Skip to main content

Advertisement

Log in

Effects of Sr2+, BO33−, and SiO32− on Differentiation of Human Dental Pulp Stem Cells into Odontoblast-Like Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to clarify the effects of strontium (Sr2+), borate (BO33−), and silicate (SiO32−) on cell proliferative capacity, the induction of differentiation into odontoblast-like cells (OLCs), and substrate formation of human dental pulp stem cells (hDPSCs). Sr2+, BO33−, and SiO32− solutions were added to the hDPSC culture medium at three different concentrations, totaling nine experimental groups. The effects of these ions on hDPSC proliferation, calcification, and collagen formation after 14, 21, and 28 days of culture were evaluated using a cell proliferation assay, a quantitative alkaline phosphatase (ALP) activity assay, and Alizarin Red S and Sirius Red staining, respectively. Furthermore, the effects of these ions on hDPSC differentiation into OLCs were assessed via quantitative polymerase chain reaction and immunocytochemistry. Sr2+ and SiO32− increased the expression of odontoblast markers; i.e., nestin, dentin matrix protein-1, dentin sialophosphoprotein, and ALP genes, compared with the control group. BO33− increased the ALP gene expression and activity. The results of this study suggested that Sr2+, BO33−, and SiO32− may induce hDPSC differentiation into OLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Materials Availability

For this paper, materials were provided by Shofu, Inc.

Abbreviations

ACP:

amorphous calcium phosphate

ALP:

alkaline phosphatase

DGI:

dentinogenesis imperfecta

DSPP:

dentin sialophosphoprotein

ECM:

extracellular matrix

GADPH:

glyceraldehyde 3-phosphate dehydrogenase

MTA:

mineral trioxide aggregate

NCP:

noncollagenous proteins

OLC:

odontoblast-like cell

PBS:

phosphate-buffered saline

qPCR:

quantitative polymerase chain reaction

VPT:

vital pulp therapy

References

  1. Arandi NZ, Thabet M (2021) Minimal intervention in dentistry: a literature review on biodentine as a bioactive pulp capping material. BioMed Res Int 5569313. https://doi.org/10.1155/2021/5569313.

  2. Thompson V, Craig RG, Curro FA, Green WS, Ship JA (2008) Treatment of deep carious lesions by complete excavation or partial removal: a critical review. J Am Dent Assoc 139:705–12. https://doi.org/10.14219/jada.archive.2008.0252

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baume LJ, Holz J (1981) Long-term clinical assessment of direct pulp capping. Int Dent J 31:251–260

    CAS  PubMed  Google Scholar 

  4. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630. https://doi.org/10.1073/pnas.240309797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tziafas D (1995) Basic mechanisms of cytodifferentiation and dentinogenesis during dental pulp repair. Int J Dev Biol 39:281–290

    CAS  PubMed  Google Scholar 

  6. Teti G, Salvatore V, Ruggeri A, Manzoli L, Gesi M, Orsini G, Falconi M (2013) In vitro reparative dentin: a biochemical and morphological study. Eur J Histochem 57:e23. https://doi.org/10.4081/ejh.2013.e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Komabayashi T, Zhu Q, Eberhart R, Imai Y (2016) Current status of direct pulp-capping materials for permanent teeth. Dent Mater J 35:1–12. https://doi.org/10.4012/dmj.2015-013

    Article  CAS  PubMed  Google Scholar 

  8. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR (1995) Physical and chemical properties of a new root-end filling material. J Endod 21:349–353. https://doi.org/10.1016/S0099-2399(06)80967-2

    Article  CAS  PubMed  Google Scholar 

  9. Schuurs AH, Gruythuysen RJ, Wesselink PR (2000) Pulp capping with adhesive resin-based composite vs. calcium hydroxide: a review. Endod Dent Traumatol 16:240–250. https://doi.org/10.1034/j.1600-9657.2000.016006240.x

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura N, Yamada A, Iwamoto T, Arakaki M, Tanaka K, Aizawa S, Nonaka K, Fukumoto S (2009) Two-year clinical evaluation of flowable composite resin containing pre-reacted glass-ionomer. Pediatr Dent J 19:89–97. https://doi.org/10.1016/S0917-2394(09)70158-2

    Article  Google Scholar 

  11. Miki S, Kitagawa H, Kitagawa R, Kiba W, Hayashi M, Imazato S (2016) Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent Mater 32:1095–1102. https://doi.org/10.1016/j.dental.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  12. Spinola MDS, Moecke SE, Rossi NR, Nakatsuka T, Borges AB, Torres CRG (2020) Efficacy of S-PRG filler containing varnishes on enamel demineralization prevention. Sci Rep 10:18992. https://doi.org/10.1038/s41598-020-76127-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takahashi Y, Okamoto M, Komichi S, Imazato S, Nakatsuka T, Sakamoto S, Kimoto K, Hayashi M (2019) Application of a direct pulp capping cement containing S-PRG filler. Clin Oral Investig 23:1723–1731. https://doi.org/10.1007/s00784-018-2596-6

    Article  PubMed  Google Scholar 

  14. Okamoto M, Ali M, Komichi S, Watanabe M, Huang H, Ito Y, Miura J, Hirose Y, Mizuhira M, Takahashi Y, Okuzaki D, Kawabata S, Imazato S, Hayashi M (2019) Surface pre-reacted glass filler contributes to tertiary dentin formation through a mechanism different than that of hydraulic calcium-silicate cement. J Clin Med 8:1440. https://doi.org/10.3390/jcm8091440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holland R, Pinheiro CE, de Mello W, Nery MJ, de Souza V (1982) Histochemical analysis of the dogs’ dental pulp after pulp capping with calcium, barium, and strontium hydroxides. J Endod 8:444–447. https://doi.org/10.1016/S0099-2399(82)80148-9

    Article  CAS  PubMed  Google Scholar 

  16. Taşlı PN, Doğan A, Demirci S, Şahin F (2013) Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro. Biol Trace Elem Res 153:419–427. https://doi.org/10.1007/s12011-013-9657-0

    Article  CAS  PubMed  Google Scholar 

  17. Peng W, Huan Z, Pei G, Li J, Cao Y, Jiang L, Zhu Y (2022) Silicate bioceramics elicit proliferation and odonto-genic differentiation of human dental pulp cells. Dent Mater J 41:27–36. https://doi.org/10.4012/dmj.2021-042

    Article  CAS  PubMed  Google Scholar 

  18. Hilton TJ (2009) Keys to clinical success with pulp capping: a review of the literature. Oper Dent 34:615–625. https://doi.org/10.2341/09-132-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12:2813–2823. https://doi.org/10.1089/ten.2006.12.2813

    Article  CAS  PubMed  Google Scholar 

  20. Baldión PA, Velandia-Romero ML, Castellanos JE (2018) Odontoblast-like cells differentiated from dental pulp stem cells retain their phenotype after subcultivation. Int J Cell Biol 2018:6853189. https://doi.org/10.1155/2018/6853189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andrews PB, Ten Cate AR, Davies JE (1993) Mineralized matrix synthesis by isolated mouse odontoblast-like cells in vitro. Cells Mater 3:6

    Google Scholar 

  22. Nakashima M (1991) Establishment of primary cultures of pulp cells from bovine permanent incisors. Arch Oral Biol 36:655–663. https://doi.org/10.1016/0003-9969(91)90018-p

    Article  CAS  PubMed  Google Scholar 

  23. Tsukamoto Y, Fukutani S, Shin-Ike T, Kubota T, Sato S, Suzuki Y, Mori M (1992) Mineralized nodule formation by cultures of human dental pulp-derived fibroblasts. Arch Oral Biol 37:1045–1055. https://doi.org/10.1016/0003-9969(92)90037-9

    Article  CAS  PubMed  Google Scholar 

  24. Satoyoshi M, Koizumi T, Teranaka T, Iwamoto T, Takita H, Kuboki Y, Saito S, Mikuni-Takagaki Y (1995) Extracellular processing of dentin matrix protein in the mineralizing odontoblast culture. Calcif Tissue Int 57:237–241. https://doi.org/10.1007/BF00310265

    Article  CAS  PubMed  Google Scholar 

  25. Kasugai S, Shibata S, Suzuki S, Susami T, Ogura H (1993) Characterization of a system of mineralized-tissue formation by rat dental pulp cells in culture. Arch Oral Biol 38:769–777. https://doi.org/10.1016/0003-9969(93)90073-u

    Article  CAS  PubMed  Google Scholar 

  26. Goldberg M, Kulkarni AB, Young M, Boskey A (2011) Dentin: structure, composition and mineralization. Front Biosci (Elite Ed) 3:711–735. https://doi.org/10.2741/e281

    Article  PubMed  Google Scholar 

  27. Weiner S (2006) Transient precursor strategy in mineral formation of bone. Bone 39:431–433. https://doi.org/10.1016/j.bone.2006.02.058

    Article  CAS  PubMed  Google Scholar 

  28. Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA 107:6316–6321. https://doi.org/10.1073/pnas.0914218107

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nudelman F, Bomans PH, George A, de With G, Sommerdijk NA (2012) The role of the amorphous phase on the biomimetic mineralization of collagen. Faraday Discuss 159:357–370. https://doi.org/10.1039/C2FD20062G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ansari S, Ito K, Hofmann S (2022) Alkaline phosphatase activity of serum affects osteogenic differentiation cultures. ACS Omega 7:12724–12733. https://doi.org/10.1021/acsomega.1c07225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: an overview. Indian J Clin Biochem 29:269–278. https://doi.org/10.1007/s12291-013-0408-y

    Article  CAS  PubMed  Google Scholar 

  32. Yokose S, Kadokura H, Tajima Y, Fujieda K, Katayama I, Matsuoka T, Katayama T (2000) Establishment and characterization of a culture system for enzymatically released rat dental pulp cells. Calcif Tissue Int 66:139–144. https://doi.org/10.1007/s002230010028

    Article  CAS  PubMed  Google Scholar 

  33. Liu H, Li W, Shi S, Habelitz S, Gao C, Denbesten P (2005) MEPE is downregulated as dental pulp stem cells differentiate. Arch Oral Biol 50:923–928. https://doi.org/10.1016/j.archoralbio.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  34. Tomlinson MJ, Dennis C, Yang XB, Kirkham J (2015) Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture. Cell Tissue Res 361:529–540. https://doi.org/10.1007/s00441-014-2106-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Štefková K, Procházková J, Pacherník J (2015) Alkaline phosphatase in stem cells. Stem Cells Int 2015:628368. https://doi.org/10.1155/2015/628368.

  36. Sobiesiak M, Sivasubramaniyan K, Hermann C, Tan C, Orgel M, Treml S, Cerabona F, de Zwart P, Ochs U, Müller CA, Gargett CE, Kalbacher H, Bühring HJ (2010) The mesenchymal stem cell antigen MSCA-1 is identical to tissue non-specific alkaline phosphatase. Stem Cells Dev 19:669–677. https://doi.org/10.1089/scd.2009.0290

    Article  CAS  PubMed  Google Scholar 

  37. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W (2011) Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 56:709–721. https://doi.org/10.1016/j.archoralbio.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  38. Tatsuhiro F, Seiko T, Yusuke T, Reiko TT, Kazuhito S (2018) Dental pulp stem cell-derived, scaffold-free constructs for bone regeneration. Int J Mol Sci 19:1846. https://doi.org/10.3390/ijms19071846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Z, Chen T, Han Q, Chen M, You J, Fang F, Peng L, Wu B (2018) HDAC inhibitor LMK-235 promotes the odontoblast differentiation of dental pulp cells. Mol Med Rep 17:1445–1452. https://doi.org/10.3892/mmr.2017.8055

    Article  CAS  PubMed  Google Scholar 

  40. Aryal YP, Yeon CY, Kim TY, Lee ES, Sung S, Pokharel E, Kim JY, Choi SY, Yamamoto H, Sohn WJ, Lee Y, An SY, An CH, Jung JK, Ha JH, Kim JY (2021) Facilitating reparative dentin formation using apigenin local delivery in the exposed pulp cavity. Front Physiol 12:773878. https://doi.org/10.3389/fphys.2021.773878

    Article  PubMed  PubMed Central  Google Scholar 

  41. Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, Shao Y, Ma BF, Lee JH, Ha KS, Walton N, Lahn BT (2010) Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 28:2162–2171. https://doi.org/10.1002/stem.541

    Article  CAS  PubMed  Google Scholar 

  42. Fujita S, Hideshima K, Ikeda T (2006) Nestin expression in odontoblasts and odontogenic ectomesenchymal tissue of odontogenic tumours. J Clin Pathol 59:240–245. https://doi.org/10.1136/jcp.2004.025403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen Z, Zhang Q, Wang H, Li W, Wang F, Wan C, Deng S, Chen H, Yin Y, Li X, Xie Z, Chen S (2017) Klf5 mediates odontoblastic differentiation through regulating dentin-specific extracellular matrix gene expression during mouse tooth development. Sci Rep 7:46746. https://doi.org/10.1038/srep46746

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang HH, Macdougall M (2005) Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem 280:29717–29727. https://doi.org/10.1074/jbc.M502929200

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki S, Haruyama N, Nishimura F, Kulkarni AB (2012) Dentin sialophosphoprotein and dentin matrix protein-1: two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol 57:1165–1175. https://doi.org/10.1016/j.archoralbio.2012.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res 16:2017–2026. https://doi.org/10.1359/jbmr.2001.16.11.2017

    Article  CAS  PubMed  Google Scholar 

  47. Yamada Y, Fujimoto A, Ito A, Yoshimi R, Ueda M (2006) Cluster analysis and gene expression profiles: a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials 27:3766–3781. https://doi.org/10.1016/j.biomaterials.2006.02.009

    Article  CAS  PubMed  Google Scholar 

  48. Ye L, MacDougall M, Zhang S, Xie Y, Zhang J, Li Z, Lu Y, Mishina Y, Feng JQ (2004) Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem 279:19141–19148. https://doi.org/10.1074/jbc.M400490200

    Article  CAS  PubMed  Google Scholar 

  49. Narayanan K, Srinivas R, Ramachandran A, Hao J, Quinn B, George A (2001) Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci USA 98:4516–4521. https://doi.org/10.1073/pnas.081075198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Couble ML, Farges JC, Bleicher F, Perrat-Mabillon B, Boudeulle M, Magloire H (2000) Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int 66:129–138. https://doi.org/10.1007/pl00005833

    Article  CAS  PubMed  Google Scholar 

  51. Qin C, Brunn JC, Cadena E, Ridall A, Butler WT (2003) Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts. Connect Tissue Res 44:179–183. https://doi.org/10.1080/03008200390152296

    Article  CAS  PubMed  Google Scholar 

  52. Zhang X, Zhao J, Li C, Gao S, Qiu C, Liu P, Wu G, Qiang B, Lo WH, Shen Y (2001) DSPP mutation in dentinogenesis imperfecta Shields type II. Nat Genet 27:151–152. https://doi.org/10.1038/84765

    Article  CAS  PubMed  Google Scholar 

  53. Dong J, Gu TT, Jeffords L, MacDougall M (2005) Dentin phosphoprotein compound mutation in dentin sialophosphoprotein causes dentinogenesis imperfecta type III. Am J Med Genet A 132A:305–309. https://doi.org/10.1002/ajmg.a.30460

    Article  PubMed  Google Scholar 

  54. Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, Fu G, Qian M, Yang J, Shi Y, Hu L (2001) Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet 27:201–204. https://doi.org/10.1038/84848

    Article  CAS  PubMed  Google Scholar 

  55. Sreenath T, Thyagarajan T, Hall B, Longenecker G, D’Souza R, Hong S, Wright JT, MacDougall M, Sauk J, Kulkarni AB (2003) Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem 278:24874–24880. https://doi.org/10.1074/jbc.M303908200

    Article  CAS  PubMed  Google Scholar 

  56. Hao J, Zou B, Narayanan K, George A (2004) Differential expression patterns of the dentin matrix proteins during mineralized tissue formation. Bone 34:921–932. https://doi.org/10.1016/j.bone.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  57. Smith AJ, Cassidy N, Perry H, Bègue-Kirn C, Ruch JV, Lesot H (1995) Reactionary dentinogenesis. Int J Dev Biol 39:273–280

    CAS  PubMed  Google Scholar 

  58. Scheller EL, Chang J, Wang CY (2008) Wnt/β-catenin inhibits dental pulp stem cell differentiation. J Dent Res 87:126–130. https://doi.org/10.1177/154405910808700206

    Article  CAS  PubMed  Google Scholar 

  59. Kang KJ, Ryu CJ, Jang YJ (2019) Identification of dentinogenic cell-specific surface antigens in odontoblast-like cells derived from adult dental pulp. Stem Cell Res Ther 10:128. https://doi.org/10.1186/s13287-019-1232-y

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang W, Walboomers XF, Van Kuppevelt TH, Daamen WF, Van Damme PA, Bian Z, Jansen JA (2008) In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. J Tissue Eng Regen Med 2:117–125. https://doi.org/10.1002/term.71

    Article  CAS  PubMed  Google Scholar 

  61. Zhao X, He W, Song Z, Tong Z, Li S, Ni L (2012) Mineral trioxide aggregate promotes odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp stem cells. Mol Biol Rep 39:215–220. https://doi.org/10.1007/s11033-011-0728-z

    Article  CAS  PubMed  Google Scholar 

  62. Sanz JL, Soler-Doria A, López-García S, García-Bernal D, Rodríguez-Lozano FJ, Lozano A, Llena C, Forner L, Guerrero-Gironés J, Melo M (2021) Comparative biological properties and mineralization potential of 3 endodontic materials for vital pulp therapy: theracal PT, Theracal LC, and biodentine on human dental pulp stem cells. J Endod 47:1896–1906. https://doi.org/10.1016/j.joen.2021.08.001

    Article  PubMed  Google Scholar 

  63. Sato F, Suzuki M, Shinkai K (2021) Pulp tissue reaction to a self-adhesive, resin-based direct pulp capping material containing surface pre-reacted glass-ionomer filler. Dent Mater 37:972–982. https://doi.org/10.1016/j.dental.2021.02.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mikio Ishiyama for advice on experimental design, Haruka Takezawa for technical support, and Masaya Suzuki for writing support. We also thank Shofu Corporation for providing the ionic solution used in this study.

Author information

Authors and Affiliations

Authors

Contributions

All author contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yuko Miyano. The first draft of the manuscript was written by Yuko Miyano, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Koichi Shinkai.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyano, Y., Mikami, M., Katsuragi, H. et al. Effects of Sr2+, BO33−, and SiO32− on Differentiation of Human Dental Pulp Stem Cells into Odontoblast-Like Cells. Biol Trace Elem Res 201, 5585–5600 (2023). https://doi.org/10.1007/s12011-023-03625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03625-z

Keywords

Navigation