.32±0.05 c 0.59±0.04 a

T-test – p-value 0.82 – 0.41 0.92 - 0.36 1.03 – 0.23 0.92 - 0.36
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potential toxicity even at low levels, its persistence in the 
environment, and its proclivity for bioaccumulation in 
aquatic biota. In the aquatic biota, Cd is not digested by the 
body, and it accumulates in the soft tissues and becomes 
poisonous, and as a direct consequence of their bioaccu-
mulation, the food chain has become contaminated, affect-
ing the entire ecological activity. Nowadays, global atten-
tion becomes more critical for African countries such as 
Egypt, where the pressure from exploding the population 
requires a lot of food supply [38–42]. Additionally, Perera 
et al. [43] stated that natural and anthropogenic activities can 
be identified as an important source of Cd to the biosphere. 
Natural emissions are mainly from the mobilization of natu-
rally occurring Cd from the earth’s crust and mantle, e.g. 
volcanic eruptions and weathering of rocks. Anthropogenic 

sources are mainly from the mobilization of Cd impurities 
in raw materials (e.g., phosphate minerals, fossil fuels) and 
emissions from the manufacturing, use, disposal, recycling, 
reclamation, or incineration of products intentionally.

Environmental Hazards Estimation

The contamination factor (Cf-HML), and metal pollution index 
(MPI-HML) were all applied to evaluate the contamination 
degree of HML in different organs of fish [15]. The evaluated 
Cf-HML values for the studied HML in wild Denis fish organs 
ranged from 0.05 to 1.38 μg  g−1, and from 0.07 to 1.43 μg  g−1 
in cultured Denis fish organs (Fig. 2). The Cf-Pb and Cf-Cd 
values were higher in the wild fish organs compared with cul-
tured Denis organs suggesting that their pollution level was 

Fig. 2  Cf-HML, and MPI-MHL (averages±SD) based on HML 
in the organs of Denis fish (Sparus aurata) from different sources; a 
one-way ANOVA, reveals that results from the same fish source hav-

ing different alphabetic small letters (Wild Denis source) and capital 
letters (Cultured Denis source) are significantly different (p<0.05).
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relatively increased in organs of cultured Denis, in accordance 
with previous studies, Pb and Cd pose significant potential eco-
logical risks [44, 45]. Cf-HML levels in Denis organs dropped 
in the following order: gills > liver > intestine > muscles for 
Cf-Fe, Cf-Pb, Cf-Ni, and Cf-Cd, whereas gills > liver > intes-
tine > muscles for Cf-Zn and Cf-Cu. Moreover, the computed 
values of CF-HML in the Denis fish showed a low level of con-
tamination (Cf-HML<1) detected in the intestines and muscles 
of two sources. Contrarily, Cf-Fe values in the gills and liver 
of cultured Denis fish had moderate contamination (1 ≥ CF 
≤3), and Cf-Zn, Cf-Cu, and Cf-Cd in the gills and liver from 
different sources had moderate contamination. Additionally, 
Cf-HML values for Fe, Zn, Cu, and Ni were lower in the wild 
organs compared with cultured Denis organs, while they were 
higher for Pb and Cd. This indicates that cultured Denis may 
be highly contaminated with the essential metals (Fe, Zn, Cu, 
and Ni), while highly contaminated wild fish organs with non-
essential metals were also found (Pb and Cd). The estimated 
values for MPI-HML in cultured sources of Denis organs were 
higher than the wild ones, suggesting a high pollution degree 
in cultured organs. However, the contamination degree based 
on HML in Denis fish organs can be classified as follows: Gills 
> liver > intestine > muscle for wild organs, while liver > gills 
> intestine > muscle for cultured organs, according to the esti-
mated data resulting from MPI-HML (Fig. 2). Therefore, the 
high values in pollution indices of cultured Denis compared to 
wild sources raise concern for consumers' health due to metal 
contamination. Hence, it is possible to determine the potential 
impact on the reduction of HML by using cooking methods.

Pearson Correlation of HML in the Denis Fish Origin

Pearson correlation (r) was evaluated to calculate if some of 
these metals were interrelated with each other based on HML 

in the wild and cultured Denis organs (Table 2S). The posi-
tive correlation between the MHL indicates a similar input 
source of metal, while the negative correlation indicates a 
different source. In this study, Pearson correlation analysis 
based on HML in organs of wild Denis fish showed a sig-
nificant positive correlation between Fe-Ni, Fe-Cd, Pb-Ni, 
Cu-Ni, and Cu-Cd, whereas a significant negative relation-
ship was revealed between Cd-Ni, Pb-Cd, and Pb-Cu. In the 
cultured Denis fish, however, correlation analysis showed a 
significant positive correlation between essential metals with 
each other (Fe, Ni, Cu, and Zn), while a significant negative 
correlation was shown between Cd and the studied HML, 
except Zn; Lead-Copper, and Lead-Nickel.

Effect of Cooking Strategies on HML

Cooking the wild and cultured Denis muscle identifies any 
changes in HML, providing a significantly (P < 0.05) accu-
rate representation of the potential human consumption 
of HML. Every day, humans cook using various cooking 
strategies of their choice, and fish is almost never consumed 
uncooked, especially in Egypt. This research chose frying, 
grilling, and microwave cooking as examples of cooking 
strategies on the HML in the muscle of Denis fish (Table 2). 
Reduction percentages of HML in cooked Denis fish from 
different sources were represented in Table 1S. The grilling 
of wild and cultured Denis samples resulted in the reduc-
tion of Lead (56.60 and 63.87%, respectively), Cadmium 
(53.46 and 55.96%, respectively), Nickel (45.13 and 31.10%, 
respectively), Iron (11.74 and 5.46%, respectively), Copper 
(7.57 and 6.94%, respectively), and Zinc (23.36 and 21.06%, 
respectively). In accordance with our findings, Abd-Elghany 
et al. [46] revealed that the levels of Lead (10%) and Arse-
nic (50 %) in raw shrimps were lowered by 10 % and 24 %, 

Table 2  HML (means±SD, 
μg/g, dw-b) in raw and cooked 
Denis fish samples (Sparus 
aurata) from different sources.

*Note: One-way ANOVA, reveals that findings from the same rows and fish source having different alpha-
betic small letters are statistically different (p<0.05).

Raw Cooked samples

Microwaved Grilled Fried

Fe Wild 36.21±3.54a 11.57±1.24 d 23.89±3.05 c 29.89±2.32b

Cultured 77.88±8.52 a 16.28±3.65 d 47.08±3.44 c 62.08±4.55 b

Zn Wild 18.20±1.02 a 8.72±1.02 d 13.46±1.33 c 15.04±1.65 b

Cultured 20.18±0.87 a 3.86±0.99 d 8.33±0.88 c 12.28±1.05 b

Pb Wild 0.84±0.07 a 0.11±0.06 d 0.24±0.06 c 0.39±0.04 b

Cultured 0.74±0.24 a 0.09±0.01 d 0.20±0.05 c 0.35±0.07 b

Cu Wild 21.79±1.24 a 5.46±0.67 d 7.81±0.87 c 12.84±1.33 b

Cultured 23.77±2.02 a 10.53±1.65 d 15.79±1.57 c 18.45±1.66 b

Ni Wild 1.44±0.85 a 0.36±0.05 d 0.90±0.07 c 1.08±0.75 b

Cultured 2.09±0.64 a 0.14±0.05 d 1.12±0.57 c 1.44±0.65 b

Cd Wild 0.35±0.03 a 0.18±0.04 d 0.27±0.04 c 0.30±0.02 b

Cultured 0.25±0.02 a 0.12±0.01 d 0.20±0.02 c 0.22±0.03 b
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respectively in grilled shrimp, and by 27 % and 36 %, respec-
tively in crabs caught in the Mediterranean Sea and cooked 
on the grill. Additionally, Ersoy et al. [47] found lower levels 
of Cr, As, and Pb and higher levels of Nickel in grilled-
farmed seabass caught in Turkey. Abu-Raya et al. [48] men-
tioned that the Copper, Lead, and Cd levels increased after 
grilling Bolti fish compared to raw samples, while the Zn 
level declined. In contrast to our observations, an increment 
in the levels of Hg, Cu, Se, Mn, Zn, As, and Sr by 10–55% 
and a lowering in Iron and Cadmium levels by 27–66% after 
grilling techniques for cultivated Meagre fish were observed 
in Portugal [49]. According to Kalogeropoulos et al. [50], 
grilled anchovy have higher levels of Cd, Zn, Hg, Fe, Pb, Ni, 
Cu, and Cr than their raw flesh.

Frying of wild and cultured Denis samples exhibited a 
significant minimization of Lead (45.28 and 50.97%, respec-
tively), Cadmium (12.56 and 17.51%, respectively), Nickel 
(24.99 and 17.22%, respectively), Iron (9.28 and 4.31%, 
respectively), Copper (6.24 and 5.72%, respectively), and 

Zinc (18.46 and 16.65%, respectively). The minimization 
of HML after frying may be attributed to moisture loss and 
fat increase during the frying strategy. The outcomes are 
consistent with the investigation on seabass conducted by 
Hosseini et al. [51], who determined that the frying method 
reduced Iron and Zinc levels, whereas increasing Manganese 
and Copper levels, and Arisekar et al. [52] who calculated 
that the levels of HML in Penaeus vannamei varied mainly 
due to moisture loss and uptake of oil. Pb and Ni levels 
were significantly lower (P < 0.05) than in the muscle of 
Thunnus tonggol, longtail tuna, after the frying strategy 
[53]. The levels of Hg, Zn, Fe, Cu, Cd, Pb, Cr, and Ni in 
hake, anchovy, bogue, picarel, sand smelt, sardine, stripped 
mullet, Mediterranean mussel, squid, and shrimp were sig-
nificantly higher after domestic pan-frying [50]. Ersoy et al. 
[47] recorded that the Lead levels in raw and fried fish were 
0.278, and 0.277 mg  kg−1, respectively. The minimization 
of Fe, Cd, Ni, Mn, Zn, As, Se, and Cu after shrimp frying 
was evaluated as 96.4, 49.1, 67.3, 19.8, 95.3, 99.2, 89.6, 

Fig. 3  EDI-HML values (mg/kg/day) of studied heavy metals through different ways of consumptions for adults and children in the raw and 
cooked Denis fish samples.



2872 M. M. M. Abbas 

1 3

and 75.3 %, respectively. Copper and Zinc levels declined 
after frying in Rainbow trout muscles [54]. A minimization 
trend in Cadmium and Zinc was observed in sardines fishes 
[55]. However, Abu-Raya et al 2007 revealed that Copper, 
and Cadmium levels after frying of Bolti fish were higher 
compared to raw samples, while the Zinc and Lead levels 
declined. However, Lead levels were not significantly low-
ered after the frying of sea bass [47].

The microwave cooking of wild and cultured Denis 
muscles exhibited a significant reduction in HML levels by 
81.74, 92.51% for Pb; 66.14, 77.27% for Cd; 65.96, 45.45% 
for Ni; 27.48, 12.78% for Fe; 18.13, 16.62% for Cu and 
43.69, 36.10% for Zn. Also, the higher in HML minimiza-
tion observed after microwave cooking than the processes 
of grilling and frying, Arisekar et al. [52] reported that after 
microwave cooking, Fe, Cr, Ni, Zn, and Cu levels in shrimp 
tissue decreased by 25.7, 47.5, 11.5, 32.5, and 57.7 percent, 
respectively. The reductions in Zn, Fe, Cu, Pb, and Cr levels 
were observed after the microwave strategy of rainbow trout 
[56], sea bass [51] and catfish [47]. Previous studies men-
tioned that the higher levels of HML after the microwave 
strategy are related to oil decline/uptake and water loss [55, 
57]. This minimization in HML may be due to the denatura-
tion of proteins. Microwave heating consistently results in a 
higher level of protein denature than traditional methods of 
cooking [58], and it also leaches away proteins that bind Iron, 
Chromium, and Copper [59]. However, microwaved cooking 
of catfish resulted in no changes in the Lead level [56].

According to our findings, the HML in the muscles of 
the Denis fish was significantly (P < 0.05) affected by the 

cooking techniques. Cooking techniques, including micro-
waving, grilling, and frying, showed a significant (P< 0.05) 
reduction in the studied HML levels (Ni, Zn, Pb, Cu, Cd, 
and Fe) observed in the muscle of wild and cultivated Denis. 
HML was found in raw and cooked samples in the following 
order: raw > fried > grilled > microwaved samples. These 
outcomes might be the result of changes in moisture and fat 
content that happened during microwave, grilling, and frying 
cooking. The reduction of HML in fish cooked to different 
temperatures varies according to the physico-chemical fea-
tures of HML and their chemical variation, the sulfhydryl 
link between the protein and the HML, the species, size, and 
the cooking variables, such as the duration, temperature, and 
cooking condition [50, 57]. It would be significantly (P < 
0.05) more accurate to assess the potential health effects of 
ingestion by tracking changes in HML in cooked Denis fish.

Health Hazards Estimation

Consumers’ daily exposure to HML through eating foods 
high in HML was employed to avoid any detrimental effects 
on humans during their lifespan [60]. EDI (mg  kg−1day−1) 
for HML in the raw and cooked muscles of both cultured and 
wild Denis fish are represented in Table 4S and Fig. 3. The 
EDI-HML values of Fe, Zn, Cu, Ni, Cd, and Pb for consum-
ers (children and adults) were lower than the PTDI (permis-
sible tolerable daily intake). The PTDI values of Fe, Zn, Cu, 
Ni, Cd, and Pb are 50, 70, 50, 4E-02, 3E-03, and 3E-02 mg/
kg/day, respectively [61]. The recorded EDI-HML of both 
groups was compared to that for 70 kg of body weight [61], 

Fig. 4  The values of THQ- HML in the raw and cooked Denis fish samples.
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and it was concluded that the mean EDI values of the metals 
for consumers (children and adults) do not exceed the PTDI 
values. The EDI-HML values for the essential metals in the 
raw and cooked Denis muscles of cultivated origin were 
higher than those of wild origin, indicating that consumers 
(children and adults) had a higher rate of exposure when 
consuming the cultivated fish than those of wild origin. On 
the other hand, the EDI-HML values for the non-essential 
metals in the raw and cooked Denis muscles of cultivated 
origin were lower in comparison to those of wild origin, 
which suggested that consumers (children and adults) had 
a higher rate of exposure when consuming wild fish than 
those cultivated.

Target hazard quotient (THQ-HML) for Cu, Zn, Fe, Ni, 
Cd, and Pb in raw and cooked muscles of both cultured and 
wild fish are illustrated in Table 4S and Fig. 4. The allowable 
threshold level of THQ-HML is one [16]. The THQ-HML 

values determined in edible Denis fish were under 1, sug-
gesting that eating muscles won't have any adverse health 
effects for consumers (children and adults) who consumed 
the studied Denis fish. Furthermore, the hazard index (HI-
HML) values for both adults and children through consump-
tion of the two fish sources were evaluated based on the 
THQ-HML values; if the HI-HML value was less than one 
(HI-HML ≤1), the effects on humans would be adverse, HI-
HML > 1 most probably had a negative impact; and HI-
HML >10 strong or chronic of acute implications, as rec-
ommended by [62]. The HI-HML values in raw and cooked 
muscles of both cultured and wild Denis fish for both con-
sumers (children and adults) were less than one, suggesting 
no hazard for human consumption occurred (Table 5S and 
Fig. 5).

The carcinogenic index (CI-HML) values for Cd, Ni, and 
Pb in the raw and cooked muscles of both cultured and wild 

Fig. 5  The hazard index (HI) and risk index (CI-Ni, CI-Pb and CI-Cd) in raw and cooked Denis fish samples (Sparus aurata) from different 
sources (wild and cultured).
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Denis fish were determined for both adult and child eaters, 
and the results are presented in Table 5S and Fig. 5. The 
CI-Pb and CI-Ni values in the raw and cooked muscles of 
Denis fish were lower than 1E−6 for children as well as adult 
consumers, meaning that the carcinogenic hazard caused 
by Pb and Ni was safe [63]. However, Cd poses a carcino-
genic risk (CI-Cd) to adult as well as children’s consumers 
of Denis fish, as the values of CI-Cd were higher than the 
acceptable value of 1E−6 [60].

Non-carcinogenic indexes (THQ and HI) and Nickel car-
cinogenic index (CI-Ni) of metals for both consumers (chil-
dren and adults) were higher in cultured muscles of raw and 
cooked Denis fish compared to wild Denis fish. However, 
the carcinogenic indexes of Cadmium and Lead (CI-Cd and 
CI-Pb) for both consumers (children and adults) were lower 
in cultured muscles of raw and cooked Denis fish compared 
to wild Denis fish. These results agree with Tahity et al. [15].

Conclusion

Cooking strategies (grilling, microwave cooking, and fry-
ing) were applied to determine whether the metal levels 
in cultured and wild Denis muscles may be declined to 
a safe level or avoided it. The levels of essential HML 
were a significantly decreased (P < 0.05) in the wild Denis 
organs compared to cultured ones. Non-essential HML, 
concentrations increased significantly (P < 0.05) in wild 
Denis organs compared to cultured ones. Moreover, the 
slightly high values in pollution indices of cultured Denis 
compared to wild sources (Bardawil Lake) raise concern 
for consumers' health due to metal contamination. Hence, 
it is possible to detect the potential impact of heavy metals 
by using cooking methods. Results indicated that the levels 
of the examined metals declined in the sequence of frying 
> grilling > microwaved cooking. For more accuracy in 
evaluating the possible risks to human health from eating 
both wild and cultivated Denis muscles, it was confirmed 
that the cooking processes gave consumers a clear view of 
the potential hazards and showed that there was no non-
carcinogenic hazard, as well as no carcinogenic risk for 
Nickel and Lead, except Cadmium, which poses a carci-
nogenic hazard to adult and children consumers of wild 
and cultured Denis cooked muscles. These findings show 
that it is vital to apply the cooking strategies for muscles 
of wild and cultured Denis to minimize possible health 
hazards. Therefore, a long-term management strategy and 
biomonitoring of these HM in Lake Bardawil as Egyptian 
vision of 2030 and around fish farm waters are required. 
This will reduce the amount of pollution in the aquatic 
ecosystem, which represents a health risk to humans who 
consume polluted fish with HMs.
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