Skip to main content

Advertisement

Log in

Sodium Pentaborate Prevents Acetaminophen-Induced Hepatorenal Injury by Suppressing Oxidative Stress, Lipid Peroxidation, Apoptosis, and Inflammatory Cytokines in Rats

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Acetaminophen (N-acetyl-p-aminophenol, APAP, or paracetamol) is one of the drugs that may be damaging to the kidneys and liver when used in excess. In this context, it is vital to treat these side effects on the liver and kidneys with various antioxidants. Diseases have been treated using herbal and mineral remedies since ancient times. The mineral boron, found in rocks and water, is a crucial ingredient with multiple positive biological effects. The primary objective of this research is to determine whether or not boron has a protective effect against the toxicity generated by APAP in rats. Male Sprague-Dawley rats were pretreated orally with boron-source sodium pentaborate (B50 and B100 mg/kg) for 6 days by gastric gavage in order to counteract the toxicity caused by a single dose of APAP (1g/kg). APAP increased lipid peroxidation as well as serum BUN, creatinine concentrations, and serum activities of AST, ALP, and ALT by consuming GSH in liver and kidney tissues. In addition, the activity of antioxidative enzymes, including SOD, CAT, and GPx, was diminished. Inflammatory indicators such as TNF-α, IL-1β, and IL-33 were elevated in conjunction with APAP toxicity. In kidney and liver tissues, APAP dramatically increased the activity of caspase-3 and triggered apoptosis. Sodium pentaborate therapy on a short-term basis reduced biochemical levels despite these effects of APAP. This study showed that boron protects rats from the harmful effects of APAP by acting as an anti-inflammatory, antioxidant, and anti-apoptotic agent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mukai M, Bischoff K, Ramaiah SK (2012) Liver toxicity. Vet Toxicol Basic Clin Princ:246–263. https://doi.org/10.1016/B978-0-12-385926-6.00017-X

  2. Perazella MA (2009) Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol 4:1275–1283

    Article  CAS  PubMed  Google Scholar 

  3. Kandemir FM, Kucukler S, Eldutar E et al (2017) Chrysin protects rat kidney from paracetamol-induced oxidative stress, inflammation, apoptosis, and autophagy: Amulti-biomarker approach. Sci Pharm 85. https://doi.org/10.3390/scipharm85010004

  4. Pizzorno J (2015) The kidney dysfunction epidemic, part 1: causes. Integr Med: A Clin J 14:8

    Google Scholar 

  5. Ozkaya O, Genc G, Bek K, Sullu Y (2010) A case of acetaminophen (paracetamol) causing renal failure without liver damage in a child and review of literature. Ren Fail 32:1125–1127. https://doi.org/10.3109/0886022X.2010.509830

    Article  PubMed  Google Scholar 

  6. Wallace JL (2004) Acetaminophen hepatotoxicity: NO to the rescue. Br J Pharmacol 143:1–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kato H, Fujigaki Y, Inoue R et al (2014) Therapeutic dose of acetaminophen as a possible risk factor for acute kidney injury: learning from two healthy young adult cases. Intern Med 53:1531–1534. https://doi.org/10.2169/internalmedicine.53.1502

    Article  PubMed  Google Scholar 

  8. Bertolini A, Ferrari A, Ottani A et al (2006) Paracetamol: new vistas of an old drug. CNS Drug Rev 12:250–275. https://doi.org/10.1111/J.1527-3458.2006.00250.X

    Article  CAS  PubMed  Google Scholar 

  9. James LP, Mayeux PR, Hinson JA (2003) Acetaminophen-induced hepatotoxicity. J Drug Met and Disp 31:1499–1506. https://doi.org/10.1124/dmd.31.12.1499

  10. Jaeschke H, Williams CD, Ramachandran A, Bajt ML (2012) Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 32:8–20. https://doi.org/10.1111/J.1478-3231.2011.02501.X

    Article  CAS  PubMed  Google Scholar 

  11. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Devirian TA, Volpe SL (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43:219–231. https://doi.org/10.1080/10408690390826491

    Article  CAS  PubMed  Google Scholar 

  13. Hakki SS, Bozkurt BS, Hakki EE (2010) Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 24:243–250. https://doi.org/10.1016/j.jtemb.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  14. Armstrong TA, Spears JW, Lloyd KE (2001) Inflammatory response, growth, and thyroid hormone concentrations are affected by long-term boron supplementation in gilts. J Anim Sci 79:1549–1556. https://doi.org/10.2527/2001.7961549x

    Article  CAS  PubMed  Google Scholar 

  15. Nielsen FH (2002) Does boron have an essential function similar to an omega-3 fatty acid function? In: Anke M, Muller R, Schafer U, Stoeppler M (eds) Macro and trace elements. Friedrich Schiller University, Jena, Germany, October 18-19-2002. Leipzig, Germany:Schubert-Verlag. 1238–1250. https://www.ars.usda.gov/research/publications/publication/?seqNo115=139342.  Accessed 30 Feb 2023

  16. Jin E, Ren M, Liu W et al (2017) Effect of boron on thymic cytokine expression, hormone secretion, antioxidant functions, cell proliferation, and apoptosis potential via the extracellular signal-regulated kinases 1 and 2 signaling pathway. J Agric Food Chem 65:11280–11291. https://doi.org/10.1021/acs.jafc.7b04069

    Article  CAS  PubMed  Google Scholar 

  17. Comba B, Oto G, Mis L et al (2016) 3-Metilkolatren uygulanan sıçanlarda boraksın inflamasyon, hematolojik parametreler ve total oksidan-antioksidan durumlar üzerine etkileri. Kafkas Univ Vet Fak Derg 22:539–544. https://doi.org/10.9775/kvfd.2016.15001

    Article  Google Scholar 

  18. Hunt CD, Herbel JL, Idso JP (1994) Dietary boron modifies the effects of vitamin D3 nutrition on indices of energy substrate utilization and mineral metabolism in the chick. J Bone Miner Res 9:171–182. https://doi.org/10.1002/JBMR.5650090206

    Article  CAS  PubMed  Google Scholar 

  19. Cao J, Jiang L, Zhang X et al (2008) Boric acid inhibits LPS-induced TNF-α formation through a thiol-dependent mechanism in THP-1 cells. J Trace Elem Med Biol 22:189–195. https://doi.org/10.1016/j.jtemb.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  20. Pizzorno L (2015) Nothing boring about boron. Integr Med: A Clin J 14:35

    Google Scholar 

  21. Nielsen FH, Stoecker BJ (2009) Boron and fish oil have different beneficial effects on strength and trabecular microarchitecture of bone. J Trace Elem Med Biol 23:195–203. https://doi.org/10.1016/J.JTEMB.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  22. Uysal T, Ustdal A, Sonmez MF, Ozturk F (2009) Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. meridian.allenpress.com. 79. https://doi.org/10.2319/Original

  23. Demirci S, Doğan A, Aydın S et al (2016) Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation. Mol Cell Biochem 417:119–133. https://doi.org/10.1007/s11010-016-2719-9

    Article  CAS  PubMed  Google Scholar 

  24. Samman S, Naghii MR, Lyons Wall PM, Verus AP (1998) The nutritional and metabolic effects of boron in humans and animals. Biol Trace Elem Res 66:227–235. https://doi.org/10.1007/BF02783140

    Article  CAS  PubMed  Google Scholar 

  25. Ince S, Kucukkurt I, Demirel HH et al (2014) Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats. Chemosphere 108:197–204. https://doi.org/10.1016/j.chemosphere.2014.01.038

    Article  CAS  PubMed  Google Scholar 

  26. Nielsen FH (2018) Boron in aging and longevity. Trace Elem Min Health longev:163–177. https://doi.org/10.1007/978-3-030-03742-0_6

  27. Hunt CD (2003) Dietary boron: an overview of the evidence for its role in immune function. J Trace Elem Exp Med 16(4):291–306

    Article  CAS  Google Scholar 

  28. Doğan A, Demirci S, Apdik H et al (2017) A new hope for obesity management: boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism 69:130–142. https://doi.org/10.1016/j.metabol.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  29. Turkez H, Geyikoglu F (2010) Boric acid: a potential chemoprotective agent against aflatoxin b 1 toxicity in human blood. Cytotechnology 62:157–165. https://doi.org/10.1007/s10616-010-9272-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ince S, Kucukkurt I, Cigerci IH et al (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J Trace Elem Med Biol 24:161–164. https://doi.org/10.1016/j.jtemb.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  31. De Seta F, Schmidt M, Vu B et al (2009) Antifungal mechanisms supporting boric acid therapy of Candida vaginitis. J Antimicrob Chemother 63:325–336. https://doi.org/10.1093/jac/dkn486

    Article  CAS  PubMed  Google Scholar 

  32. Türkez H, Geyikoǧlu F, Tatar A et al (2007) Effects of some boron compounds on peripheral human blood. Z Naturforsch - Sec C J Biosci 62:889–896. https://doi.org/10.1515/znc-2007-11-1218

    Article  Google Scholar 

  33. Başaran N, Duydu Y, Bacanlı M et al (2020) Evaluation of oxidative stress and immune parameters of boron exposed males and females. Food Chem Toxicol 142. https://doi.org/10.1016/j.fct.2020.111488

  34. Aba PE, Ozioko IE, Udem ND, Udem SC (2014) Some biochemical and haematological changes in rats pretreated with aqueous stem bark extract of Lophira lanceolata and intoxicated with paracetamol (acetaminophen). J Complement Integr Med 11:273–277. https://doi.org/10.1515/jcim-2014-0007

    Article  CAS  PubMed  Google Scholar 

  35. Ucar F, Taslipinar MY, Alp BF et al (2013) The effects of N-acetylcysteine and ozone therapy on oxidative stress and inflammation in acetaminophen-induced nephrotoxicity model. Ren Fail 35:640–647. https://doi.org/10.3109/0886022X.2013.780530

    Article  CAS  PubMed  Google Scholar 

  36. Ullah H, Khan A, Bibi T et al (2022) Comprehensive in vivo and in silico approaches to explore the hepatoprotective activity of poncirin against paracetamol toxicity. Naunyn Schmiedebergs Arch Pharmacol 395:195–215. https://doi.org/10.1007/S00210-021-02192-1/FIGURES/15

    Article  CAS  PubMed  Google Scholar 

  37. Ince S, Keles H, Erdogan M et al (2012) Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice. Drug Chem Toxicol 35:285–292. https://doi.org/10.3109/01480545.2011.607825

    Article  CAS  PubMed  Google Scholar 

  38. Pfeiffer CC, Hallman LF, Gersh I (1945) Boric acid ointment: a study of possible intoxication in the treatment of burns. J Am Med Assoc 128:266–274. https://doi.org/10.1001/jama.1945.02860210022006

    Article  CAS  Google Scholar 

  39. Weir RJ, Fisher RS (1972) Toxicologic studies on borax and boric acid. Toxicol Appl Pharmacol 23:351–364. https://doi.org/10.1016/0041-008X(72)90037-3

    Article  CAS  PubMed  Google Scholar 

  40. Murray FJ (1998) A comparative review of the pharmacokinetics of boric acid in rodents and humans. Biol Trace Elem Res 66:331–341

    Article  CAS  PubMed  Google Scholar 

  41. Abdel-Zaher AO, Abdel-Rahman MM, Hafez MM, Omran FM (2007) Role of nitric oxide and reduced glutathione in the protective effects of aminoguanidine, gadolinium chloride and oleanolic acid against acetaminophen-induced hepatic and renal damage. Toxicology 234:124–134. https://doi.org/10.1016/j.tox.2007.02.014

    Article  CAS  PubMed  Google Scholar 

  42. Prescott LF (2000) Paracetamol, alcohol and the liver. Br J Clin Pharmacol 49:291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mccrae JC, Mccrae JC, Morrison EE et al (2018) Long-term adverse effects of paracetamol–a review. Wiley Online Library 84:2218–2230. https://doi.org/10.1111/bcp.13656

    Article  CAS  Google Scholar 

  44. Sundari K, Karthik D, Ilavenil S et al (2013) Hepatoprotective and proteomic mechanism of Sphaeranthus indicus in paracetamol induced hepatotoxicity in wistar rats. Food Biosci 1:57–65. https://doi.org/10.1016/j.fbio.2013.03.004

    Article  CAS  Google Scholar 

  45. Ko JW, Shin JY, Kim JW et al (2017) Protective effects of diallyl disulfide against acetaminophen-induced nephrotoxicity: a possible role of CYP2E1 and NF-κB. Food Chem Toxicol 102:156–165. https://doi.org/10.1016/j.fct.2017.02.021

    Article  CAS  PubMed  Google Scholar 

  46. Motawi TK, Ahmed SA, El-Boghdady NA et al (2020) Impact of betanin against paracetamol and diclofenac induced hepato-renal damage in rats. Biomarkers 25:86–93. https://doi.org/10.1080/1354750X.2019.1697365

    Article  CAS  PubMed  Google Scholar 

  47. Mazer M, Perrone J (2008) Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. J Med Toxicol 4:2–6. https://doi.org/10.1007/BF03160941

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yildirim S, Celikezen FC, Oto G et al (2018) An investigation of protective effects of litium borate on blood and histopathological parameters in acute cadmium-induced rats. Biol Trace Elem Res 182:287–294. https://doi.org/10.1007/s12011-017-1089-9

    Article  CAS  PubMed  Google Scholar 

  49. Cekmen M, Ilbey YO, Ozbek E et al (2009) Curcumin prevents oxidative renal damage induced by acetaminophen in rats. Food Chem Toxicol 47:1480–1484. https://doi.org/10.1016/j.fct.2009.03.034

    Article  CAS  PubMed  Google Scholar 

  50. Hazman Ö, Bozkurt MF, Fidan AF et al (2018) The effect of boric acid and borax on oxidative stress, inflammation, ER stress and apoptosis in cisplatin toxication and nephrotoxicity developing as a result of toxication. Inflammation 41:1032–1048. https://doi.org/10.1007/s10753-018-0756-0

    Article  CAS  PubMed  Google Scholar 

  51. Acaroz U, Ince S, Arslan-Acaroz D et al (2018) The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food Chem Toxicol 118:745–752. https://doi.org/10.1016/j.fct.2018.06.029

    Article  CAS  PubMed  Google Scholar 

  52. Ahmed MB, Khater MR (2001) Evaluation of the protective potential of Ambrosia maritima extract on acetaminophen-induced liver damage. J Ethnopharmacol 75:169–174. https://doi.org/10.1016/S0378-8741(00)00400-1

    Article  CAS  PubMed  Google Scholar 

  53. Abirami A, Nagarani G, Siddhuraju P (2015) Hepatoprotective effect of leaf extracts from Citrus hystrix and C. maxima against paracetamol induced liver injury in rats. Food Sci Hum Wellness 4:35–41. https://doi.org/10.1016/J.FSHW.2015.02.002

    Article  Google Scholar 

  54. Alam J, Mujahid M, Jahan Y, Bagga P, Rahman MA (2017) Hepatoprotective potential of ethanolic extract of Aquilaria agallocha leaves against paracetamol induced hepatotoxicity in SD rats. J Tradit Complement Med 7:9–13. https://doi.org/10.1016/J.JTCME.2015.12.006

    Article  PubMed  Google Scholar 

  55. Kumar G, Banu GS, Pappa PV et al (2004) Hepatoprotective activity of Trianthema portulacastrum L. against paracetamol and thioacetamide intoxication in albino rats. J Ethnopharmacol 92:37–40. https://doi.org/10.1016/j.jep.2003.12.009

    Article  CAS  PubMed  Google Scholar 

  56. Amin KA, Hashem KS, Alshehri FS et al (2017) Antioxidant and hepatoprotective efficiency of selenium nanoparticles against acetaminophen-induced hepatic damage. Biol Trace Elem Res 175:136–145. https://doi.org/10.1007/s12011-016-0748-6

    Article  CAS  PubMed  Google Scholar 

  57. Agha FE, Youness ER, Selim MMH, Ahmed HH (2014) Nephroprotective potential of selenium and taurine against mercuric chloride induced nephropathy in rats. Ren Fail 36:704–716. https://doi.org/10.3109/0886022X.2014.890012

    Article  CAS  PubMed  Google Scholar 

  58. Apaydin Yildirim B, Kordali S, Terim Kapakin KA et al (2017) Effect of Helichrysum plicatum DC. subsp. plicatum ethanol extract on gentamicin-induced nephrotoxicity in rats. J Zhejiang Univ Sci B 18:501–511. https://doi.org/10.1631/jzus.B1500291

    Article  PubMed  PubMed Central  Google Scholar 

  59. Campos R, Garrido A, Guerra R, Valenzuela A (1989) Silybin dihemisuccinate protects against glutathione depletion and lipid peroxidation induced by acetaminophen on rat liver. Planta Med 55:417–419. https://doi.org/10.1055/s-2006-962055

    Article  CAS  PubMed  Google Scholar 

  60. Girish C, Koner BC, Jayanthi S et al (2009) Hepatoprotective activity of picroliv, curcumin and ellagic acid compared to silymarin on paracetamol induced liver toxicity in mice. Fundam Clin Pharmacol 23:735–745. https://doi.org/10.1111/j.1472-8206.2009.00722.x

    Article  CAS  PubMed  Google Scholar 

  61. Masson MJ, Collins LA, Carpenter LD et al (2010) Pathologic role of stressed-induced glucocorticoids in drug-induced liver injury in mice. Biochem Biophys Res Commun 397:453–458. https://doi.org/10.1016/j.bbrc.2010.05.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. El-Maddawy ZK, El-Sayed YS (2018) Comparative analysis of the protective effects of curcumin and N-acetyl cysteine against paracetamol-induced hepatic, renal, and testicular toxicity in Wistar rats. Environ Sci Pollut Res 25:3468–3479. https://doi.org/10.1007/s11356-017-0750-3

    Article  CAS  Google Scholar 

  63. Salem GA, Shaban A, Diab HA et al (2018) Phoenix dactylifera protects against oxidative stress and hepatic injury induced by paracetamol intoxication in rats. Biomed Pharmacother 104:366–374. https://doi.org/10.1016/J.BIOPHA.2018.05.049

    Article  CAS  PubMed  Google Scholar 

  64. Ince S, Kucukkurt I, Demirel HH et al (2020) Boron, a trace mineral, alleviates gentamicin-induced nephrotoxicity in rats. Biol Trace Elem Res 195:515–524. https://doi.org/10.1007/S12011-019-01875-4

    Article  CAS  PubMed  Google Scholar 

  65. Coban FK, Ince S, Kucukkurt I et al (2015) Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug Chem Toxicol 38:391–399. https://doi.org/10.3109/01480545.2014.974109

    Article  CAS  PubMed  Google Scholar 

  66. Kucukkurt I, Ince S, Demirel HH et al (2015) The effects of boron on arsenic-induced lipid peroxidation and antioxidant status in male and female rats. Wiley Online Library 29:564–571. https://doi.org/10.1002/jbt.21729

    Article  CAS  Google Scholar 

  67. Mohora M, Boghianu L, Muscurel C, et al. Effects of boric acid on redox status in the rat liver. rjb.ro

  68. Tracey KJ, Cerami A (1994) Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 45:491–503. https://doi.org/10.1146/ANNUREV.MED.45.1.491

    Article  CAS  PubMed  Google Scholar 

  69. Bae Y, Lee S, Kim SH (2011) Chrysin suppresses mast cell-mediated allergic inflammation: involvement of calcium, caspase-1 and nuclear factor-κB. Toxicol Appl Pharmacol 254:56–64. https://doi.org/10.1016/j.taap.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  70. Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66. https://doi.org/10.1016/S0968-0004(00)01740-0

    Article  CAS  PubMed  Google Scholar 

  71. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245. https://doi.org/10.1146/ANNUREV.BIOCHEM.69.1.217

    Article  CAS  PubMed  Google Scholar 

  72. Eldutar E, Kandemir FM, Kucukler S, Caglayan C (2017) Restorative effects of Chrysin pretreatment on oxidant–antioxidant status, inflammatory cytokine production, and apoptotic and autophagic markers in acute paracetamol-induced hepatotoxicity in rats: An experimental and biochemical study. J Biochem Mol Toxicol 31:e21960. https://doi.org/10.1002/JBT.21960

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Faruk Durukan and Kale Natural Corp. for the supply of sodium pentaborate.

Funding

This study received financial support from Ataturk University-The Coordination Unit of Scientific Research Projects, Türkiye (within the project’s scope, numbered TDK-2018-6715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Aktas Senocak.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktas Senocak, E., Utlu, N., Kurt, S. et al. Sodium Pentaborate Prevents Acetaminophen-Induced Hepatorenal Injury by Suppressing Oxidative Stress, Lipid Peroxidation, Apoptosis, and Inflammatory Cytokines in Rats. Biol Trace Elem Res 202, 1164–1173 (2024). https://doi.org/10.1007/s12011-023-03755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03755-4

Keywords

Navigation