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Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth 
main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), 
serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we 
focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency 
in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation 
of selenoproteins dependent on the Sec insertion sequence element in the 3′UTR of mRNA at the UGA codon through a 
novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also 
discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance 
of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by 
SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict 
the potential health risk of the human body in the physiological adaptation state of low selenium based on the results 
of animal experiments.
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Introduction

Selenium (Se) is an essential trace element for humans 
and animals due to its antioxidant and anti-inflammatory 
superiorities. Among the 25 selenoproteins that contain 

selenocysteine (the twenty-first amino acid, or Sec for short), 
Se takes the active site. Some selenoproteins have enzymatic 
activity, such as glutathione peroxidases, thioredoxin reduc-
tases, and deiodinase.

Se is located in the sixth main group (VIA) of the peri-
odic table of elements, as with oxygen (O), sulfur (S), tellu-
rium (Te), polonium (Po), and livermorium (Lv). Therefore, 
serine (Ser), cysteine (Cys), and selenocysteine (Sec) have 
similar chemical structures, as shown in Fig. 1. These amino 
acids can transform into each other [1, 2].

Here, we firstly indroduce the sources and major meta-
bolic pathways of serine and describe how serine partici-
pates in the metabolism of amino acids with sulfur in the 
biosyntheses of SAM and GSH. Next, we focus on the 
neglected but crucial roles of serine involving in the metab-
olism of selenium-containing amino acids, as well as in 
the biosynthesis of 25 selenoproteins. Finally, we suggest 
a novel hypothesis to explain the gradual disappearance of 
Keshan disease without Se-supplementation and its latent 
health risk in China presently.
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The l‑Serine and Its Major Metabolic 
Pathways

Serine is a “nutritionally non-essential amino acid” (NNAA), 
being synthesized sufficiently in the human body. It can meet 
the needs for maximal growth and optimal health.

Exogenous Serine

The serine level is normally sufficient in a diet with any 
adequate source of protein. It may include Fungi (mush-
room, yeast), plants (vegetables, fruits, nuts), eggs, meat 
like freshwater products or seafood (fish, shrimp shells), 
livestock (beef, mutton, pork), and poultry (chicken, duck, 
turkey).

Dietary proteins are ingested and absorbed in the gastro-
intestinal tract. The majority of exogenous serine is hydro-
lyzed by several digestive enzymes, e.g., epsins from the 
stomach and pancreatic proteases from the pancreas. These 
are first broken down into oligopeptides then hydrolyzed at 
the apical membrane of the small intestine wall [3–7] and 
that of the large intestine [8], where the oligopeptides are 
further digested into di- and tripeptides, as well as free AAs 
including free serine from diet. These are then transported 
into the enterocyte across the basolateral membrane and 

enter the portal circulation for utilization [8, 9]. It is notice-
able that there are different characteristics of protein diges-
tion, absorption, and amino acid transported in vulnerable 
groups as in the newborns and the elderly [10–12].

Two Pathways for Biosynthesis of Endogenous 
Serine

Moreover, serine can also be endogenously derived from 
various metabolic pathways in the human body. The de novo 
synthesis of serine comes from the bypassing of glycolysis 
by three enzymes, namely, the 3-phosphoglycerate dehy-
drogenase (PHGDH), phosphoserine aminotransferase 1 
(PSAT1), and phosphoserine phosphatase (PSPH). Serine 
can also be directly transformed from glycine in one step by 
the enzyme SHMT1/2 (Fig. 2).

Major Pathways for Well‑Known Physiological Roles 
of Serine

Physiologically, serine plays a variety of roles, most impor-
tantly as a phosphorylation site in proteins. Besides its role 
in protein synthesis, serine plays a vital role in multiple 
cellular reactions, as the NNAA is a precursor of many 
important metabolites (Fig. 3). These include a one-carbon 
unit of the essence for the de novo synthesis of nucleotides 

Fig. 1   The chemical structures 
of l-serine, l-cysteine, and 
l-selenocysteine. With the 
exception of oxygen, sulfur, and 
selenium at one specific site, the 
three amino acids have the same 
elements, arrangement, and 
three-dimensional structure

Fig. 2   The uptake or biosyn-
thesis of serine via cells. This 
schematic diagram illustrates 
the transporters for exogenous 
serine or the pathways for 
synthesis of endogenous serine 
in mammalian cells, where the 
serine is a biosynthetic precur-
sor. Modified from Ref. [13]
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ceramide these are crucial for phospholipids and neurotrans-
mitters, such as phosphatidylserine, d-serine, l-glycine, and 
l-cysteine for glutathione (GSH).

d‑Serine

In the human central nervous system (CNS), d-serine is an 
important neurotransmitter and main endogenous co-ago-
nist of glutamate at the glycine site of N-methyl-d-aspartate 
receptor (NMDAr) that is essential to NMDAr activation 
[15–18]. Not merely modulates various crucial physiologi-
cal functions, it also participates in a variety of pathological 
processes, as NMDAr transmission, synaptic plasticity, and 
neurotoxicity. Endogenous d-serine is directly transformed 
from l-serine by serine racemase (SR) in most neural cells 
[19, 20].

It is well-documented that serine has difficulty passing 
through the blood–brain barrier. The brain needs to syn-
thesize endogenous serine. In the human CNS, l-serine is 
predominantly biosynthesized in astrocytes from 3-phos-
phoglycerate through the de novo synthetic pathway and 
serves as a precursor for the synthesis of d-serine. The case 
of l-serine as well as that of l-glycine, another important 
neurotransmitter, is described, discussing the roles of GSH, 
selenite, and selenite.

Astrocytes express the enzymes available for the de novo 
synthesis of l-serine through the glycolysis bypass. An effi-
cient l-serine shuttle mechanism has been found between 
glia and neurons for the generation of the NMDAr co-ago-
nist d-serine. Neurons were found to be the main site for the 
newly synthesized d-serine [21, 22].

One‑Carbon Units Including SAM

There is a broader set of transformations among folate-
mediated one-carbon units, known as the metabolism of 
one-carbon units, and these make them available for the 
syntheses of purine, thymidine, and the remethylation of 
homocysteine (hCys).

In the folate cycle in mammal cells, serine can be broken 
into l-glycine and 5, 10-methylenetetrahydro-folate (5,10-
meTHF; a one-carbon unit), either in the reactions of the 
cytosol catalyzed by SHMT1 or in the mitochondria by 
SHMT2 [23–28]. Following this, the (5,10-meTHF) is used 
for the synthesis of dTMP, and 5-mTHF for hCys remethyla-
tion to reproduce Met and then SAM in the Met cycle.

Phospholipids Derived from Ceramide

De novo synthesis of ceramide occurs in the endoplasmic 
reticulum (ER) in mammalian cells and starts with the con-
densation of the active C16 fatty acid palmitoyl-CoA and 
l-serine by serine palmitoyltransferase (SPT) [29–32]. Cera-
mide is the metabolic center for sphingolipids, serving as a 
precursor to sphingomyelins, which are ubiquitous building 
blocks of mammal cell membranes [33–39].

Phospholipids constitute the main components of the cel-
lular membrane. They are often classified into two groups: 
sphingolipids and phosphoglycerides, respectively contain-
ing sphingosine and glycerol. Among the later phosphoglyc-
erides on the cellular plasma membrane, i.e., phosphatidyl-
serine with a negatively charged head-group, abbreviated 
as PS, is preferentially found on the cytoplasmic leaflet and 
is mainly required for nerve cell membranes and myelin 
(especially as a neurotransmitter) [40–45]. PS is synthe-
sized in mammalian cells by two distinct PS synthases that 
exchange l-serine for choline in phosphatidylcholine (PC) 
or ethanolamine in phosphatidylethanolamine (PE), respec-
tively. Because of its strong lipophilicity, PS can quickly 
enter the brain through the blood–brain barrier to improve 
the function of nerve cells, regulate the conduction of nerve 
impulses, and enhance the memory function of the brain 
[46–51].

De Novo Synthesis of Glutathione

There are several pathways to producing the endogenous 
GSH, the reduced form of glutathione [52–54]. It can be 

Fig. 3   The metabolic fates of 
serine. This schematic illustrates 
the products in mammalian cells 
where serine is a biosynthetic 
precursor. Modified from Ref. 
[14]
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quickly synthesized from GSSG through the GSH salvage 
pathway. This can occur intracellularly via the reduction of 
GSSG by glutathione reductase (GR) and extracellularly 
via γ-glutamyl transferase (γ-GT)–mediated degradation of 
exogenous GSH, which provides l-glutamic acid, l-cysteine, 
and l-glycine [52, 53]. Endogenous GSH can also be slowly 
de novo synthesized in a two-step reaction in the cytosol of 
all mammalian cells [54]. l-Glutamate and l-cysteine are 
catalyzed by γ-glutamylcysteine ligase (also referred to as 
γ-glutamylcysteine synthetase), first in an ATP-dependent 
manner. Following this, l-glycine is added by glutathione 
synthase (Fig. 4).

Exogenous or endogenous serine might be utilized for the 
syntheses of two endogenous AAs (l-glycine and l-cysteine) 
[13, 55, 56] which are essential for the de novo biosynthesis 
of GSH[54]. l-Serine can be converted directly into l-gly-
cine by the enzyme SHMT1/2[55] or utilized to produce 
l-cysteine through the transsulfuration metabolic pathway 
[13, 56].

The Transformation of Serine into Cysteine 
Through Two Different Pathways

De Novo Biosynthesis of Cysteine

It is well-known that cysteine (Cys) is not an essential amino 
acid since it can be synthesized from the essential amino 
acid methionine (Met) ingested from the diet [57–59]. The 
first step is the transfer of an adenosine group from ATP 

to Met by methionine adenosyltransferase (MAT), resulting 
in the formation of S-adenosylmethionine (SAM). In the 
second step, SAM, as the methyl donor, donates a methyl 
group to many molecules (such as DNA, RNA, proteins, 
and neurotransmitters) and is transformed into S-adenosyl 
homocysteine (SAH). SAH is subsequently broken down 
into adenosine and homocysteine (Hcy) via a reversible reac-
tion by S-adenosyl homocysteine hydrolase (SAHH). In the 
transsulfuration process, with the help of vitamin B6, Hcy 
transfers the sulfate group to Ser catalyzed successively by 
cystathionine β-synthase (CBS) and cystathionine γ-lyase 
(CSE) and the latter is transformed into Cys (Fig. 4). Cys is 
one of the 20 amino acids and is commonly used in protein 
synthesis. Cys-tRNA can be aminoacylated directly with 
Cys and its genetic codons are UGU/UGC for its insertion 
into proteins, especially in the active cores of various impor-
tant enzymes.

De Novo Biosynthesis of Cys‑tRNA[Ser]Sec (Fig. 6 
with Green Markers)

Most aminoacyl-tRNAs are formed by the aminoacylation 
of tRNA catalyzed by aminoacyl-tRNA synthetases directly 
one-for-one. However, Cys-tRNA[Ser]Sec, a non-canonical 
Cys-tRNA, is now found to be formed through a novel path-
way by a series of enzymes used in the biosynthesis of Sec-
tRNA[Ser]Sec. Cysteine carried by Cys-tRNA[Ser]Sec comes 
from two parts, the carbon backbone directly provided from 
serine and the sulfate element from hydrogen sulfide, which 

Fig. 4   The indirect role of serine in the synthesis of glutathione and 
cysteine. This schematic illustrates that serine is the biosynthetic 
precursor for the endogenous synthesis of glycine or cysteine which 
are essential for GSH. Cysteine can be produced by cystine rapidly 
and also be de novo biosynthesized by the transsulfuration process. 

Modified from reference [60]. Abbreviations: SHMT serine hydroxy-
methyltransferase, 5-MTHF 5-methyltetrahydrofolate, 5,10-MTHF 
5,10-methyltetrahydrofolate, MS methionine synthase, MTHFR meth-
ylenetetrahydrofolate reductase, CBS cystathionine beta-synthase, 
γ-GCL γ-glutamylcysteine ligase, GSS glutathione synthetase
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is degenerated from several sulfur-containing compounds, 
including cysteine itself from protein breakdown.

The Transformation of Serine 
into Selenocysteine Through 
a tRNA‑Dependent Pathway

Generation of Hydrogen Selenide and H2SePO3

There are different types of Se species in the human diet. 
Generally, the principal component of selenium compounds 
in plant foods is mainly selenomethionine (SeMet), the 
major selenium form in animal foods is selenocysteine (Sec), 
and some fungi (such as yeast) and nuts are rich in methyl-
selenol-producing selenocompounds [61, 62]. Selenate and 
selenite are often used as nutritional supplements in infant 
formula and clinic parenteral nutritional formulae [63–65]. 
Any form of Se-containing compounds ingested by the 
human body can be metabolized to the same intermediate, 
HSe− directly or through methylselenol (CH3SeH) indirectly 
(Fig. 5). Among these Se species, serine was found to be 
essential during the generation of HSe− from SeMet directly 
or from selenate and selenite indirectly.

SeMet

As we know, Semet and Met share the same metabolic 
pathways: Met cycle and transsulfuration process. The 
metabolism of methionine (Met) starts with the Met cycle 
and then enters the transsulfuration pathway where Se is 
transferred from homocysteine (hCys) to serine, and the 

latter is transformed into Sec, with the help of vitamin 
B6 [68]. However, unlike cysteine (Cys), selenocysteine 
(Sec) cannot be utilized directly for the aminoacylation 
of tRNA to produce the Sec-tRNA for the expression of 
selenoproteins. Sec needs to be broken down by the spe-
cific enzyme selenocysteine lyase (Scly) into l-alanine and 
HSe−(SeMet → Sec → HSe−) [69–71]. Historically, more 
attention has been paid to the effect of vitamin B6 on the 
catalyzation in the Scly step [72–76] rather than the essential 
role of serine [77].

Selenate and Selenite

In general, the content of selenate and selenite in foods is 
very low and the proportion is small. Selenate and selenite 
are usually used as nutritional supplements, or as enhancers 
in Se-enriched salt, for population-based intervention target-
ing individuals in selenium-deficient areas [78, 79]. Most 
of all, the authorized forms of selenium in infant formula 
and clinic parenteral formulae are still inorganic, including 
selenate and selenite. In the human body, selenate must first 
be reduced to selenite. Selenite then requires a large amount 
of GSH to produce HSe− [80–82]. In the above-mentioned 
GSH section, we have discussed that the two amino acids 
used in the synthesis of GSH, glycine, and cysteine, are 
often derived from serine.

CH3SeH‑Producing Selenocompounds

These selenocompounds include SeMet, methylseleno-
cysteine (MeSec), and methylselenic acid (MSA), and 
γ-glutamyl-Se-methylselenocysteine (γ-GMeSec). These 

Fig. 5   Major sources of sele-
nium and their metabolism in 
the human body. Both organic 
selenium (SeMet, Sec, and 
methyl-Sec) and inorganic 
selenium (selenate and selenite) 
from the diet or supplement are 
supposed to generate HSe− in 
the cell before the biosynthesis 
of selenoproteins. Modified 
from Ref. [67]
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selenocompounds, except for SeMet, often produce CH3SeH 
by various pathways firstly: SeMet can generate CH3SeH by 
γ-lyase; MeSec and γ-GMeSec are transformed into CH3SeH 
by β-lyase; MSA is reduced to CH3SeH by GSH. And then 
CH3SeH is demethylated into HSe− by demethylase.

Before HSe− is used for de novo Sec synthesis, it must 
be phosphated to produce an active metabolite, seleophos-
phate (H2SePO3), with ATP by seleophosphate synthetase 
(SEPHS2).

De Novo Biosynthesis of Sec‑tRNA[Ser]Sec (Fig. 6 
with Yellow Markers)

Initially, Sec-tRNA, also called Sec-tRNA[Ser]Sec, is not 
directly loaded with the Sec amino acid but with l-serine 
by seryltRNA synthetase (SerRS) with the presence of ATP, 
resulting in an intermediate Ser-tRNA[Ser]Sec. Then, the Ser 
residue in Ser-tRNA[Ser]Sec is phosphorylated by PSTK 
with the presence of ATP too, resulting in another inter-
mediate O-phosposeryl-tRNA[Ser]Sec, abbreviated as pSer-
tRNA[Ser]Sec. Finally, O-phosphoseryl-tRNA[Ser]Sec selenium 
transferase (SepSecS or SecS, a PLP-dependent enzyme) 
performs the transformation between Ser and Sec on tRNA, 
resulting in the generation of Sec-tRNA[Ser]Sec.

Mature of Sec‑tRNA[Ser]Sec

The modification of bases occurs at several positions on Sec-
tRNA[Ser]Sec to generate the mature Sec-tRNA[Ser]Sec, espe-
cially in the single 2′-O-hydroxymethyl group at position 
34 (Um34) in the wobble position of this tRNA [83–86]. 
In mammal animal models, the base modification in Sec-
tRNA[Ser]Sec at position 34U can be catalyzed by the specific 
enzyme ALKBH8 dependent on SAM (Fig. 6), which is a 
most specialized final step in the maturation of Sec-tRNA[Ser]

Sec, and increases the efficiency of codon reading [84–89]. 
Even though the molecular mechanism by which mcm5U 
and mcm5Um at position 34 influence the efficient recoding 
of UGA is presently not elucidated, the importance of this 
modification in selenoprotein synthesis has been inferred 
from the genetically modified mice [84]. Interestingly, the 
expression of housekeeping selenoprotein genes, such as 
TrxR1 and TrxR3, is dependent on mcm5U-Sec-tRNA[Ser]Sec 
isoform, while the stress-related selenoproteins including 
GPX1, GPX3, SelW, SELENOW, and MSRB1 are gener-
ally synthesized by the mcm5Um-Sec-tRNA[Ser]Sec isoform. 
However, some selenoproteins including GPX4 and SELE-
NOP can be synthesized by the two isoforms. In other words, 
the expressions of 25 selenoproteins are dependent on the 
form of Sec-tRNA[Ser]Sec in response to Se-deficiency or 
the ROS/RNS stress in a different order of priority [83, 84, 
90–94].

The Underlying Mechanism of the Outbreak 
or Disappearance of Keshan Disease in China

A fatal unknown disease was firstly found in the winter of 
1935 in Keshan county of Heilongjiang province. It was thus 
renamed Keshan disease (KD). KD continued to prevail dur-
ing the war. Later on, it was prevalent again in Se-deficient 
regions of China in the 1960s and 1970s. The acute case was 
characterized by a diminished heart ability to pump blood 
because of the enlarged and weakened left ventricle, affect-
ing young children and women in particular [95–99].

As early as 1965, clinic researchers at Xian Medical Uni-
versity in China began to use selenium supplementation as a 
way to treat patients during the outbreak of Keshan disease. 
Then, Se-supplementation was demonstrated as an effective 

Fig. 6   The replacement of Sec 
or Cys by a de novo synthesis 
dependent on a unique Ser-
tRNA. This schematic illustrates 
the de novo synthesis of Sec or 
Cys from Ser on tRNA with the 
presence of ATP. Modified from 
Ref. [122]
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way to prevent the occurrence of KD in the Se-deficient 
areas around the world subsequently [100–104].

Up to now, it is well-known that KD appeared only under 
extremely poor Se status accompanied by environmental 
or host stress. The biological functions of Se are mainly 
exserted by selenoproteins (encoded by 25 genes in humans) 
[79, 105–108]. The outbreak of Keshan disease might be due 
to the level of Se (less than 20 µg/day) in the human body, 
which is too low to meet the minimum expression of some 
housekeeping selenoprotein genes (thioredoxin reductases, 
including TrxR1 and TrxR3).

Nowadays in the Se-deficient regions in China, the 
amount is still less than the recommended by the Chinese 
Nutrition Society, though the dietary selenium intake of 
local residents is slowly rising. The population-based inter-
vention strategies including the supplement of selenium-
enriched salt or oral sodium selenite tablets have already 
been terminated since 2014, but new cases of severe diseases 
directly related to selenium deficiency (such as Keshan dis-
ease and Kashin Beck disease) have been rarely reported, or 
even disappeared [79, 109–111].

Why and how? There are two existing hypotheses. One 
is that the genetics of residents living in the Se-deficient 
areas for a long time has changed, and then they gradually 
adapt to their low-Se or Se-deficient diets [112]. It is known 
that some populations do show genetic adaptations to low 
selenium levels, but this cannot be expected to explain the 
recent reduction of selenium-related diseases. Another more 
likely hypothesis is that the dietary selenium intake of resi-
dents living in these Se-deficient areas is sufficient following 
with enough dietary protein intake or the consumption of 
imported Se-enriched foods [78, 113]. However, with the 
development of logistics, people eat a wide range of food, so 
timely supplement of selenium. At the same time, the animal 
husbandry feed has been strengthened with selenium. This 
might also be the main reason for the near disappearance of 
selenium deficiency. Therefore, relevant questions deserve 
further investigation in the near future.

Here, we provide a novel hypothesis about the disappear-
ance of Keshan disease in China that there may be a physi-
ological adaptation to the suboptimal Se status for the local 
residents living in the classical Se-deficient areas due to the 
replacement of Sec by Cys, accompanied by the daily intake 
of adequate dietary protein.

The Dietary Se Intake of Local Residents Is More 
Than 17 μg/Day

From previous studies reported by a national Keshan 
disease research group from China in the 1970s, Keshan 
disease often occurred if the average dietary Se intake 
daily from local foods ingested by residents was less than 
17 μg/day and not enough to guarantee the expression of 

housekeeping selenoprotein genes (thioredoxin reductases, 
including TXNRD1 and TXNRD3) and led to the outbreak 
of this acute heart disease and even death [79, 107]. At 
present, the average dietary Se intake daily reported is 
increasing gradually up to more than 17 μg/day followed 
by the daily intake of adequate dietary protein [114–116], 
which is at least sufficient for the minimum expression of 
housekeeping genes in the human body, but is still much 
lower than the RNIs recommended by the Chinese Nutri-
tion Society [117].

The Replacement of Sec by Cys Via a Unique 
Ser‑tRNA‑Dependent Pathway at a Low‑Se Status

From above, we have learned that the transformation 
between Ser and Cys or Sec can often occur usually through 
the transsulfuration process or the tRNA-dependent pathway. 
Naturally, Cys is often found to replace Sec in prokaryotic 
cells and eukaryotic cells to synthesize similar proteins. 
Through genetic engineering, the Sec residue in mammal 
selenoenzymes (thioredoxin reductase and GPX4) was spe-
cifically replaced by Cys to generate the pseudo-selenoen-
zymes. It was found that these artificial enzymes still had 
catalytic activity, which was decreased dramatically [118]. 
Then, Cys was found to recode the same genetic code UGA 
usually for Sec and be incorporated into the correspond-
ing position of Sec in the peptide chain of selenoproteins 
by the unique Cys-tRNA[Ser]Sec, biosynthesized through the 
Ser-tRNA-dependent pathway, to generate the pseudosele-
noproteins naturally in rats at the suboptimal intake of Se 
(Fig. 6) [119–121]. However, this replacement of Sec by Cys 
in the peptide chain of selenoproteins needs to be confirmed 
directly in local residents living in the classical Se-deficient 
areas in China in further studies.

The Dietary Protein Intake Sufficient for the Basic 
Requirement of Local Residents

As an essential element, Se exserted the important biological 
functions mainly by selenoproteins. Therefore, in addition 
to selenocysteine, like other structural and functional pro-
teins in the human body, these selenoproteins need all 20 
kinds of amino acids, including essential and non-essential 
amino acids. More than that, some Se-containing enzymes, 
such as GPXs and TrxRs still require the participation of 
GSH and Thioredoxin (Trx) to perform their biological func-
tions. Most of all, several amino acids themselves play a 
very important role in the metabolism of Se, the replace-
ment of Sec by Cys through the de novo biosynthesis of 
Sec-tRNA[Ser]Sec and Cys-tRNA[Ser]Sec, and the expression 
of false or true selenoprotein.
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Serine

Firstly, serine is neglected for its crucial role in the expres-
sion of true or false selenoproteins directly through the de 
novo biosynthesis of Sec-tRNA[Ser]Sec or Cys-tRNA[Ser]
Sec. It was reported that serine had a synergistic effect with 
selenocompounds on the expression of selenoproteins in 
cells [122, 123] and improved the selenium nutritional status 
in sows and their offspring [124]. Dietary serine and sulfate-
containing amino acids are related to the nutritional status of 
selenium in lactating Chinese women [125]. Also, serine can 
promote the generation of HSe− from homocysteine through 
the transsulfuration pathway. Then, serine can be used as the 
donor of one-carbon units carried on tetrahydrofolate for 
the methionine cycle to produce SAM. Finally, serine can 
be transformed into cysteine and glycine utilized for the de 
novo synthesis of GSH, which is necessary for the biologi-
cal function of GPXs and the metabolism of inorganic Se.

Methionine

In addition to the de novo biosynthesis of cysteine and gen-
eration of SH−, methionine is essential for the production of 
the unique one-carbon unit SAM. As a reactive methyl carrier, 
SAM is the second common enzymatic cofactor except for ATP 
and is well-known for its major role in epigenetics and many 
biosynthetic processes. More than that, SAM is crucial for the 
maturation of Sec-tRNA[Ser]Sec and the efficiency of codon 
reading. Also, SAM takes part in the metabolism and is used to 
generate CH3SeH, dimethylselenide (DMSe, (CH3)2Se) and tri-
methylselenium ion (TMSe, (CH3)3Se) or Se-methyl-N-acetyl-
selenohexosamine (selenosugar, SeSUG) (Fig. 7) [126–128].

Cysteine

In addition to the direct participation in the de novo bio-
synthesis of GSH, cysteine can replace selenocysteine in 
the expression of selenoproteins through degeneration into 
SH− for the de novo biosynthesis of Cys-tRNA[Ser]Sec.

Glycine, Glutamine, and Glutamate

Both glycine and glutamine can be used to generate endog-
enous serine. Glycine can be transformed into serine in 
one step by the enzyme SHMT1/2, while glutamine par-
ticipates in the second step in the metabolic bypass of 
glycolysis for the de novo synthesis of serine providing the 
amino group in the presence of vitamin B6 by the enzyme 
PSAT1[129, 130]. Glutamine and glutamate can be con-
verted to each other, and glutamate is essential to generate 
GSH together with glycine and cysteine in the cell.

Therefore, on the basis of adequate serine from diets, 
the transformation of glycine and even the de novo syn-
thetic pathway from glycolysis, adequate dietary protein 
may provide a higher Se intake daily to guarantee the 
expression of housekeeping selenoprotein genes and also 
a small portion of stress-responsive selenoproteins and 
supply enough dietary S-containing amino acids to gen-
erate Cys-tRNA[Ser]Sec for the biosynthesis of false sele-
noproteins instead of the corresponding stress-responsive 
selenoproteins in local inhabitants living in the classic 
Se-deficient areas. This might be an underlying mecha-
nism for the disappearance of Keshan disease in China at 
present [79, 109–111].

Fig. 7   The SAM-dependent 
generation of CH3SeH or 
final excretory forms of Se. 
This schematic illustrates the 
essential role in both of these 
metabolic pathways with the 
presence of ATP.  Modified 
from Ref. [125]
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The Latent Health Risk in a Case 
of Physiological Adaptation to a Low‑Se 
Status

Optimal Se intake daily is quite important to human 
health. Se is an essential component of several enzymes 
involved in various crucial metabolic pathways, which 
are responsible for male reproduction, thyroid hormone 
metabolism, antioxidant defense systems, etc.

Male Subfertility

Previous studies involving different animal models had 
revealed the incredible importance of Se. Selenoproteins 
are essentially required for spermatogenesis, antioxidant 
defense, and other biological functions. Nowadays, more 
and more studies have focused on the elucidation of cru-
cial roles played by the peculiar and canonical selenopro-
teins, i.e., glutathione peroxidase 4 (GPX4) and seleno-
protein P (SELENOP) in male fertility. GPX4 plays an 
essential role in the disulfide bond formation for spermat-
ogenesis [131–133]. SELENOP is biosynthesized in the 
liver, transported in the blood. SELENOP supplies Se for 
the biosynthesis of GPX4 via the apolipoprotein E recep-
tor-2 [134]. The expression of inactive GPX4 or low-active 
GPX4 can lead to embryonic lethality and male subfertil-
ity [135–137]. Low-Se diet (0.15 mg/kg) reduced sperm 
quality and testicular glutathione peroxidase-4 activity in 
rats [138].

Hypothyroidism and Underdevelopment

During the metabolism of thyroid hormones, iodothyro-
nine deiodinases (DIOs) are important enzymes that are 
responsible for the conversion of thyroxine (T4) to trii-
odothyronine (T3). There are three types of DIOs with 
different physiological functions: DIO1 is mainly respon-
sible for the T3 level in blood; DIO2 participates in the 
conversion of T4 to T3, which is the only one composed 
of two Se atoms; DIO3 plays roles in the transformation 
of T4 to T3 and T3 to T2 protecting the brain when the 
plasma Se is lower than 67 μg/l, which have been con-
nected with diminished peripheral capacity for the turning 
of T4 into T3. Se deficiency decreases the activity of DIOs 
and compromises thyroid function following by physiolog-
ical and cognitive underdevelopment [139–143]. However, 
the results from a randomized controlled Se-supplement 
trial in UK elderly adults did not find the effect on thy-
roid function or on the ratio of T4/T3 [144, 145]. A small 
population survey of mothers and infants showed that the 

growth and development of infants were correlated with 
dietary selenium intake of mothers or selenium content in 
breast milk [146].

Weak Immunobarrier

Selenium is believed to play several roles in some key bio-
logical processes to build up the immune barrier in the 
human body, including antioxidant defense, redox signal-
ing, redox homeostasis, and the immune response includ-
ing regulation of T cell proliferation, differentiation, and 
metabolism, achieved through activities of selenoproteins 
[147–149]. For instance, reactive oxygen species (ROS) are 
produced, usually removed from the body by a variety of 
selenium-containing enzymes; otherwise, the excess of ROS 
usually induces oxidative stress and causes health hazards 
during viral or bacterial infections [150, 151]. Recently, Se 
intake is sub-optimal or low and is considered one of the risk 
factors which might impact the outcome of SARS-CoV-2 
infection [152].

Short Life Expectancy

Selenium is well known as one of the powerful antioxidants. 
A low level of plasma selenium was found to be associated 
with a higher incidence of esophageal and stomach cancer 
in a Chinese study [153]. Also, one study from Italy showed 
that the lowest quartile of plasma Se had higher mortality 
compared with the highest quartile of plasma Se in adults 
[154]. Up to now, studies on the correlation between oxida-
tion damage and aging are still popular [155–157]. However, 
the results from the animal experiments are still inconsistent. 
Fortunately, the benefit of adequate Se intake on longevity 
was often confirmed in human studies [158–160].

Conclusions

Serine is a nonessential nutritional amino acid (NNAA) but 
its various biological functions are well known. Although 
selenium compounds and sulfur compounds share the same 
metabolic pathway, less research has focused on the key role 
of serine in the replacement of Sec by Cys to synthesize the 
pseudo-selenoproteins.

In this review, we propose several possible factors to 
explain why Keshan disease has gradually disappeared in 
China. Along with the adequate dietary proteins intake by 
local residents living in the classic Se-deficient areas, firstly, 
the low but more than 17 μg/day of selenium intake can 
guarantee the synthesis of housekeeping selenoproteins; sec-
ondly, the replacement of Sec by Cys is inclined to synthe-
size some stress-responsive selenoproteins; thirdly, enough 
AAs is uptaken for the synthesis of serine (from glycine), 
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GSH (glutamate, cysteine, and glycine), and SAM (from 
methionine).

We have reasons to predict the potential health risk for 
the human body in the physiological adaptation state of low 
selenium based on the results of animal experiments.
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