Skip to main content
Log in

Stress Response, Immunity, and Organ Mass in Toads (Rhinella diptycha) Living in Metal-Contaminated Areas

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 28 May 2021

This article has been updated

Abstract

Mining is one of the main activities that drive the economy of Brazil. Mining activity is associated with risk of contamination of environment and local fauna by metals. Amphibians have a life cycle that requires a transition between aquatic and terrestrial environments, increasing their vulnerability to metal contamination in the water and substrate. Metals are ubiquitous, with high bioaccumulative and biomagnifying potential, and may lead to immune and endocrine disruption. In this study, we analyzed two different components of the innate immune response, bacterial killing ability (BKA) and phytohemagglutinin edema (PHA), and two stress biomarkers, corticosterone plasma levels (CORT) and the neutrophil to lymphocyte ratio (N:L), of toads (Rhinella diptycha) living in places contaminated by metals. Blood samples were collected pre- and post-restraint (1h), followed by an immune challenge with PHA and tissue collection (liver, spleen, and kidneys). Toads liver metal bioaccumulation did not correlate with the immune response or stress biomarkers. Post-restraint, animals had increased CORT and reduced BKA, independently of the collection site, and these variables were not correlated with liver metal bioaccumulation. Interestingly, toads with the larger spleen (immune organ) showed increased N:L post-restraint and greater edema after the PHA challenge. Our results indicate that toads living in metal-contaminated environments responded to acute stressor, activating the hypothalamic-pituitary-interrenal axis and the immune response. Keep tracking the physiological variables of these animals and the presence of metals in the environment and tissues should provide valuable health status indicators for the population, which is vital for proposing amphibian conservation strategies in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The original data used in this manuscript will be available at the Mendeley Data, through the DOI: 10.17632/xmygd6msg8.1.

Change history

References

  1. Hatje V, Pedreira RMA, De Rezende CE, Schettini CAF, De Souza GC, Marin DC, Hackspacher PC (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-11143-x

    Article  CAS  Google Scholar 

  2. Bottino F, Milan JAM, Cunha-Santino MB, Bianchini I (2017) Influence of the residue from an iron mining dam in the growth of two macrophyte species. Chemosphere 186:488–494. https://doi.org/10.1016/j.chemosphere.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  3. Otero MA, Pollo FE, Grenat PR, Salas NE, Martino AL (2018) Differential effects on life history traits and body size of two anuran species inhabiting an environment related to fluorite mine. Ecol Indic 93(April):36–44. https://doi.org/10.1016/j.ecolind.2018.04.065

    Article  CAS  Google Scholar 

  4. Haskins DL, Hamilton MT, Stacy NI, Finger JW, Tuberville TD (2017) Effects of selenium exposure on the hematology, innate immunity, and metabolic rate of yellow-bellied sliders (Trachemys scripta scripta). Ecotoxicology 26(8):1134–1146. https://doi.org/10.1007/s10646-017-1839-7

    Article  CAS  PubMed  Google Scholar 

  5. Hopkins WA, Mendonça MT, Congdon JD (1997) Increased circulating levels of testosterone and corticosterone in southern toads, Bufo terrestris, exposed to coal combustion waste. Gen Comp Endocrinol 108(2):237–246. https://doi.org/10.1006/gcen.1997.6969

    Article  CAS  PubMed  Google Scholar 

  6. Jayawardena UA, Ratnasooriya WD, Wickramasinghe DD, Udagama PV (2016) Heavy metal mediated innate immune responses of the Indian green frog, Euphlyctis hexadactylus (Anura: Ranidae): cellular profiles and associated Th1 skewed cytokine response. Sci Total Environ 566:1194–1204. https://doi.org/10.1016/j.scitotenv.2016.05.171

    Article  CAS  PubMed  Google Scholar 

  7. Linzey DW, Burroughs J, Hudson L, Marini M, Robertson J, Bacon JP et al (2003) Role of environmental pollutants on immune functions, parasitic infections and limb malformations in marine toads and whistling frogs from Bermuda. Int J Environ Health Res 13(2):125–148. https://doi.org/10.1080/0960312031000098053

    Article  CAS  PubMed  Google Scholar 

  8. Wayland M, Gilchrist HG, Marchant T, Keating J, Smits JE (2002) Immune function, stress response, and body condition in arctic-breeding common eiders in relation to cadmium, mercury, and selenium concentrations. Environ Res 90(1):47–60. https://doi.org/10.1006/enrs.2002.4384

    Article  CAS  PubMed  Google Scholar 

  9. Norris DO, Felt SB, Woodling JD, Dores RM (1997) Immunocytochemical and histological differences in the interrenal axis of feral brown trout, Salmo trutta, in metal-contaminated waters. Gen Comp Endocrinol 108(3):343–351. https://doi.org/10.1006/gcen.1997.7000

    Article  CAS  PubMed  Google Scholar 

  10. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Preparative actions. Endocr Rev 21(1):55–89

    CAS  PubMed  Google Scholar 

  11. Barriga C, Martín MI, Tabla R, Ortega E, Rodríguez AB (2001) Circadian rhythm of melatonin, corticosterone and phagocytosis: effect of stress. J Pineal Res 30(3):180–187. https://doi.org/10.1034/j.1600-079X.2001.300307.x

    Article  CAS  PubMed  Google Scholar 

  12. Romero LM, Wingfield JC (2015). Tempests, poxes, predators, and people: stress in wild animals and how they cope. Oxford University Press DOI:https://doi.org/10.1093/acprof:oso/9780195366693.001.0001

  13. Prokić MD, Borković-Mitić SS, Krizmanić II, Mutić JJ, Trifković J, Gavrić JP et al (2016b) Bioaccumulation and effects of metals on oxidative stress and neurotoxicity parameters in the frogs from the Pelophylax esculentus complex. Ecotoxicology 25(8):1531–1542. https://doi.org/10.1007/s10646-016-1707-x

    Article  CAS  PubMed  Google Scholar 

  14. Prokić MD, Petrović TG, Gavrić JP, Despotović SG, Gavrilović BR, Radovanović TB, Faggio C, Saičić ZS (2018) Comparative assessment of the antioxidative defense system in subadult and adult anurans: a lesson from the Bufotes viridis toad. Zoology 130:30–37. https://doi.org/10.1016/j.zool.2018.08.001

    Article  PubMed  Google Scholar 

  15. Arantes FP, Savassi LA, Santos HB, Gomes MVT, Bazzoli N (2016) Bioaccumulation of mercury, cadmium, zinc, chromium, and lead in muscle, liver, and spleen tissues of a large commercially valuable catfish species from Brazil. An Acad Bras Cienc 88(1):137–147. https://doi.org/10.1590/0001-3765201620140434

    Article  CAS  PubMed  Google Scholar 

  16. Yu S, Halbrook RS, Sparling DW, Colombo R (2011) Metal accumulation and evaluation of effects in a freshwater turtle. Ecotoxicology 20(8):1801–1812. https://doi.org/10.1007/s10646-011-0716-z

    Article  CAS  PubMed  Google Scholar 

  17. Huang MY, Duan RY, Ji X (2014) Chronic effects of environmentally-relevant concentrations of lead in Pelophylax nigromaculata tadpoles: threshold dose and adverse effects. Ecotoxicol Environ Saf 104(1):310–316. https://doi.org/10.1016/j.ecoenv.2014.03.027

    Article  CAS  PubMed  Google Scholar 

  18. Zhelev ZM, Popgeorgiev GS, Mehterov NH (2015) Changes in the hepatosomatic index and condition factor in the populations of Pelophylax ridibundus (Amphibia: Ranidae) from anthropogenically polluted biotopes in Southern Bulgaria. Bulgarian Journal of Agricultural Science 21:534–539

    Google Scholar 

  19. Dhabhar FS (2002) A hassle a day may keep the doctor away: stress and the augmentation of immune function. Integr Comp Biol 42(3):556–564. https://doi.org/10.1093/icb/42.3.556

    Article  PubMed  Google Scholar 

  20. Davis AK, Maney DL (2018) The use of glucocorticoid hormones or leucocyte profiles to measure stress in vertebrates: what’s the difference? Methods Ecol Evol 9(6):1556–1568. https://doi.org/10.1111/2041-210X.13020

    Article  Google Scholar 

  21. Dhabhar FS, McEwen BS (1997) Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 11(4):286–306. https://doi.org/10.1006/brbi.1997.0508

    Article  CAS  PubMed  Google Scholar 

  22. Dhabhar FS (2014) Effects of stress on immune function : the good , the bad , and the beautiful. Immunol Res 58(2-3):193–210. https://doi.org/10.1007/s12026-014-8517-0

    Article  CAS  PubMed  Google Scholar 

  23. Titon SCM, Assis VR, Titon Junior B, Cassettari, B. de O., Fernandes, P. A. C. M., & Gomes, F. R. (2017) Captivity effects on immune response and steroid plasma levels of a Brazilian toad (Rhinella schneideri). Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 327(2–3):127–138. https://doi.org/10.1002/jez.2078

    Article  CAS  Google Scholar 

  24. Carey C, Cohen N, Rollins-Smith L (1999) Amphibian declines: an immunological perspective. Dev Comp Immunol 23(6):459–472. https://doi.org/10.1016/s0145-305x(99)00028-2

    Article  CAS  PubMed  Google Scholar 

  25. Blaustein AR, Johnson PT (2003) The complexity of deformed amphibians. Front Ecol Environ 1(2):87–94. https://doi.org/10.1890/1540-9295(2003)001[0087:TCODA]2.0.CO;2

    Article  Google Scholar 

  26. Hayes TB, Falso P, Gallipeau S, Stice M (2010) The cause of global amphibian declines: a developmental endocrinologist's perspective. J Exp Biol 213(6):921–933. https://doi.org/10.1242/jeb.040865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Catenazzi A (2015) State of the world's amphibians. Annu Rev Environ Resour 40:91–119. https://doi.org/10.1146/annurev-environ-102014-021358

    Article  Google Scholar 

  28. Sparling DW, Linder G, Bishop CA, Krest S (2010). Ecotoxicology of amphibians and reptiles. Pensacola, FL: Society of Environmental Toxicology and Chemistry (SETAC). CRC Press. p. 15-71

  29. Carvalho CS, Utsunomiya HSM, Pasquoto T, Lima R, Costa MJ, Fernandes MN (2017) Blood cell responses and metallothionein in the liver, kidney and muscles of bullfrog tadpoles, Lithobates catesbeianus, following exposure to different metals. Environ Pollut 221(December):445–452. https://doi.org/10.1016/j.envpol.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  30. de Gomes LEO, Correa LB, Sá F, Neto RR, Bernardino AF (2017) The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Mar Pollut Bull 120(1–2):28–36. https://doi.org/10.1016/j.marpolbul.2017.04.056

    Article  CAS  PubMed  Google Scholar 

  31. Segura FR, Nunes EA, Paniz FP, Paulelli ACC, Rodrigues GB, Braga GÚL, dos Reis Pedreira Filho W, Barbosa F Jr, Cerchiaro G, Silva FF, Batista BL (2016) Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environ Pollut 218:813–825. https://doi.org/10.1016/j.envpol.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  32. APHA A (1998) Standard methods for the examination of water and wastewater. American Public Health Association. Inc., Washington. DC https://ajph.aphapublications.org/doi/pdf/10.2105/AJPH.56.3.387

    Google Scholar 

  33. Krakauer T (1968) The ecology of the neotropical toad, Bufo marinus, in South Florida. Herpetologica 24:214–221 http://www.jstor.org/stable/3891013

    Google Scholar 

  34. Lavilla EO, Brusquetti F (2018). On the identity of Bufo diptychus Cope, 1862 (anura: Bufonidae). 10.11646/zootaxa.4442.1.9

  35. Assis VR, Titon SCM, Barsotti AMG, Titon B, Gomes FR (2015) Effects of acute restraint stress, prolonged captivity stress and transdermal corticosterone application on immunocompetence and plasma levels of corticosterone on the cururu toad (Rhinella icterica). PLoS One 10(4):1–21. https://doi.org/10.1371/journal.pone.0121005

    Article  CAS  Google Scholar 

  36. Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under 3 min good enough? Comp Biochem Physiol A Mol Integr Physiol 140(1):73–79. https://doi.org/10.1016/j.cbpb.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  37. Prokić MD, Borković-Mitić SS, Krizmanić II, Mutić JJ, Vukojević V, Nasia M, Gavrić JP, Despotović SG, Gavrilović BR, Radovanović TB, Pavlović SZ, Saičić ZS (2016a) Antioxidative responses of the tissues of two wild populations of Pelophylax kl. esculentus frogs to heavy metal pollution. Ecotoxicol Environ Saf 128:21–29. https://doi.org/10.1016/j.ecoenv.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  38. Campbell T W (2006). Hematologia de anfíbios. Hematologia e Bioquímica Clínica Veterinária. Roca, 291-300

  39. de Assis VR, Titon SCM, Barsotti AMG, Spira B, Gomes FR (2013) Antimicrobial capacity of plasma from anurans of the Atlantic Forest. South American Journal of Herpetology 8(3):155–160. https://doi.org/10.2994/sajh-d-13-00007.1

    Article  Google Scholar 

  40. Assis VR, Titon SCM, Queiroz-Hazarbassanov NGT, Massoco CO, Gomes FR (2017) Corticosterone transdermal application in toads (Rhinella icterica): effects on cellular and humoral immunity and steroid plasma levels. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 327(4):200–213. https://doi.org/10.1002/jez.2093

    Article  CAS  Google Scholar 

  41. Brown GP, Shilton CM, Shine R (2011) Measuring amphibian immunocompetence: validation of the phytohemagglutinin skin-swelling assay in the cane toad, Rhinella marina. Methods Ecol Evol 2(4):341–348. https://doi.org/10.1111/j.2041-210X.2011.00090.x

    Article  Google Scholar 

  42. Titon SCM, Assis VR, Titon B, Barsotti AMG, Flanagan SP, Gomes FR (2016) Calling rate, corticosterone plasma levels and immunocompetence of Hypsiboas albopunctatus. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology 201:53–60. https://doi.org/10.1016/j.cbpa.2016.06.023

    Article  CAS  Google Scholar 

  43. Machado IF, Silvia SF (2001) 500 years of mining in Brazil: a brief review. Res Policy 27(1):9–24. https://doi.org/10.1016/S0301-4207(01)00004-6

    Article  Google Scholar 

  44. Silva OP (1995) A mineração em minas gerais: passado, presente e futuro. Revista Geonomos 3(1):10.18285/geonomos.v3i1.217

    Google Scholar 

  45. Roeser HMP, Roeser PA (2016) O Quadrilátero Ferrífero - Mg, Brasil: Aspectos Sobre Sua História, Seus Recursos Minerais E Problemas Ambientais Relacionados. Geonomos 18(1):33–37. https://doi.org/10.18285/geonomos.v18i1.67

    Article  Google Scholar 

  46. Beck ML, Hopkins WA, Hallagan JJ, Jackson BP, Hawley DM (2014) Exposure to residual concentrations of elements from a remediated coal fly ash spill does not adversely influence stress and immune responses of nestling tree swallows. Conservation physiology 2(1). https://doi.org/10.1093/conphys/cou018

  47. Finger JW, Hamilton MT, Metts BS, Glenn TC, Tuberville TD (2016) Chronic ingestion of coal fly-ash contaminated prey and its effects on health and immune parameters in juvenile American alligators (Alligator mississippiensis). Arch Environ Contam Toxicol 71(3):347–358. https://doi.org/10.1007/s00244-016-0301-9

    Article  CAS  PubMed  Google Scholar 

  48. Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439(7078):803–803. https://doi.org/10.1038/439803a

    Article  CAS  PubMed  Google Scholar 

  49. Sztatecsny M, Schabetsberger R (2005) Into thin air: vertical migration, body condition, and quality of terrestrial habitats of alpine common toads, Bufo bufo. Can J Zool 83(6):788–796. https://doi.org/10.1139/z05-071

    Article  Google Scholar 

  50. Eeva T, Langefors Å, Hasselquist D, Ilmonen P, Tummeleht L, Nikinmaa M (2005) Pollution related effects on immune function and stress in a free-living population of pied flycatcher Ficedula hypoleuca. J Avian Biol 36(5):405–412. https://doi.org/10.1111/j.0908-8857.2005.03449.x

    Article  Google Scholar 

  51. Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model — a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389. https://doi.org/10.1016/j.yhbeh.2008.12.009

    Article  PubMed  Google Scholar 

  52. Madelaire CB, Cassettari, B. de O. & Gomes, F. R. (2019) Immunomodulation by testosterone and corticosterone in toads: experimental evidences from transdermal application. Gen Comp Endocrinol 273(August 2018):227–235

    Article  CAS  Google Scholar 

  53. Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22(5):760–772. https://doi.org/10.1111/j.1365-2435.2008.01467.x

    Article  Google Scholar 

  54. Assis VR, Titon SCM, Gomes FR (2019) Acute stress, steroid plasma levels, and innate immunity in Brazilian toads. Gen Comp Endocrinol 273(May):86–97. https://doi.org/10.1016/j.ygcen.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  55. Titon SCM, Titon B Jr, Barsotti AMG, Gomes FR, Assis VR (2019) Time-related immunomodulation by stressors and corticosterone transdermal application in toads. PLoS One 14(9):e0222856. https://doi.org/10.1371/journal.pone.0222856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matson KD, Tieleman BI, Klasing KC (2006) Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds. Physiol Biochem Zool 79(3):556–564. https://doi.org/10.1086/501057

    Article  PubMed  Google Scholar 

  57. French SS, Fokidis HB, Moore MC (2008) Variation in stress and innate immunity in the tree lizard (Urosaurus ornatus) across an urban–rural gradient. J Comp Physiol B 178(8):997–1005

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the technicians Márcio P. Lima and Raphaela C. Ribeiro for field support; Sheila C. Silva and Rayssa L. Cardoso for support in biochemistry analyses; and Prof. Jorge A. S. Tenório and the lab technician, Ana C. F. Dalsin, for support on metal analyses.

Code Availability

Not applicable.

Funding

This work was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (institutional quota) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grant number: 2014/16320-7). F.R. Gomes is a research fellow from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—#302308/2016-4.

Author information

Authors and Affiliations

Authors

Contributions

Vasconcelos-Teixeira: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—original draft and editing, visualization, and project administration. Titon: methodology, validation, formal analysis, investigation, and writing—review and editing. Titon Jr: formal analysis, data curation, and writing—review and editing. Pompeo: methodology, resources, and writing—review and editing. Gomes: resources, writing—review and editing, supervision, and funding acquisition. Assis: conceptualization, methodology, writing—review and editing, visualization, and supervision.

Corresponding author

Correspondence to Ronyelle Vasconcelos-Teixeira.

Ethics declarations

Ethics Approval

The collection of the specimens was approved by the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio, process 29896-1). The ethical approval for the experiments with the animals was granted by the Ethics Committee on Animal Use of the Bioscience Institute of the University of Sao Paulo (CEUA n° 303/2017).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article unfortunately a mistake. The Supplementary Tables should not be captured in the PDF but as an Electronic Supplementary Material only.

Supplementary Information

ESM 1

(DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasconcelos-Teixeira, R., Titon, S.C.M., Titon, B. et al. Stress Response, Immunity, and Organ Mass in Toads (Rhinella diptycha) Living in Metal-Contaminated Areas. Biol Trace Elem Res 200, 800–811 (2022). https://doi.org/10.1007/s12011-021-02699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02699-x

Keywords

Navigation